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Abstract: Resource monitoring and performance prediction services have always been 
regarded as important keys to improving the performance of load sharing strategy. 
However, the traditional methodologies usually require specific performance information, 
which can only be collected by installing proprietary agents on all participating resources. 
This requirement of implementing a single unified monitoring service may not be feasible 
because of the differences in the underlying systems and organisation policies. To address 
this problem, we define a new load sharing strategy which bases the load decision on a 
simple performance estimation that can be measured easily at the coordinator node. Our 
proposed strategy relies on a stage-based dynamic task allocation to handle the 
imprecision of our performance estimation and to correct load distribution on-the-fly. The 
simulation results showed that the performance of our strategy is comparable or better 
than traditional strategies, especially when the performance information from the 
monitoring service is not accurate. 

Keywords:  load sharing strategies, self-scheduling strategies, high performance 
computing, distributed systems, heterogeneous systems, load balancing, task assignment                                

________________________________________________________________________________ 
 
INTRODUCTION 
 

For the past decades, there has been an emergence of the technologies for utilising a large 
number of computing resources over wide area network such as grid [1] and cloud computing [2]. A 
low-cost, high-performance system for computing-intensive applications [3] can be built by 
aggregating multiple computing clusters which may consist of either real physical resources or 
virtualised resources from external providers. Hence, the number of computing nodes and the 
complexity of the underlying system have been dramatically increased. In order to efficiently utilise 
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the available computing power, several resource monitoring frameworks and performance prediction 
methodologies have been proposed [4-7]. Although accurate performance prediction can greatly 
improve overall resource utilisation, these methodologies usually require a proprietary monitoring 
service to be implemented on all participating resources for collecting specific performance 
information. Hence, this requirement of implementing proprietary monitoring service might prevent 
the utilisation of cheaper or better computing resources due to the differences in their implemented 
systems or policies. In addition, predicting the execution time of a fine-grained task can be difficult 
on non-dedicated computing resources [8]. These limitations will hinder the possible applications in 
the upcoming computing technology such as those described in many-task computing (MTC) [9] 
where each job can consist of a large number of tasks which can be executed within a small 
computational time.  

To address the problems in the traditional work, we propose a new load sharing strategy 
called agentless robust self-scheduling strategy (ARSS). As its name implies, our strategy can be 
used to assign the workload without the necessity of implementing any additional monitoring service 
in the computing resources while still being able to address the dynamic behaviour in the computing 
system. ARSS is based on self-scheduling strategies [10-11] and makes load decision according to 
performance metrics estimated at the coordinator node. The metrics used in our strategy are simple 
ones that represent how fast each computing resource can process the submitted workloads. Since 
these metrics can be obtained quickly and easily at the coordinator node which is responsible for 
assigning the workload, ARSS can use these estimations to make the load decision across different 
computing systems without any need to implement monitoring services in the participating resources. 
To compensate for the imprecision of these rough metrics, ARSS performs a dynamic task allocation 
to adjust the load distribution on-the-fly. The dynamic allocation is stage-based, consisting of both 
increasing and decreasing stages. The increasing stages are for improving the performance estimation 
accuracy while minimising the run-time by overlapping between computation and communication 
overheads over the wide area network (WAN). The decreasing stages are for smoothing the load 
imbalance near the end of the execution due to an inaccurate performance prediction. In addition, 
ARSS also includes an on-the-fly load distribution correction mechanism which performs the job-
stealing on the leftover workload between stages in order to further minimise the effects of abrupt 
changes in computing power and of the performance estimation inaccuracy. Using this mechanism, 
ARSS does not require any agents installed on the participating resources while being very robust 
against the changes in the available computing power of the underlying system.  

 
RELATED BACKGROUND AND ASSUMPTIONS 
 

In this section, we will describe the multi-organisational computing environment including the 
application model and other related work in the past. 
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Multi-Organisational Computing Environment 
 

Throughout this work, we assume that a computing system consists of several heterogeneous 
computing resources from different organisations. Let us assume that there are a total of N 
computing nodes aggregated from different M groups or clusters {C1, C2 … CM}. These computing 
clusters communicate with each other over WAN with a propagation delay and bandwidth specified 
as W  and W  respectively. The propagation delay and bandwidth within each cluster are defined to 
be L  and L  respectively. The computing heterogeneity within our model will come from  
differences in the computing power between participating clusters while the computing nodes within 
the same cluster are homogeneous as illustrated by Chau and Fu [12]. Each cluster is assumed to 
have one local gateway which is responsible for distributing workloads submitted by users to the  
computing nodes within its own cluster based on local workload assignment strategy and which also 
handles the inter-cluster communications. In addition, one of the local gateways will also serve as the 
coordinator node which manages submitted jobs and assigns workloads to other clusters based on 
the global workload assignment strategy. Note that the local strategy can be varied depending on the 
owner of that particular cluster. Figure 1 illustrates an example of the multi-organisational computing 
system which involves multiple clusters from different organisations. 

