

Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

Maejo International
Journal of Science and Technology

ISSN 1905-7873

Available online at www.mijst.mju.ac.th
Full Paper

Analysis of frequency-based compact genetic algorithm (fb-
cGA)
Sunisa Rimcharoen, Srichol Phiromlap and Nutthanon Leelathakul *

Faculty of Informatics, Burapha University, Chon Buri, 20131, Thailand

* Corresponding author, e-mail: nutthanon@buu.ac.th

Received: 19 June 2014 / Accepted: 30 March 2015 / Published: 9 April 2015

Abstract: A behaviour analysis of frequency-based compact genetic algorithm (fb-cGA)
is proposed. The fb-cGA is a version of compact genetic algorithm (cGA) enhanced by the
use of a new updating strategy. The algorithm counts the number of probability updates
and the continuities of probability-update directions and uses them to adaptively update the
algorithm’s step sizes. This method requires fewer function evaluations and achieves
solutions that are more accurate than those from the conventional cGA. It has been shown
that fb-cGA can reduce the number of function evaluations to only one ninth of the
number obtained from cGA on ten copies of a 3-bit trap function using a tournament size
of 2. We conduct parameter studies and show that the use of one fourth of the population
size (psize/4) as the algorithm’s starting threshold can improve the overall efficiency of fb-
cGA. The behaviour of fb-cGA on various problems is also examined. The results of the
analysis show that information from the algorithm’s past experience (i.e. the numbers of
probability updates and continuities) can help the fb-cGA to update the probability vector
towards a more promising direction, requiring fewer function evaluations.

 Keywords: compact genetic algorithm, updating strategy, update frequency, update
 continuity

INTRODUCTION

Compact genetic algorithm (cGA) was proposed by Harik et al. [1]. It has been widely
applied to various fields such as pipe network optimisation [2], parameter optimisation [3, 4],
inventory planning [5], image recognition [6], traffic transportation management [7],
communication [8-10], container loading [11], grid computing [12] and biology [13, 14]. The main
contribution of this algorithm is to replace a whole set of candidate solutions (the so-called
population) used by simple genetic algorithm (sGA) with a probability distribution. cGA requires

Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

122

much less memory, as it does not need to maintain the population throughout the evolution process.
The concept of cGA can be easily translated to hardware implementation by using the common
very-large-scale integration [15-17]. Therefore, it opens up the application of genetic algorithm to
new fields such as embedded systems. For example, Timmerman [18] used cGA to develop an
insect-sized flapping-wing micro air vehicle.

However, for more difficult problems, cGA does not provide acceptable solutions. There
have been many attempts to modify and improve cGA’s probability updating strategy. Zhou et al.
[19] proposed an improved cGA using mutation and named the algorithm mutated-by-bit-compact
genetic algorithm (MBBCGA). At each generation, MBBCGA generates only one individual and
then mutates this individual bit by bit. Ha et al. [20] proposed the use of more than one probability
vector (PV) to enhance the exploration properties of the algorithm. Rimcharoen et al. [21] improved
the updating strategy of cGA by using a moving average technique (mcGA). Ahn and Ramakrishna
[22] adopted ‘elitism’, i.e. the idea of reserving the best solution in each generation. They proposed
two variants: a persistent elitist compact genetic algorithm (pe-cGA) and a non-persistent elitist
compact genetic algorithm (ne-cGA). The former stores the current best solution until a better
solution is found, while the latter keeps the best solution just for a certain lifetime. In 2008 Lee et
al. [23] introduced a new update strategy using augmented Bayesian networks. A few years later,
they proposed compact genetic algorithm using a belief vector (cGABV) [24]. The new technique
uses a belief vector (BV) instead of a probability vector. The difference between BV and PV is that
each element of the BV stores a probability distribution (represented by associated mean and
variance), whereas each of the PV keeps a probability value.

In our previous work [25], we proposed the usage of a frequency-based updating technique
as the updating strategy of cGA. The technique collects and utilises information from the
algorithm’s past experience. Specifically, for each probability in the PV, the number of probability
updates (in both up and down directions) are counted and used to adjust probability-updating step
sizes, turning the vector towards the promising direction faster. Comparison results show that the
frequency-based compact genetic algorithm (fb-cGA) requires substantially (up to nine times) fewer
function evaluations when compared with traditional cGA. However, in-depth explanation and
analysis of why this algorithm outperforms others remained lacking. Accordingly, in this paper, we
conduct parameter studies and analyse how the algorithm behaves while solving various problems.

