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Abstract: The Fibonacci-Padovan sequence modulo m was studied. Also, the Fibonacci-
Padovan orbits of j-generator finite groups such that 2< ;<5 was examined. The

Fibonacci-Padovan lengths of the groups Oy, O;xZ,, and O;x, Z,, for m>3, where Z

is integer, were then obtained.
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INTRODUCTION AND PRELIMINARIES

It is well known that linear recurrence sequences appear in modern research in many fields
from mathematics, physics, computer science and architecture to nature and art [e.g. 1-10]. The
study of recurrence sequences in groups began with an earlier work of Wall [11], who investigated
the ordinary Fibonacci sequences in cyclic groups. The concept was extended to some special linear
recurrence sequences by several authors [e.g. 12-21]. In this paper, we extend the theory to the
Fibonacci-Padovan sequences.

A Fibonacci-Padovan sequence {an} is defined [22] recursively by the equation
a,=a, +2a, ,-2a,;+a, (D)
for n=>5, where a,=1,a,=1,a,=3,a,=3,a,=17.
Kalman [23] mentioned that these sequences are special cases of a sequence which is defined
recursively as a linear combination of the preceding k terms:
a,,=ca, +qa, +L +c,_a

n+k—1°
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where ¢,,c,L ,c, | are real constants. Kalman [23] derived a number of closed-form formulas for

the generalised sequence by companion matrix method as follows:

010L 00
001L 00
4, =[a;] =[000L 00

)
MM ML M M
_CO cl cZ L ck—2 ck—l_
Then by an inductive argument he obtained:
aO an
An al — an+l (3)
“I'M M |
Ay Ay

It is well known that a sequence, including that of group elements, is periodic if, after a
certain point, it consists only of the repetition of a fixed sub-sequence. The number of elements in
the repeating sub-sequence is the period of the sequence. For example, the sequence
a,b,c,d,e,b,c,d,e,b,c,d,e,LL is periodic after the initial element @ and has period 4. A sequence of
group elements is simply periodic with period k if the first £ elements in the sequence form a
repeating sub-sequence. For example, the sequence a,b,c,d,e, f,a,b,c,d,e, f,a,b,c,d,e, f,L is
simply periodic with period 6.

Definition 1. For a finite generated group G =(4), where A={a,a,,...a,}, the sequence

X, =a,,,0<i<n-1,x, = Hxl.+j_] , 120 1s called the Fibonacci orbit of G with respect to the
j=1

generating set 4, denoted by F, (G) If F, (G) is periodic, then the length of the period of the

sequence is called the Fibonacci length of G with respect to the generating set 4, written
LEN ,(G) [24].

FIBONACCI-PADOVAN SEQUENCES MODULO m

By (1) and (3), we can write

[a,, ] O 1 0 0 0] a, |
a,., 0 0 1 0 O0ffa,,
a,|=[0 0 0 1 0]a,, “4)
a,.4 00 0 0 1}a,,
1 d,.s | |1 o -2 2 1] | s |

for the Fibonacci-Padovan sequence. Let us take
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[0 1 0 0 0]
00 1 00
M=[m] =[00 0 10
00 0 01
10 -2 2 1]

which is said to be Fibonacci-Padovan matrix. By mathematical induction, it can be shown that, for
n>0,

1
1
M"\3|=]|a,, (%)
3
7

L n+4 _|

Reducing the Fibonacci-Padovan sequence by a modulus m, we can get the repeating
sequence denoted by

{an (m)} = {ao (m), a, (m), a, (m), a, (m), a, (m),L ,a, (m),L }

where a,(m)=a, (mod m). It has the same recurrence relation as in (1).

Theorem 1. {an (m)} is a simple periodic sequence.