 

 

Figure 1.  Multi-organisational computing environment 

 
Application Model 
  

We define our application model to represent computing intensive applications including 
those from many-task computing. This class of application contains a large number of small tasks 
which can be from thousands to billions. This common pattern can be found in many scientific 
applications from a wide range of domains such as astronomy, physics, astrophysics, 
pharmaceuticals, bioinformatics, biometrics, neuroscience, medical imaging, chemistry, climate 
modelling, economics and data analytics [13]. This amount of tasks will cause the performance 
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degradation to time-consuming decision-making strategies due to high queuing and dispatching 
overheads. Since the expected run-time of small tasks is difficult to predict, the problem of 
inaccurate prediction will also affect the overall performance.  Although we can group small tasks 
together to address this problem, this methodology will make it even harder to make the load 
decision given heterogeneous computing resources.  

Our work focuses on fine-grained computationally intensive applications where the data sets 
are not large or have been prepared beforehand. Each task within a submitted application can be 
either independent or dependent on other tasks. If there are dependency between tasks, we assume 
each task can retrieve necessary information from the result files created by previously executed 
tasks similar to loosely-coupled applications defined by Zhang et al [14]. Hence, we define an 
application model consisting of U unit tasks whose computation and communication sizes vary. The 
distribution of computation sizes of unit tasks can be grouped into four distinct classes, viz. uniform, 
increasing, decreasing, and random distributions. These classes can represent popular applications, 
e.g. Matrix Multiplication, Successive Over-Relaxation, Reverse Adjoint Convolution, LU 
Decomposition and Gauss Jordan Elimination [15]. 
 
Related Work 
 

The self-scheduling strategy (SS) has been famous for its simplicity for making load decision 
during the execution. This strategy dynamically assigns only one unit task for each request for an idle 
computing resource. With this behaviour, it can achieve an almost perfect load balancing because 
every computing resource will finish within one task of each other. However, this strategy suffers 
from high communication overheads. To address this problem while maintaining simplicity, many 
variations of SS have been proposed [16-19]. One of them, called ‘factoring self-scheduling’ (FSS), 
is famous for its robustness [20]. This strategy assigns a workload into multiple stages. In the first 
stage, FSS distributes the largest chunk and proportionally decreases the chunk size in the 
subsequent stages. During each stage, every processor will receive an equal chunk size of workload. 
The FSS can reduce communication overheads by sending large chunks at the beginning while  
achieving sub-optimal run-time by sending small chunks near the end of computation.  

To further address heterogeneity within the computing system, ‘weighted factoring self-
scheduling” (WFSS) [21] was proposed as an extension of FSS. In this strategy, the amount of total 
unit tasks allocated during each stage is the same as in FSS. However, unlike FSS, WFSS utilises 
pre-execution information of the computing resources as weighted values to assign workloads 
allocated within each stage. One of the major weaknesses of this strategy is that the load decision is 
made based on static information. Thus, WFSS performs quite poorly in the dynamic multi-
organisational computing environment.   

One of the descendants of FSS, called ‘adaptive weighted factoring’ (AWF) [22], addresses 
this problem by extending WFSS with an adaptive weighted value called ‘weighted average 
performance’ (WAP). This weighted value is re-calculated at every stage using the newly obtained 
computing rates of each resource. Therefore, the pre-execution information will be used as a 
weighted value during the first stage only. With this average value, AWF can address the dynamic 
behaviour of the heterogeneous computing system. However, since AWF assigns half of the available 
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workloads during the first stage, the problem of inaccurate pre-execution information can still affect 
the performance of this strategy.  

In addition to SS, our proposed strategy is also based on the concept of increasing and 
decreasing stages. Utilising increasing and decreasing stages has been introduced in one of the 
traditional strategies [23].  However, that strategy requires specific information about the underlying 
system for determining the appropriate chunk sizes during the increasing and decreasing stages. 
Hence, it needs the monitoring service to be installed on the participating resources and its 
performance can also be highly affected by information inaccuracy. Although the load sharing 
strategy that focuses on practical usage [24] addresses inaccurate performance information by 
assigning the N smallest tasks to each node in order to compare their real performance, this 
behaviour requires the knowledge about the computation size of each task for creating the 
performance ranking of the computing resources. 
  