FREQUENCY-BASED COMPACT GENETIC ALGORITHM (fb-cGA)

cGA is one of various evolutionary algorithms. Instead of evolving the population for
searching solutions, it employs a probabilistic model, PV, which requires relatively small amount of
memory. Furthermore, the algorithm eliminates genetic operators such as crossover and mutation.

cGA keeps a PV over a chromosome to represent the population. The number of
probabilities in the vector is equal to the chromosome length. Each probability is defined as the
probability with the associated bit being equal to 1. The pseudo-code of cGA is shown in Figure 1.
The two parameters are the chromosome length (l) and the population size (psize), which are used to
further specify an updating step size (i.e. step size defined as 1 / psize). (Note that the relation
between psize and the updating size in the cGA is analogous to the one between population size and
evolving speed in sGA.)

Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

123

 Figure 1. Pseudo-code of cGA Figure 2. Pseudo-code of tournament cGA

First, the cGA initially sets each of the probabilities in the vector to 0.5. According to the
PV, the algorithm randomly generates two candidate solutions, denoted as individual1 and
individual2. Next, the solutions are evaluated, i.e. assigned fitness values. The winner, the one with
the greater fitness value, is selected. In step 5, the PV is then updated towards the winner. The value
of each probability changes if the winner’s associated bit is not equal to the loser’s: either
increasing when the winner’s bit is one, or decreasing otherwise. The loop continues to run until the
PV converges, meaning that each probability in the vector is either zero or one.

Harik et al. [1] also modified cGA by adding more candidates, called tournament cGA,
shown in Figure 2. The modified version randomly generates a set of s candidate solutions, denoted
by an array S in the pseudo-code, and uses a tournament selection to choose the winner, which will
be stored in S[1]. The PV is then updated by comparing S[1] with S[i] (for all i not equal to 1) in the
same manner as the original cGA.

Both of the cGAs update each probability in the vector towards either one or zero. Some
probabilities gradually increase while others drop. However, some might fluctuate, reflecting
uncertainty in updating the PV. It is known that the PV fluctuates during the beginning period and
converges to a certain direction at the end. The algorithms seem to work well in the case where
problems have consistent information, leading the algorithms to turn the vector towards only one
direction. However, if the problems are deceptive, they might delude the algorithms into searching
for solutions in the wrong directions. Consequently, the cGAs could not provide the desired solution
quality in spite of spending much of searching time. There has been much research aimed at
modifying and improving the cGAs in such case.

In our previous work [25], we applied a frequency-based technique to update the PV, using the
numbers of updates and the continuities of preceding updates as criteria. (The update continuity is

 initialise(p)
 while (p does not converge) do
 individual1 := generate(p)
 individual2 := generate(p)
 evaluate(individual1, individual2)
 winner, loser := compete(individual1,
 individual2)

 for i:=1 to l
 begin

 if winner[i] ≠ loser[i] then
 if winner[i] = 1 then
 p[i] := p[i] + 1/psize
 else
 p[i] := p[i] – 1/psize

 endfor
endwhile

 s := tournament size
 initialise(p)
 while (p does not converge) do
 create(p, S[], s)
 evaluate(S[])
 rearrange(S[]) // S[1] is the best individual
 for i := 2 to s
 begin

 winner, loser := compete(S[1], S[i])
 for i:=1 to l

 begin
 if winner[i] ≠ loser[i] then
 if winner[i] = 1 then
 p[i] := p[i] + 1/psize
 else
 p[i] := p[i] – 1/psize
 endfor
 endfor
 endwhile

Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

124

defined as the number of consecutive updates moving towards the same direction). We measured
the uncertainty by observing the direction of each probability in the vector: if the direction is the
same for a long time (high continuity), the uncertainty is low. The monitored continuities serve as a
guideline or a promising trend that quickly leads to vector convergence.