Proof. Let U :{(x],xz,L X, )‘0 <x < m—l}. Then we have [U|=m’ being finite; that is, for any
j =0, there exists i>j such that a,,(m)=a,,(m), a,(m)=a,(m), a,,(m)=a,,(m),
a,,(m)=a,,(m) and a,(m)=a,(m). From the definition of the Fibonacci-Padovan sequence, we
have a,  =a,, +2a,,~2a,,+a, ; thatis, a,=a,, +2a,,—2a,,—a,s. Then we can easily get
that a_ (m)= a, (m),a,_,(m)= a, (m).L, a; ;. (m)=a, (m),ai_j (m)=a,(m), which implies
that {an (m)} 1s a simple periodic sequence.

Let Z(m) denote the smallest period of {an (m)} and p is used for a prime number.
Example. We have {a,(2)}={11,1110,1,0,1,0,0,1,1,0,0,0,1,0,0,0,0,1,1,1,1,LL }, and then
repeat. So we get /(m)=21.

For a given matrix 4 = [aij] with a;’s being integers, A4 (mod m) means that every entry

of 4 is a reduced modulo m : that is, 4 (mod m)= (% (mod m)) . Let <M>pu = {Mi (mod pu) i> 0}

be a cyclic group and let ‘(M >,,u‘ denote the order of <M >,,u- It is easy to see from (5) that
((p)=[(),.|.

Theorem 2. Let 7 be the largest positive integer such that /( p)= l(p’) . Then l(p“ ) =p*"-1(p),

for every a >t¢.

Proof. Let ¢ be a positive integer. Since Ml(pq+) =]/ (mod p"”); that is, Ml(w) =] (mod p") , We

get that / ( p") divides / ( ptt ) . On the other hand, writing M ") 1 +(ml.j(q) . pq), we have
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A =(1+(ml.j(‘” ,pq))” _ i(i](%m ,pq)" = 7 (mod p*),

k=0
which yields that /( p*"') divides /(p?)- p. Therefore, I(p*")=1(p?) or I(p*")=1(p*)-p. and

()

the latter holds if and only if there is a m,"’ which is not divisible by p. Since l( p’) # [ ( p ),

there is an ml.j('”) which is not divisible by p; thus, l(p’”)il(p”z). The proof finishes by

mnduction on .

1
Theorem 3. If m=[ [ p{",(¢>1) where p,’s are distinct primes, then /(m)= lcm[l(pff )J :

i=1

Proof. The statement / ( pff) is the length of the period of {an ( D )} > implies that the sequence
{an ( D )} repeats only after blocks of length u -/ ( ) ) , (u eN ), where N is natural number ; and
the statement “/(m) is the length of the period {an (m)} > implies that {an ( P )} repeats after /(m)
terms for all values i. Thus, Z(m) is of the form u-l( pff) and since any such number gives a

period of {a, (m)} , then we get that /(m) = lcm[l(pff )J :

Let [

(ar,a,.L sas)

( p) denote the smallest period of the integer-valued recurrence relation
u,=u,  +2u, ,—2u, ,+u ., u =a,u,=a,L ,u;, =a; where each entry is a reduced modulo p.
Then we have the following theorem.

Theorem 4. If a,,a,,L , a5, x,,x,,L ,x; € Z, where Z is integer, such that ged(a,, a,,L ,a;, p)=1
and gcd(xl,xz,L ,xs,p) =1, then

l(al,az,L as) (P) = l(xl,xz,L %) (P) .

un+r ui’l
Ui U,
Proof. Let l(p)z‘(Mu:r. From (4), it is clear that |y |=M"|u, , | So naturally
Uyirss U,s
| Upirsa | Upsa
I un+r ui’l
Upiri Uy
u,.. ., |=|u,, |mod p.This completes the proof.
Upirss U,
L Unirsa ] [Upia

Conjecture 1. If p is a prime, then there exists a o with 0<o <5 such that ‘(M >p‘ divides
(p°-r7).
Conjecture 2. If p is a prime such that p>2, then ‘(M >p‘ is an even integer number. Table 1

lists some primes for which Conjectures 1 and 2 are true.
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Table 1. Orders of the cyclic group (M >p