Description of ARSS 
  

Our proposed strategy aims for two important goals. First, the strategy must be non-intrusive 
such that it can assign the workload to participating resources using performance estimation at the 
coordinator node without relying on any monitoring services at the computing nodes. Second, the 
strategy must be robust enough against information inaccuracy due to the performance estimation 
and dynamic behaviour of the underlying system. In order to achieve these goals, our proposed 
strategy divides the entire unit tasks and assigns them in multiple stages. At each stage, the allocated 
unit tasks for that particular stage will be further divided into chunks and assigned to participating 
clusters with respect to their performance. ARSS will begin with the increasing stages and end with 
the decreasing stages. The increasing stages will allow ARSS to overlap communication overheads 
over WAN with computation overheads and to also collect more accurate performance metrics of 
the participating clusters, while the decreasing stages will ensure the robustness against both the 
information inaccuracy and the dynamic behaviour of the underlying system. Equation 1 illustrates 
how our strategy calculates the amount of unit tasks allocated for stage j (Sj) where U is the total 
number of unit tasks and j starts from 1 until it reaches the last stage, which is  1log2 2 U . An 
example of how ARSS assigns 8,192 unit tasks for each stage is shown in Figure 2.   
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During each stage, the coordinator node will assign tasks to participating clusters and 

estimate their performance based on the number of assigned tasks and the interval time between 
requests. Since this information is derived based on the interval time between requests, the 
coordinator node does not have these metrics at the beginning of the execution. Thus, the 
coordinator node will assign an equal number of unit tasks to all clusters at the first stage. In the 
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subsequent stages, ARSS will dynamically adjust the assigned tasks based on the pre-defined number 
of tasks in each stage and the relative performance of the computing resources.  
 

 

Figure 2.  Number of unit tasks allocated within each stage 

 
Let Ri,j represent the number of tasks executed per second by cluster i during stage j. In an 

ideal case, all resources will finish their execution of all assigned tasks of stage j at the same time 
before entering the next stage, j+1. However, because Ri,j is an estimation at the coordinator node, it 
can be inaccurate. Thus, while some clusters may complete the execution of stage j and be ready to 
move further to stage j+1, other clusters may still be in the middle of the execution of stage j. This 
behaviour will create a load imbalance and can degrade the overall execution time. To address this 
problem, our strategy performs a job-stealing mechanism called “stage-warping”. By including the 
leftover tasks of the previous stage when allocating tasks for the next stage, this technique will make 
sure that every cluster will progress through each stage at the same pace until the end of the 
execution. Given Lj-1 as the number of leftover tasks from the previous stages j-1, the number of 
tasks assigned to cluster i during the current stage j (Ai,j) can be specified as 
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From equation 2, we can see that the leftover workload in the previous stage j-1 will be 
reassigned together with other tasks allocated for the current stage j. In other words, this behaviour 
will allow other computing resources to steal the workload from computing resources which have 
been slower than expected due to the estimation error of our performance metrics. 
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RESULTS AND DISCUSSION 
 
Simulation Environment for Performance Evaluation  

The performance of our strategy was evaluated by creating a large-scale computing system 
using ns-2 simulator [25]. To ensure the validity of our simulation experiments, we compared the 
results with those from the actual computing environments, i.e. TERA and PLUTO clusters in 
Thaigrid [26]. TERA cluster belongs to Kasetsart University while PLUTO cluster belongs to 
Chulalongkorn University. Table 1 presents the parameters for our simulations collected from the 
actual environment. Note that the unit time represents the computation time for one computing node 
in each cluster to execute one row multiplication of the submitted matrix multiplication program. 
Using parameters from real environments, we simulated the SS strategy in our simulator and 
compared the results of using the strategy on the TERA and PLUTO clusters as presented in Figure 
3.  The obtained results clearly show that our model can accurately predict the parallel performance 
of computationally intensive application over the computing clusters. 
 