Specifically, for each probability in the vector, the frequencies of two types of updates:
stepping-up (increasing the probability towards 1) and stepping-down (decreasing the probability
towards 0), were counted. Likewise, two types of update continuities were collected. The stepping-
up continuity is reset to zero if the current update moves towards 0 and the stepping-down
continuity is reset to zero if the current update moves towards 1. The fb-cGA technique is shown in
Figure 3.

 Updating strategy of fb-cGA

 1: for i := 1 to l
 2: begin
 3: if winner[i] ≠ loser[i] then
 4: if winner[i] = 1 then
 5: Ufreq[i] := Ufreq[i] + 1;
 6: Ucon[i] := Ucon[i] + 1;
 7: Dcon [i] := 0;
 8: if (Ufreq[i] > Dfreq[i] AND Gen > (psize/3)) then
 9: p[i] := p[i] + ((1/psize)+(p[i] * (Ucon[i]/100));
 10: else
 11: p[i] := p[i] + (1/ psize);
 12: else
 13: Dfreq[i] := Dfreq[i] + 1;
 14: Dcon [i] := Dcon [i] + 1;
 15: Ucon[i] := 0;
 16: if (Dfreq[i] > Ufreq[i] AND Gen > (psize/3)) then
 17: p[i] := p[i] - ((1/psize) + (p[i]*(Dcon [i] / 100));
 18: else
 19: p[i] := p[i] - (1/psize);
 20: endfor

Parameters:
 Ufreq : number of stepping-up updates
 Dfreq : number of stepping-down updates
 Ucon : number of consecutive stepping-up updates
 Dcon : number of consecutive stepping-down updates
 Gen : generation number (incremented in Step 6)

Figure 3. Pseudo-code of fb-cGA

Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

125

Figure 3 presents the pseudo-code of the frequency-based updating strategy in fb-cGA.
Ufreq denotes the number of probability updates towards one (i.e. stepping-up updates). Dfreq
denotes the number of probability updates towards zero (i.e. stepping-down updates). Gen denotes
the generation number whose value is increased incrementally in step 6. The proposed updating
strategy is performed when Gen is greater than 1/3 of the population size (psize). For the first third
of the generations, fb-cGA works like the original method to explore solutions and find the right
direction. It waits until the generation number reaches psize/3 because it needs time to gather
sufficient information to see the trend. For the last two-thirds of the generations, the ith probability is
updated when the ith bit of the winner (winner[i]) and the one of the loser (loser[i]) are not equal. If
winner[i] is 1, the algorithm checks whether, from past experience, this probability is updated
towards 1 most of the time (i.e. Ufreq greater than Dfreq). If so, the probability vector should be
updated according to the majority with a larger step size. The step size can be determined by adding
the term Ucon/100 multiplied by the previous value of ith probability, where Ucon denotes the
number of consecutive stepping-up updates. In contrast, when winner[i] is 0, the algorithm performs
in a similar manner but considers Dfreq and Dcon instead. The ith probability is updated by
decreasing towards zero.

In this paper, we study the effects of the psize parameter and show that using psize/4 can
improve the efficiency of fb-cGA. Thus, we use psize/4 instead of the previously proposed psize/3
[25] throughout the experiments conducted and presented in this paper.

PARAMETER STUDIES

As mentioned earlier, the proposed method performs the new updating strategy when the
number of generations is greater than psize/4. The reason behind this strategy is that the statistics
obtained during the beginning period are not reliable enough to capture the trend. In this section,
empirical experiments are presented to explain why we set this parameter as psize/4. The algorithm
on 4 benchmark problems, viz. 100-bits One-Max, 100-bits Random Max, 64-bits Royal Road and
ten copies of 3-bits Trap problems, were tested. The characteristics of the four problems are
explained below.

The One-Max problem is quite simple. The objective is to find the solution which is a bit
string whose bits are all one. The fitness value is equal to the number of 1-bits in the bit string. The
Random Max problem is similar to the One-Max problem in finding a bit-string solution whose bit
pattern is exactly the same as the one of the target. However, instead of being all one, the target bit
pattern is selected randomly. Obtained by comparing bit by bit, the fitness value is the number of
bits equal to the associated ones of the target. Notice that this problem is designed to determine
whether an algorithm is biased against one or zero.