4 ‘{M)p‘ ‘(M)p‘ ‘ (p®—p”

2 21 || 26— 1

3 104 ‘(M)‘p‘ 'pﬁ _1

> 120 [, [ 06 =2 [, || p¢ - p*

29 12194 |{M)‘p|‘ P —1, {M)‘p” P8 — p3

31 9930 ‘(M)p” P& —1, ‘(M)p” p® _ p3

47 72224 ‘(M)p” pe— 1

71 357910 [y, 25— 1. ||| 2° - 2°

8 0888 [0, ] 2° = 1. [0n), ]| 2° =2, |00, | p° —p*
101 100 [(M),| | (p®—p* foro<o<5

211 210 (M), | (p®—p® for0<ao<5

401 1608001 (|| p° =1, [y, || p¢ =92, [00), || p° —p*
323 76 Ly || o = 1 [ | 26 = 02, [0, ]| p® -
811 59267970 ‘{M)pH 1}6 _1, ‘{M}p” 116 _ 1}3

1973 5125429148 ‘(M)‘p” PG 1

2221 365194662 \{M)p\‘ ps—1, \{M)pH p® — p3

4657 2710956 |{M)p|‘ pé — 1, |{M)p|‘ 26— p?, {M)p| P —p*
9473 44868864 [ 25— 1, [0, ][ 2° = %, [0, ][ 2° - p*
30137 454119384

(), 2 — 1, [3,| 0° — 02, [, | 2 — p*

FIBONACCI-PADOVAN ORBITS OF FINITE GROUPS

Let G be a finite j-generator group and let X be the subset of ¢3G9Gl 494G such that

J
(xo,xl,L ,xj_l)eX if and only if G is generated by x,,x,L ,x, . We call (xo,xl,L ,xj_l) a

generating j -tuple for G .

Definition 2. The Fibonacci-Padovan orbits of finite groups with j-generating (2<j<5) are
defined as follows:
i. Let G be a 2-generator group. For a generating pair (xo,x1 ) € X, the Fibonacci-Padovan orbit

FP(G)X ;

is defined by the sequence {b,} of elements of G such that

by =x,, b =x,, b, :(bo)2 (bl)’ b, :(bo)_2 (bl)2 (bz)’ b, :(bl)_2 (bz)2 (b3)’

n

b, =(b,5)(b, )" (b) (b,,) for n>5.
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ii. Let G be a 3-generator group. For a generating triplet (xo,xl,xz) € X , the Fibonacci-Padovan

orbit FP(G) is defined by the sequence {5} of elements of G such that

X0 5X7 X2

by=xy> by=x, b, =x,, by=(b,) " (B, (b,), by =(b) " (b,) (by),
b, =(b,5)(b, )" (b,) (b,,) for n>5.

n

ili. Let G be a 4-generator group. For a generating quadruplet (xo,xl,xz,x3) € X, the Fibonacci-

Padovan orbit FP(G) is defined by the sequence {bi} of elements of G such that

by =%y, b=x, b, =x,, by=x,, b, = ()" (b,) (b,),
b, =(b,5)(b, )" (b,) (b,,) for n>5.

n

iv. Let G be a 5-generator group. For a generating quintuplet (xo,xl,xz,x3,x4) € X, the Fibonacci-

Padovan orbit FP(G) is defined by the sequence {bi} of elements of G such that

X0 X1 5X2 X3 Xy

by=xy, b=x,, b,=x,, by =x;, b, =x,,

b, =(b,5)(b, )" (b,) (b,,) for n>5.

n

The classic Fibonacci-Padovan sequence in the integers modulo m can be written as FP(Zm )01 .

Theorem 5. A Fibonacci-Padovan orbit of a finite group which is generating (2 =J =5 ) is simply
periodic.