Table 1.  Simulation parameters for evaluating the accuracy of the test environment    
 

Variable Value 
Unit time (TERA) 0.083s 

Unit time (PLUTO) 0.117s 
Number of unit tasks 2000 

LAN propagation delay 30µs 
LAN bandwidth 1000Mbps 

 
 

      

                                     (a)                                                                                  (b) 
 

Figure 3.  Comparison between real and simulated environments:  a) TERA;  b) PLUTO 
 

Since this work focuses on the global strategy, the local strategy in all clusters is defined as 
SS. We define a uniformly distributed random variable to represent the actual computing power 
within each node to simulate the randomness of the available computing power as proposed by 
Casanova [27]. The specified computing power was varied within ±30% from the expected value. 
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The computing heterogeneity was simulated by changing the expected value of the computing power. 
Let H represent the computing heterogeneity, which is the computing ratio between the fastest and 
slowest clusters in the system ( slowestfastest pp / ) [28]. Unless specified otherwise, the environment in 

our simulation is assumed to be highly heterogeneous where H is specified as 10 [29]. We assume 
that it takes 1 second to execute a task whose computation size is 1 task unit on the computing 
resource with computing power specified as 1 power unit. As for the prediction error from the 
monitoring service, a uniform distribution random variable is used to represent the prediction error. 
The range of the prediction error is defined to be ±30%. The other related parameters for simulating 
a large-scale multi-organisational computing environment are summarised in Table 2. 

Table 2.  Related parameters for simulating multiple-cluster environments 
 

Variable Value 

Number of clusters (M) 
Total computing nodes (N) 
Total computing power (P) 

Inter-cluster propagation delay ( W  ) 
Inter-cluster bandwidth ( W ) 

Intra-cluster propagation delay ( L  ) 
Intra-cluster bandwidth ( L ) 

Number of tasks (U) 
Total computation size (W) 

Total communication size (V) 

4 
128 
128 

30ms 
2Mb/s 
1ms 

100Mb/s 
16,384 
16,384 

16,384 kB 
 

Overall Performance Comparison 
 

To evaluate the performance of load sharing strategies, the ARSS and four other load sharing 
strategies, namely chunk self-scheduling (CSS), one-time, WFSS and AWF, were simulated on two 
different computing environments, i.e. homogeneous and highly heterogeneous environments. In our 
simulation, CSS always assigned a fixed-size chunk of eight unit tasks to the requesting cluster. For 
one-time strategy, the entire workload was proportionally assigned all at once to participating 
resources with respect to the performance information obtained from the monitoring service. Finally, 
the performance of the predecessor of AWF, which is WFSS, was also evaluated. Unlike AWF, 
WFSS uses only the estimators obtained from the monitoring service for distributing the workload at 
every stage. 

As illustrated in Figure 4, all strategies performed better in a homogeneous environment. The 
parallel run-times of CSS suffered from large communication overheads and load imbalance, 
especially when the underlying system was highly heterogeneous. Although we could reduce the 
communication overheads by assigning the workload within only one round, the performance of  the  
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Figure 4.  Parallel run-times over two different environments 

 
one-time strategy was the worst on both systems because of an excessive load imbalance due to 
inaccurate information. WFSS and AWF performed equally well in a homogeneous system. However, 
AWF outperformed WFSS in a highly heterogeneous system because of its ability to adjust weight 
values for making load decision during the execution. Finally, ARSS performed as well as WFSS and 
AWF over a homogeneous system although it had to spend additional time during the increasing 
stages for obtaining accurate performance metrics. With exponentially increasing and decreasing task 
allocation during the increasing and decreasing stages, ARSS did not suffer from large 
communication overheads like CSS. The prediction error from the monitoring service did not affect 
the performance of ARSS because it used its own simple performance metrics calculated during the 
execution. Therefore, ARSS achieved the best parallel run-time over a highly heterogeneous system, 
given inaccurate performance information from the monitoring service. 
 
Effect of Information Inaccuracy from Monitoring Services 
 

The behaviour of the traditional strategies which rely on performance information from the 
monitoring service was evaluated. As mentioned earlier, we modelled the prediction errors as upper-  
and lower-bound percentages of the uniformly distributed random variable. 

In Figure 5, it is quite obvious that AWF performs best when the estimated value is accurate 
(zero prediction error). As the prediction error increases, AWF will perform worse. The reason 
behind this behaviour is the characteristic of AWF. Since AWF assigns half of the available workload 
during the first stage, the problem of inaccurate information given a large prediction error can affect 
the performance of this strategy despite its effort to adjust the accuracy of the weighted values 
during the execution in the subsequent stages. On the contrary, the prediction error from the 
monitoring service does not affect the performance of our strategy. This is due to the fact that ARSS 
relies only on its simple performance metrics obtained by the coordinator node during the execution 
instead of using the values measured by the monitoring services. 
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Figure 5.  Parallel run-times with different prediction errors from monitoring service 

 
Effect of Computing Heterogeneity 
 

The differences in the computing power between participating clusters can increase the risk 
of load imbalance. Unintentionally sending one additional task to a computing cluster ten times 
slower than other clusters can result in a very bad parallel run-time because other clusters have to 
wait until that cluster finishes. Figure 6 illustrates the performance of load sharing strategies with 
different values of computing heterogeneity (H). 