The Royal Road is a group of bit patterns built up from sequences of short bit patterns. The
bit pattern is called schema. There are 15 schemas for 64-bits royal road as shown in Figure 4. After
comparing the bit string with each schema, the fitness value is calculated by summing up the
numbers of bits equal to those of si for all i. For example, a fitness value of a bit string that contains
all one (the optimum solution) is (8  8) + (4  16) + (2  32) + 64 = 256.

The Trap problem is one of many difficult problems used for testing GAs. It is designed to
fool gradient-based optimisers that favour zeroes, but the optimal solution is composed of all 1-bits.
We can create a k×m Trap problem by combining the m groups of a k-bits trap. The fitness value is
calculated by summing up the scores associated with all groups. For instance, a 3-bit Trap problem

Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

126

gives a score of 3, 0, 1 and 2 for a group of three, two, one and zero 1-bits respectively. For example,
a candidate solution ‘111 001 110 000 100’ has a fitness value of 3 + 1 + 0 + 2 + 1 = 7.

Schema 1 = 11111111**; s1 = 8
Schema 2 = ********11111111**; s2 = 8
Schema 3 = ****************11111111**; s3 = 8
Schema 4 = ************************11111111********************************; s4 = 8
Schema 5 = ********************************11111111************************; s5 = 8
Schema 6 = **11111111****************; s6 = 8
Schema 7 = **11111111********; s7 = 8
Schema 8 = **11111111; s8 = 8
Schema 9 = 1111111111111111**; s9 = 16
Schema10 =****************1111111111111111********************************; s10 = 16
Schema11 =********************************1111111111111111****************; s11 = 16
Schema12 =**1111111111111111; s12 = 16
Schema13 =11111111111111111111111111111111********************************; s13 = 32
Schema14 =********************************11111111111111111111111111111111; s14 = 32
Schema15 =11; s15 = 64

Figure 4. Royal Road problem

We ran the proposed algorithm with all benchmark problems described above. For each
tournament size of 2, 4 and 8, the parameter was varied among psize/2, psize/3, psize/4 and psize/5.
The results shown in Table 1 are efficiency ratios [= (solution quality / number of evaluations) ×
1000]. The efficiency ratio is used as a quantitative measurement to quantify a quality rate: the
higher the rate, the better the efficiency. When the value of n is varied from 2 to 4, the efficiency
ratio is better when n is large (4 or 5) in the case of solving the easy problems (i.e. One-Max and
Random Max). For the harder but non-deceptive problem (i.e. Royal Road), a small value of n (2 or

 Table 1. Efficiency ratio of varying tournament and population sizes in One-Max, Random
 Max, Royal Road and Trap problems

Problem Efficiency ratio
Average

One-Max Random Max Royal Road Trap

T
ou

rn
am

en
t

Si
ze

 2

psize/2 56.63 32.51 4.97 0.37 23.62
psize/3 53.14 32.23 5.65 0.42 22.86
psize/4 56.79 33.68 5.35 0.50 24.08
psize/5 54.48 34.00 5.35 0.52 23.59

T
ou

rn
am

en
t

Si
ze

 4

psize/2 69.08 41.56 10.03 0.80 30.37
psize/3 78.88 41.61 10.53 0.95 32.99
psize/4 89.20 44.76 9.87 0.95 36.20
psize/5 80.36 49.07 9.65 1.03 35.03

T
ou

rn
am

en
t

Si
ze

 8

psize/2 86.95 42.38 17.51 0.69 36.89
psize/3 83.52 40.06 14.47 0.91 34.74
psize/4 87.17 47.69 16.01 1.06 37.99
psize/5 91.19 47.28 14.03 1.15 38.42

Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

127

3) yields a slightly better ratio. This can be interpreted that the proposed algorithm needs more time
to collect more diverse and higher fitness-valued samples before increasing its updating step size.
For the deceptive problem (i.e. Trap), the efficiency ratio tends to be relatively high when n is large.
This is because in the Trap problem the fb-cGA cannot find a good solution no matter what
parameters are __ the fitness value might remain similar. Therefore, the efficiency depends on the
number of fitness evaluations more than the fitness value. In terms of tournament size, a larger size
tends to provide a larger efficiency ratio. Overall, almost all of the best quality rates come from
psize/4 and psize/5 (highlighted in Table 1). The average rate of psize/4 from all problems and all
sizes of the tournament is 32.76, and that of psize/5 is 32.35. The psize/4 is therefore more desirable
in terms of efficiency.