Proof. Let us consider the group G as a 4-generator group and let (xo,xl,xz,x3) be a generating

quadruplet of G . If the order of G is n, there are n° distinct 5-tuples of elements of G . So at least
one of the 5-tuples appears twice in the Fibonacci-Padovan orbit of G for the generating quadruplet
(xo,xl,xz,x3); that is, the sub-sequence following these S-tuples repeats. Hence the Fibonacci-
Padovan orbit is periodic. Since the Fibonacci-Padovan orbit for the generating quadruplet
(xy,x,x,,x;) is periodic, there are positive integers i and j, with i> j, such that b, =b,,,,
b.,,=b,,, bs=b,5, b,,=b,, and b =0, . By the defined relation of a Fibonacci-Padovan

orbit, we know that
bi = (bi+5 ) (bi+4 )_l (bi+3 )_2 (bi+2 )2

b, = (bj+5 )(bj+4 )_] (bj+3 )_2 (bj+2 )2 '

and

Thus, b, = bj, and it follows that

b ;=b;=by=xy, b, =b_; y=b=x,
bi—j+2 = bj—(]’—Z) =b, =x,, bi—j+3 = bj—(j—3) =b;y = x;.
So the Fibonacci-Padovan orbit FP(G))c . 1s simply periodic. The proof for the 2-generator

groups, the 3-generator groups and the 5-generator groups is similar to the above and is omitted.
We denote the periods of the orbits FP(G) with 1<k<4 by LFP(G) . From the

Xp sk > 05 > %k
definition, it is clear that the period of a Fibonacci-Padovan orbit of a finite group depends on the
chosen generating set and the order for the assignments of x,,L ,x, suchthat 1<k <4.
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Definition 3. Let G be a finite group. If there exists a Fibonacci-Padovan orbit of the group G
such that every element of the group G appears in the sequence, then the group G is called
Fibonacci-Padovan sequenceable.

We now address the periods of the Fibonacci-Padovan orbits of specific classes of finite
groups. The usual notation G, x, G, is used for the semidirect product of the group G by G, where

¢:G, —> Aut(G,) is a homomorphism such that bp =¢, and ¢, : G, — G, is an element Aut(G,).
The quaternion group ¢, is defined by
0O, =<x,y:x4 =e, ¥ =x",y 'xy zx"l>;
the direct product Q; x Z,, (m >3) is defined by
O, xZ,, = <x,y,z:x4 =e, V' =x",y x;x =" =[x,z]=[y,z] = e>;
and the semidirect product O x, Z,, (m>3) is defined by
O x,2Z,, = <x, vzixt=e, ' =x", y xyx=z2"=e,z 'xzx=e,z 'yzy = e> ,
where, if Z,, =(z) ,then ¢:Z, — Aut(Q;) is a homomorphism such that zp=¢_; ¢, :0; > O,
is defined by xp, =x and yp_=y"'.

Theorem 6. LFP(Q,) =LFP(Q,)  =42.
Proof. FP(Q, )yx is

3 3 3 3 3 3 3 2 2 3 2 3
Yy Xo X s X5 YX 5 Y 5 XY, Y, X V86, 5 X, VX YV L,V LY ,X, )Y 6,6, , X, X,

3 3 3 2 3 2 3 3 3 3L
X Xy VX, ¥ XY 5 VXV, Y 5 Vs X, 1X,6,Y 5, )Y, X Y, e,6,8, Y, X, x , X, yx L,

which has period LFP(Q,) =42.

V,x

The proof for the orbit FP(Q,)  is similar to the above and is omitted.

X,y

Remark 1. The quaternion group O, is Fibonacci-Padovan sequenceable.