 

 

Figure 6.  Parallel run-times at different values of computing heterogeneity 
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As shown in Figure 6, the parallel run-times of both strategies increases when the underlying 
system becomes more heterogeneous. However, since ARSS utilises job-stealing technique to ensure 
that every cluster enters the same stage throughout the entire execution, it can perform better than 
AWF over different values of computing heterogeneity. 
 
Effect of Communication Overheads 
 

Large communication overheads can degrade the performance of load sharing strategies. The 
effect of communication overheads was evaluated by focusing on two parameters: the propagation 
delay in WAN and the communication size of the submitted application. The effect of propagation 
delay in WAN on different load sharing strategies is shown in Figure 7. 

 

 

Figure 7.  Parallel run-times at different WAN propagation delays 
 

The obtained results illustrate that the performance of ARSS is better than that of AWF when 
the propagation delay in WAN is low. Since the accuracy of simple performance metrics used by 
ARSS decreases with propagation delay, the parallel run-times of both strategies become comparable 
when the WAN propagation delay is large. 

From Figure 8, it can be seen that the performance of ARSS is much better than that of AWF 
when the communication size is large. The explanation for this behaviour is that AWF assigns 
workload in a decreasing fashion. Therefore, it suffers from a large amount of communication 
overheads during the first stage. Since ARSS starts the execution with the increasing stages, it can 
overlap the communication overheads with the computation time for each cluster. Note that, in our 
experiments, we do not consider the data-intensive applications with large communication sizes. In 
real life, large data sets which may be up to terabytes in total are usually pre-fetched to the 
computing resources before the execution begins in order to hide the communication overheads. 
Therefore, it is uncommon to assume that these large data sets will be transferred during run-time. 
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Figure 8.  Parallel run-times at different communication sizes 

 
Effect of Application Pattern 
 

Since ARSS will use the first half of total unit tasks to collect performance metrics, the 
characteristic of the submitted application can affect its performance. However, as shown in Figure 
9, it can be seen that the performance of ARSS is barely changed given four different classes of 
applications. If an application has constant-size tasks, ARSS can perform better than AWF because 
the performance metrics obtained during the increasing stages are accurate. In the case of an 
application with increasing-size tasks, the performance of AWF is not good since the size of the unit 
tasks near the end of the execution, which will be used to balance the workload assigned during the 
previous stage, is large. In contrast to AWF, ARSS gradually increases the chunk size at the 
beginning and also gradually decreases it near the end of the execution. Although this behaviour will 
add a small amount of communication overheads, it provides stability to ARSS even when the 
computation size of each task is not the same.  
 
Effect of Total Number of Unit Tasks 
 

The number of unit tasks in a submitted application is also one of the important factors 
because it can affect the accuracy of the obtained performance metrics used by ARSS. Since we keep 
the same total computation size for every test, the computation size of each task will be larger when 
the total number of unit tasks is decreased. From Figure 10, it can be seen that the performance of 
ARSS is still comparable or even better than AWF given a limited number of unit tasks. This 
behaviour shows that ARSS is robust enough to obtain good results even with a small number of unit 
tasks. 
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Figure 9.  Parallel run-times for four different applications:  those with constant-size (cont),   
increasing-size (incr), decreasing-size (decr), and randomized-size (rand) tasks 

 

 

Figure 10.  Parallel run-times for different number of unit tasks 

 
CONCLUSIONS 
 

We have proposed a new global strategy called agentless robust self-scheduling strategy 
(ARSS) for large-scale multi-organisational computing systems. Unlike other traditional strategies, 
our proposed strategy can make load decision without any proprietary monitoring services installed 
at the participating resources. In order to address communication overheads in WAN and dynamic 
behaviour over a heterogeneous computing system, our strategy divides an entire computation into 
multiple stages. The increasing stages during the beginning of the execution are for obtaining an 
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accurate estimation of the computing power of each resource and also for overlapping the 
communication overheads. After that, the decreasing stages will eliminate the load imbalance until 
the end of the execution. During each stage, our strategy addresses the dynamic behaviour of the 
underlying system by assigning workload according to the performance metrics obtained in the 
previous stages. We also introduce a stage-warping technique to further handle the performance 
estimation errors. This technique will allow clusters to steal workload from those slower-than-
expected clusters. The experimental results have shown that the proposed strategy can achieve a 
comparable or better performance compared to that of other traditional strategies. Our strategy is 
therefore non-intrusive and efficient at utilising heterogeneous resources over WAN, which definitely 
will be served as the computing platform for the next generation. 
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