As shown in Figure 5, the convergence graphs, obtained from the One-Max problem
experiments (psize = 100), reflect the algorithm behaviour. The dash lines are plotted at the
generation numbers equal to psize/n (x = psize/n), showing when the proposed updating strategy is
triggered. If n is larger, the proposed strategy starts sooner. Passing this line, the algorithm updates
the PV with a larger step size when the winner’s bit conforms to the majority direction (i.e. meeting
the condition on line 8 or 16 in Figure 3). As the graphs show, the fitness values gradually improve
in the early generations (generation number < psize/n) but increase abruptly after the trigger. This
behaviour explains why the algorithm’s PV converges to a solution using fewer function
evaluations.

(a) (b)

(c) (d)

Figure 5. Convergence graphs of experiments with parameters: (a) psize/2, (b) psize/3, (c) psize/4
and (d) psize/5

Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

128

PERFORMANCE COMPARISONS

At first, we tested all of the algorithms – sGA, cGA, mcGA, pe-cGA, ne-cGA and fb-cGA –
with the 100-bit One-Max problem. Each graph in Figure 6 shows the results when the parameter
psize (population size) varies between 4-100 with a step value of 8. All algorithms used the
tournament size of 2. Each line shows an average result from 50 runs. In general, when the
population size becomes larger, GAs take more function evaluations but yield better solutions.

Figure 6a shows that the solution quality (the numbers of correct bits) obtained from fb-cGA
is comparable with those obtained from sGA, cGA and mcGA, while pe-cGA and ne-cGA have
lower solution qualities. In terms of the number of function evaluations, Figure 6b shows that fb-
cGA outperforms sGA, cGA and mcGA if the population size is large. When it is small (psize <
40), fb-cGA needs more function evaluations than do others. The example where psize is equal to 4
is used to explain this situation; the algorithm collects the statistics merely from one generation
(psize/4 = 1) as a guide to update the PV with a large step size. The triggering time may be too
early, leading the vector to a wrong direction. Consequently, the algorithm would spend more time
(i.e. a larger number of function evaluations) searching before coming back to the right direction.
Nevertheless, the number of fitness evaluations of fb-cGA does not increase as much as the
population size and is comparable to those of pe-cGA and ne-cGA when the population size is 100.

(a) Solution quality (b) Number of function evaluations

Figure 6. Correct bits and function evaluations (of all the algorithms) in One-Max problem

Figure 7 shows the performance of all the algorithms on the Random Max problem. The fb-

cGA performance is moderate when compared with other techniques. It requires a large number of
function evaluations to find the solution in the case of a small population, but when the population
size increases the numbers of function evaluations tend to be comparable to those in cGA and
mcGA.

Figure 8 shows the performance of all the algorithms on the Royal Road problem using
tournament sizes of 2, 4 and 8. The number of population sizes varies between 4-100 with a step
value of 8. Figures 8a, 8c and 8e show the solution quality in terms of fitness value. Figures 8b, 8d
and 8f show the numbers of function evaluations. The fb-cGA yields comparable results in terms of
solution quality with those from sGA, cGA and mcGA while requiring a much smaller number of
function evaluations. When compared with ne-cGA in the case of tournament size of 2, fb-cGA has a
higher fitness value than that of ne-cGA but requires more function evaluations. However, for

Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

129

tournament sizes of 4 and 8, fb-cGA yields comparable fitness values with those of ne-cGA and
needs fewer fitness evaluations. In this problem, pe-cGA requires the smallest number of function
evaluations but yields lowest fitness values.

(a) Solution quality (b) Number of function evaluations

Figure 7. Correct bits and function evaluations (of all the algorithms) in Random Max problem

Figure 9 shows the algorithms’ performance on the 3-Trap problem – the Trap problem with
a group of 3 bits (k=3) – using tournament sizes of 2, 4 and 8, and population sizes of 8, 500, 1000,
1500, 2000, 2500 and 3000. Figures 9a, 9c and 9e show the solution quality in terms of the number
of correct building blocks (the number of 3-bits blocks containing all 1-bits). Figures 9b, 9d and 9f
show the numbers of function evaluations taken to find the solution. Figure 9a shows that the
solution quality of fb-cGA is higher than that of sGA, cGA and mcGA, but lower than that of pe-
cGA and ne-cGA. The fb-cGA requires the smallest number of function evaluations, using them
approximately 14, 9, 12, 3 and 2 times fewer than do sGA, original cGA, mcGA, pe-cGA and ne-
cGA respectively. This cofirms the efficiency of the proposed method in terms of the number of
function evaluations saved.