Theorem 7. The period of the Fibonacci-Padovan orbit of the direct product Oy x Z,, (m >3) for
each generating triplet is lcm[42, [ (Zm)] :

Proof. Consider the Fibonacci-Padovan orbit FP(Q,xZ,,) e

X, V,z

2 _a,

a, a 3_as a, as ag a; ag 3 _ay ay
X, Y,z ,Z , Yy zZ ,XZ ,X)YZ ,yXZD,yXZ XVZ ', yZz T, X Z7,yZz 7,
2 2 3 3 2
xZ“ll , yZ"lz , y Z“l} ’xZ“M , xyZ“ls , yZ“m , y Z“17 , Z“ls ,X Z“m s y Z“zo ,X Z“zl s
2 3 3
Z“zz , YV Z“zz , xz“z4 , xyZ“z5 , xyZ“zs ,XyZaZ7 , yxz“zs , yZ“zq X Z“}o , ¥ Z“}l , xz“}z ,

3ay a3 _dys a6 ay  ax a4y ay Ay Ay 443 1,2 _ay
Yz, 2™ Xz xyze, yz T, 20 2 xz™ ) yzt gt eyt L

Using the above information, the sequence becomes:
2.3
by=x,b,=y,b,=z,b;=z,b,=y"z" L,
40 41 42 43 2_44
b,=xz",b,=yz",b,=2z",bs=2z",bs,=yz",L,

4202 42 A2 424l 2 4242
by, =xz b =2 by =2 by =2 by = Y2 L.
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The sequence can be said to form layers of length 42. So we need an i such that

by =Xbyy. i =V by =2,by,s=2,b,,,, =’z . It is easy to see that the Fibonacci-Padovan
orbit FP(Q,xZ,,), . has period lem[42,1(2m)].

The proof for other generating triplets is similar to the above and is omitted.

Theorem 8. The period of the Fibonacci-Padovan orbit of the direct product O x, Z,, (m>3) for

each generating triplet is lcm[42, [ (Zm)] :
Proof. Consider the Fibonacci-Padovan orbit FP(Q8 X, sz)
VoX,Z

2 _a 3_as 3

v, x,z%, 2, x° 2, y'z%, yxz™, yxz®, xyz, yxz¥, xz%, yz©, x’z,

3 3 3 2 3 3 2
y Z“ll , X Z“lz , Z“l} ’yZ“M’ yxz“ls , X Z“ls , Z“17 ,y Z“ls s y Z“w’ X Z“zo, Xz

A

2 _ay 2 _ay 3 _axp

X2z YRz yz ) yxz®s | xyz™ xyz® | yxz, X'z Yz Xz, Yz
X0z X7z, yzs | yxzs, X0z 29 2%y xz% 2% 2% xPz% L .
Using the above information, the sequence becomes:
by=y,b=x,b,=z,b,=2,b,=x2’ L ,
b,=yz",b,=xz"b,=2"b,=2%b,=y"z" L,
by, = xz, by = yz by = z¥, by = z#™, bypia = L
The sequence can be said to form layers of length 42. So we need an i such that
Bryi = Vs byyioy =Xy byysin =2y bysy = 2, by, = X2 . It is easy to see that the Fibonacci-Padovan orbit
FP(Q8 Xy Zoy )y,x,z has period lem[42,1(2m)].

The proof for other generating triplets is similar to the above and is omitted.

Remark 2. If /(2m)<2m and 42|/(2m), the groups O, x Z,, and Q;x, Z,, such that m>3 are
not Fibonacci-Padovan sequenceable (where, by 42| [ (2m) , we mean that 42 divides Z(2m) ).

CONCLUSIONS

Examining the Fibonacci-Padovan sequence modulo m , we have defined the Fibonacci-
Padovan orbits of j-generator finite groups for 2< j<5. Furthermore, we have obtained the

Fibonacci-Padovan lengths of the groups O, O;xZ,, and O, x, Z,, for m=>3.

ACKNOWLEDGEMENT

This project (Project no. 2013-FEF-72) was supported by the Commission for the Scientific
Research Projects of Kafkas University.