ANALYSIS OF ALGORITHMS’ CONVERGENCE AND BEHAVIOUR

The convergence analysis was carried out by using plots of the fitness values over time
(generations). The behaviour analysis was performed through the graphic representation of all
probability values in the PV from the first to the last generation to track how the probabilities
change.

Figure 10 shows the fitness values and the probability values of cGA, mcGA, pe-cGA, ne-
cGA and fb-cGA for the One-Max problem with tournament sizes of 2 and psize of 100. The graphs
on the right show probability values in density of greyscale. Bearing in mind that the objective of
the One-Max problem is to find a solution in which all bits are 1, all the shades representing
probability values shown in the graphs on the right should fade to white (probability = 1) in the final
generation.

The cGA, mcGA and fb-cGA can find the optimal solution (fitness value = 100), the ne-
cGA yields a result very close to the optimal, while the pe-cGA’s PV converges to one far from the
optimal. The convergence graphs of cGA and mcGA are very similar. Their PV converges to the
solution at nearly the same generation. However, the way in which the probabilities change is
slightly different. The shades of mcGA fade quicker and more smoothly than do those of cGA. The

Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

130

smooth change in the probability values of mcGA is in accordance with its updating rule in
that the moving average approach waits to see the trend, thus slowing down the increase or decrease
in the probability values.

(a) Solution quality (tournament size 2) (b) Number of function evaluations (tournament size 2)

(c) Solution quality (tournament size 4) (d) Number of function evaluations (tournament size 4)

(e) Solution quality (tournament size 8) (f) Number of function evaluations (tournament size 8)

Figure 8. Fitness values and function evaluations (of all the algorithms) in Royal Road problem

Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

131

(a) Solution quality (tournament size 2) (b) Number of function evaluations (tournament size 2)

(c) Solution quality (tournament size 4) (d) Number of function evaluations (tournament size 4)

(e) Solution quality (tournament size 8) (f) Number of function evaluations (tournament size 8)

Figure 9. Correct building blocks and function evaluations (of all the algorithms) in Trap problem

Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

132

(a) Convergence of fitness values (cGA) (b) 100 probability values of probability vector (cGA)

(c) Convergence of fitness values (mcGA) (d) 100 probability values of probability vector (mcGA)

(e) Convergence of fitness values (pe-cGA) (f) 100 probability values of probability vector (pe-cGA)

Figure 10. Convergence of fitness values and change in 100 probability values in the
probability vectors at each generation. Darker shading represents the probability closer to 0
while white represents the probability of 1. All probabilities are initialised to 0.5. All plots
show the average values from 50 runs.

Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

133

(i) Convergence (fb-cGA) (j) Probability (fb-cGA)

Figure 10 (continued). The convergence and probability analysis

Both the pe-cGA’s and ne-cGA’s shades turn light grey faster than do the cGA’s and
mcGA’s, as shown in the early generations of Figures 10f and 10h. However, the pe-cGA’s final PV
is unfavourable and the ne-cGA’s approaches, but does not quite reach, the optimum. This is
characteristic of elitism. The elite (the best solution so far) often contains zero bits in the
chromosome, which deceives the algorithm into updating the probability towards zero. In the case
where newly generated candidate solutions are worse than the elite, the PV is updated towards the
elite again and the probability at the associated position may come closer to zero. This situation may
lead the elitism-based algorithms to update the PV towards the wrong direction. Elitism affects the
pe-cGA’s performance more than the ne-cGA’s due to its everlasting elite.

The fb-cGA’s PV converges to the solution faster than the other algorithms (Figure 10i).
The shade representing probability values in Figure 10j turns white in a small number of
generations. To efficiently apply our proposed technique to a real-world problem, the chromosome
should have all of its bits uncorrelated with one another. It is important to realise that the fb-cGA
evolves its PV by updating all associated probabilities of all bits. The update is done only one bit at
a time without taking into account the information of the other bits. The results of One-Max
problem shown in Figure 10 serve as an example that supports this claim: fb-cGA can solve the
problem using far fewer number of generations (approximately 400, instead of about 1300
generations required by the traditional cGA). This significant outperformance stems from the new
dynamic updating strategy: the proposed technique decides to update the probabilities with a larger
step size based on the collected statistics. However, if the chromosome bits of the real-world
problem are correlated with one another, the proposed algorithm might not find the best solution, as
shown in the Royal Road and the Trap problem.

For a real-world optimisation problem that has multiple local optima, there is a higher chance
that the fb-cGA may get stuck at a local optimum. For example, in the field of computational vision,
efficient algorithms such as cGA may be used to recognise objects in an image. However, if the input
image is complex, it might introduce various local optima in the search space. Because fb-cGA uses
a trend in early generations to quickly decide to update PV with a larger updating step size, it might
prematurely decide to search towards a seemingly promising direction at a certain time. Once the
proposed algorithm gets stuck, it is hard to escape from the local optimum because it already has a
strong bias in favour of either zero or one. To handle this kind of problem, we should wait longer to

Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

134

see a correct trend before using a large step size. In addition, the step size should be incrementally
increased during the evolution.

CONCLUSIONS

This paper presents a behaviour analysis of fb-cGA. To update the PV, the fb-cGA collects
and utilises the update number of each probability in both up and down directions. The numbers of
updates are used to adjust probability-updating step sizes, turning the vector towards the promising
direction faster. When the effect of parameter psize/n on the algorithm performance was investigated,
the results suggested that the newly proposed updating strategy should be used when the generation
number is greater than psize/4. The analysis, through graphic representation of all probabilities from
the first to the last generation, shows that the fb-cGA updates the PVs towards the solution quicker
than the other algorithms and also requires fewer function evaluations.

ACKNOWLEDGEMENTS

This work was funded by Thailand Research Fund, the Office of Higher Education
Commission and the Faculty of Informatics, Burapha University (Grant No. TRG5680073). We also
thank our mentor, Prof. Prabhas Chongstitvatana, for his guidance, support and encouragement.

REFERENCES

1. G. R. Harik, F. G. Lobo and D. E. Goldberg, “The compact genetic algorithm”, IEEE Trans.

Evol. Comput., 1999, 3, 287-297.
2. M. H. Afshar, “Application of a compact genetic algorithm to pipe network optimization

problems”, Transact. A: Civil Eng., 2009, 16, 264-271.
3. R. D. Al-Dabbagh, M. S. Baba, S. Mekhilef and A. Kinsheel, “The compact genetic algorithm

for likelihood estimator of first order moving average model”, Proceedings of 2nd International
Conference on Digital Information and Communication Technology and Its Applications, 2012,
Bangkok, Thailand, pp.474-481.

4. R. D. Al-Dabbagh, A. Kinsheel, M. S. Baba and S. Mekhilef, “An integration of compact
genetic algorithm and local search method for optimizing ARMA (1, 1) model of likelihood
estimator”, Proceedings of 2nd International Conference on Computer Science and
Computational Mathematics, 2013, Kuala Lumpur, Malaysia, pp.60-67.

5. C. F. M. Toledo, M. S. Arantes, R. R. R. Oliveira and A. C. B. Delbem, “A hybrid compact
genetic algorithm applied to the multi-level capacitated lot sizing problem”, Proceedings of
28th Annual ACM Symposium on Applied Computing, 2013, Coimbra, Portugal, pp.200-205.

6. R. R. Silva, H. S. Lopes and C. R. E. Lima, “A compact genetic algorithm with elitism and
mutation applied to image recognition”, Lect. Notes Comput. Sci., 2008, 5227, 1109-1116.

7. P. Olarthichachart, S. Kaitwanidvilai and S. Karnprachar, “Trip frequency scheduling for traffic
transportation management based on compact genetic algorithm”, Proceedings of International
MultiConference of Engineers and Computer Scientists, 2010, Hong Kong, pp.1072-1074.