REFERENCES

1. P. G. Becker, “k-Regular power series and Mahler-type functional equations”, J. Number
Theory, 1994, 49, 269-286.

2. W. Bosma and C. Kraaikamp, “Metrical theory for optimal continued fractions”, J. Number
Theory, 1990, 34, 251-270.

3. M. S. El Naschie, “Deriving the essential features of the standard model from the general
theory of relativity”, Chaos Solitons Fractals, 2005, 24, 941-946.



287

Maejo Int. J. Sci. Technol. 2014, 8(03), 279-287

4.

10.

1.
12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

M. S. El Naschie, “Stability analysis of the two-slit experiment with quantum particles”, Chaos
Solitons Fractals, 2005, 26, 291-294.

S. Falcon and A. Plaza, “k-Fibonacci sequences modulo m”, Chaos Solitons Fractals, 2009, 41,
497-504.

A. S. Fraenkel and S. T. Kleinb, “Robust universal complete codes for transmission and
compression”, Discrete Appl. Math., 1996, 64, 31-55.

B. K. Kirchoof and R. Rutishauser, “The phyllotaxy of costus (Costaceae)”, Bot. Gaz., 1990,
151, 88-105.

D. M. Mandelbaum, “Synchronization of codes by means of Kautz’s Fibonacci encoding”,
IEEE Trans. Inform. Theory, 1972, 18, 281-285.

W. Syein, “Modelling the evolution of stelar archictecture in vascular plants”, Int. J. Plant Sci.,
1993, 154, 229-263.

R. G. E. Pinch, “Distribution of recurrent sequences modulo prime powers”, Proceedings of 5th
IMA Conference on Cryptography and Coding, 1995, Cirencester, UK.

D. D. Wall, “Fibonacci series modulo m”, Am. Math. Monthly, 1960, 67, 525-532.

O. Deveci and E. Karaduman, “The generalized order-k Lucas sequences in finite groups”, J.
Appl. Math., 2012, DOI: 10.1155/2012/464580.

O. Deveci, “The k-nacci sequences and the generalized order-k Pell sequences in the semi-
direct product of finite cyclic groups”, Chiang Mai J. Sci., 2013, 40, 89-98.

O. Deveci and E. Karaduman, “The cyclic groups via the Pascal matrices and the generalized
Pascal matrices”, Linear Algebra Appl., 2012, 437, 2538-2545.

O. Deveci and E. Karaduman, “The Pell sequences in finite groups”, Util. Math., 2015, 96 (in
press).

O. Deveci, “The Pell-Padovan sequences and the Jacobsthal-Padovan sequences in finite
groups”, Util. Math., in press.

S. W. Knox, “Fibonacci sequences in finite groups”, Fibonacci Quart., 1992, 30, 116-120.

K. Lii and J. Wang, “k-Step Fibonacci sequence modulo m ”, Util. Math., 2007, 71, 169-178.

E. Ozkan, H. Aydin and R. Dikici, “3-Step Fibonacci series modulo m ™, Appl. Math. Comput.,
2003, /43, 165-172.

V. W. de Spinadel, “The family of metallic means”, Visual Math., 1999, 1, 176-185.

V. W. de Spinadel, “The metallic means family and forbidden symmetries”, Int. Math. J., 2002,
2,279-288.

N. D. Gogin and A. A. Myllari, “The Fibonacci-Padovan sequence and MacWilliams transform
matrices”, Program. Comput. Softw., 2007, 33, 74-79.

D. Kalman, “Generalized Fibonacci numbers by matrix methods”, Fibonacci Quart., 1982, 20,
73-76.

C. M. Campbell and P. P. Campbell, “The Fibonacci length of certain centro-polyhedral
groups”, J. Appl. Math. Comput., 2005, 19, 231-240.

© 2014 by Maejo University, San Sai, Chiang Mai, 50290 Thailand. Reproduction is permitted for

noncommercial purposes.