8. R. D. H. Al-Dabbagh, “Compact genetic algorithm for cryptanalysis trapdoor 0-1 knapsack
cipher”, J. Al-Nahrain Univ., 2009, 12, 137-145.

9. A. Azouaoui, A. Berkani and M. Belkasmi, “An efficient soft decoder of block codes based on
compact genetic algorithm”, Int. J. Comput. Sci. Iss., 2012, 9, 431-438.

10. H. Xing and R. Qu, “A compact genetic algorithm for the network coding based resource
minimization problem”, Appl. Intell., 2012, 36, 809-823.

Maejo Int. J. Sci. Technol. 2015, 9(01), 121-135; doi: 10.14456/mijst.2015.10

135

11. P. Gupta and R. Tiwari, “Solving three dimensional bin packing problem using elitism based
genetic algorithm”, Int. J. Adv. Res. Comput. Eng. Technol., 2012, 1, 471-475.

12. P. K. Singh and N. Sahu, “Task scheduling in grid computing environment using compact
genetic algorithm”, Int. J. Sci. Eng. Technol. Res., 2014, 3, 107-110.

13. Y. C. Huang, C. F. Chang, C. H. Chan, T. J. Yeh, Y. C. Chang, C. C. Chen and C. Y. Kao,
“Integrated minimum-set primers and unique probe design algorithms for differential detection
on symptom-related pathogens”, Bioinformatics, 2005, 21, 4330-4337.

14. A. Bade, I. M. Aref, B. M. Hussien and Y. Eman, “Solving protein folding problem using
elitism-based compact genetic algorithm”, J. Comput. Sci., 2008, 4, 525-529.

15. C. Aporntewan and P. Chongstitvatana, “A hardware implementation of the compact genetic
algorithm”, Proceedings of IEEE Congress on Evolutionary Computation, 2001, Seoul, Korea,
pp.624-629.

16. J. C. Gallagher and S. Vigraham, “A modified compact genetic algorithm for the intrinsic
evolution of continuous time recurrent neural networks”, Proceedings of Genetic and
Evolutionary Computation Conference, 2002, New York, USA, pp.163-170.

17. J. C. Gallagher, S. Vigraham and G. Kramer, “A family of compact genetic algorithms for
intrinsic evolvable hardware”, IEEE Trans. Evol. Comput., 2004, 8, 111-126.

18. K. M. Timmerman, “A hardware compact genetic algorithm for hover improvement in an
insect-scale flapping-wing micro air vehicle”, Master Thesis, 2012, Wright State University,
USA.

19. C. Zhou, K. Meng and Z. Qiu, “Compact genetic algorithm mutated by bit”, Proceedings of 4th
World Congress on Intelligent Control and Automation, 2002, Shanghai, China, pp.1836-1839.

20. B. V. Ha, R. E. Zich, M. Mussetta, P. Pirinoli and C. N. Dao, “Improved compact genetic
algorithm for EM complex system design”, Proceedings of 4th International Conference on
Communications and Electronics, 2012, Hue, Vietnam, pp.381-392.

21. S. Rimcharoen, D. Sutivong and P. Chongstitvatana, “Updating strategy in compact genetic
algorithm using moving average approach”, Proceedings of IEEE Conference on Cybernetics
and Intelligent Systems, 2006, Bangkok, Thailand, pp.690-695.

22. C. W. Ahn and R. S. Ramakrishna, “Elitism-based compact genetic algorithms”, IEEE Trans.
Evol. Comput., 2003, 7, 367-385.

23. J. Y. Lee, S. M. Im and J. J. Lee, “Bayesian network-based non-parametric compact genetic
algorithm”, Proceedings of 6th IEEE International Conference on Industrial Informatics, 2008,
Daejeon, Korea, pp.359-364.

24. J. Y. Lee, M. S. Kim and J. J. Lee, “Compact genetic algorithms using belief vectors”, Appl.
Soft Comput., 2011, 11, 3385-3401.

25. S. Phiromlap and S. Rimcharoen, “A frequency-based updating strategy in compact genetic
algorithm”, Proceedings of International Computer Science and Engineering Conference, 2013,
Nakorn Pathom, Thailand, pp.207-211.

© 2015 by Maejo University, San Sai, Chiang Mai, 50290 Thailand. Reproduction is permitted for

noncommercial purposes.

