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Abstract: Free vibration of symmetrically laminated composite rectangular plates with 
various boundary conditions is analysed by an extended Kantorovich method, in which a 
separable function to the dynamic-system energy equation is applied in order to reduce the 
partial differential equations to ordinary differential equations in the direction of x, y 
coordinates with a constant coefficient. The beam function is used as an initial trial function 
in the iterative calculation, which is employed to evaluate the natural frequency and force the 
final solution needed to satisfy the boundary conditions. To verify the accuracy of the present 
method, the frequency parameters are evaluated in comparison with previous work on the 
subject. A good agreement proves that the method can be used to evaluate the natural 
frequencies of unidirectional 0, unidirectional 90 and cross-ply symmetrically laminated 
composite rectangular plates. 

Keywords: Kantorovich method, free vibration analysis, composite rectangular plates 
 

INTRODUCTION 
 

Composite materials are increasingly being used for rectangular plate structures constructed on 
mechanical, civil, aerospace and marine engineering projects. Due to their high strength, low weight, 
good fatigue resistance and good corrosion resistance, their properties meet the requirements of most 
specific designs. Regarding the bending, buckling or vibrating problem found in rectangular plates, the 
difficulty involved is in solving the related partial differential equations. The exact method used in doing 
this is possible when at least a pair of opposite edges is simply supported. Otherwise, an approximate 



Maejo. Int. J. Sci. Technol.  2010, 4(03), 512-532  
 

 

513

method such as the Galerkin method, the Rayleigh-Ritz method, the extended Kantorovich method and 
the finite element method (FEM) is usually employed. 

The extended Kantorovich method is used to reduce the partial differential equations to ordinary 
differential equations in the direction of x, y coordinates. The iterative calculation is used to evaluate the 
deflection, buckling load or natural frequency and to force the final solution required to satisfy the 
boundary conditions. The extended Kantorovich method has been reviewed by several researchers. For 
example, Dalaei and Kerr derived a closed-form approximate solution for a uniformly lateral distributed 
load [1] and the natural frequency [2] of an orthotropic rectangular clamped plate. An initial trial 
function which satisfies the boundary conditions along the y coordinate direction was used in the 
iterative calculation. It was found that the final solution can be obtained from the fourth iteration and 
that this is independent of an initial trial function. Sakata et al. [3] evaluated the natural frequency of an 
orthotropic rectangular plate with various boundary conditions. An initial trial function which satisfies 
the boundary conditions along one direction was used in the iterative calculation. The results showed 
that the convergence of the final solution is rapid and the particular natural frequency can be obtained 
separately with a good accuracy while the Rayleigh-Ritz method uses a large number of shape functions 
if a higher natural frequency is required. Rajalingham et al. [4] improved the convergence of the natural 
frequency of an isotropic rectangular clamped plate. The shape functions obtained from the extended 
Kantorovich method were used in the Rayleigh-Ritz method. It was discovered that these shape 
functions enhance the effectiveness of the Rayleigh-Ritz method. Bercin [5] evaluated the low natural 
frequency of an orthotropic rectangular clamped plate. An initial trial function such as that used by 
Dalaei and Kerr [2] was used in the iterative calculation. It was found that the convergence of the 
solution is very rapid.  

Lee et al. [6] derived the free vibration of symmetrically laminated composite rectangular plates 
with all edges elastically restrained against rotation based on first-order anisotropic shear deformation 
plate theory. The Timoshenko beam function was used in the iterative calculation as an initial trial 
function. The results indicated that the extended Kantorovich method can be more effectively and 
accurately applied to the free vibration of a symmetrically laminated composite with a cross-ply 
rectangular plate than the Rayleigh-Ritz method, but cannot be applied to the free vibration of a 
symmetrically laminated composite with an angle-ply rectangular plate. Rajalingham et al. [7] derived a 
closed-form approximate solution for the natural frequency of an isotropic and clamped plate. As the 
plate characteristic function was used in the iterative calculation as an initial trial function, the modal 
parameters were found to be suitable for evaluating a higher natural frequency while the Rayleigh-Ritz 
method involved a large order matrix eigenvalue problem, plus the finite element method could not 
provide accurate values for higher natural frequencies. Ungbhakorn and Singhatanadgid [9] evaluated 
the critical buckling load of symmetrically laminated composite with unidirectional 0 and cross-ply 
rectangular plates with various boundary conditions. Although an arbitrary function was used in the 
iterative calculation as an initial trial function, the final solution was automatically forced to satisfy the 
boundary conditions and the critical buckling load was obtained from the fourth iteration.  

The purpose of this study is to evaluate the natural frequencies of symmetrically laminated 
composite rectangular plates with various boundary conditions using the extended Kantorovich method. 
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METHODS 
 
Derivation of the Iterative Differential Equations 
 

Hamiton’s principle is a generalisation of the principle of virtual displacement within the dynamics 
of a system. The principle assumes that the system under consideration is characterised by two energy 
functions, namely the kinetic energy and the potential energy [8]: 
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where K is the kinetic energy and V+U is the potential energy. 
The potential energy and the kinetic energy of a symmetrically laminated composite rectangular 

plate, as shown in Figure 1, can be written as follows. 
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where Dij is the bending stiffness of the composite plate, w is the lateral deflection, m is mass per unit 
area of plate and   is the natural circular frequency. 

Assuming the solution is  
 

)()(),( yYxXyxw   ,                               (3) 
 
substitute equation (3) into equation (2): 
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Figure 1.  The rectangular plate  
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If X(x) is defined a priori, equation (4) can be rewritten as 
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where  
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The variational method and integration by parts of equation (5) yield a fourth-order ordinary 

differential equation as in equation (6) and the boundary conditions along 0y  and by   as shown in 
equations (7) and (8) respectively. 
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Similarly, when Y(y) is defined a priori, a fourth-order ordinary differential equation can be 

written as equation (9) and the boundary conditions along 0x  and ax   as equations (10) and (11) 
respectively. 
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Solution of the Iterative Differential Equations 
 

The fourth-order ordinary differential equation (6) can be rewritten in a simple form as 
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where the form of the general solution is composed of the following four forms: 
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In this study, considering a case 2

3111 mSDS xx  , the solution can be written as follows. 
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where q1 and q2 are modal parameters in y coordinate direction, and 
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Similarly, the fourth-order ordinary differential equation (9) can be rewritten in a simple form as 
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In this study, considering a case 2

3221 mSDS yy  , the solution can be written as follows. 
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Iterative Calculation Procedure 
 

The iterative calculation is used to evaluate the natural frequency and to develop a final solution 
to satisfy the boundary conditions by the following steps. 
(1)  The iterative calculation begins by choosing an initial trial function in the x or y coordinate 

direction using the procedure shown in Figure 2 and choosing the X0(x) as an initial trial function. 
S1x through S6x are calculated from X0(x). 

(2)  In the first iteration, substitute the solution equation (12) in the boundary conditions and use q2 
as a function of q1, or q1 as a function of q2, from the relationship equation (13). Then find the 
eigenvalue q1 or q2 and the eigenvector Y1(y). 

(3)  In the second iteration, substitute the solution equation (15) in the boundary conditions and use p2 
as a function of p1, or p1 as a function of p2, from the relationship equation (16). S1y through S6y 
are calculated from the eigenvector Y1(y) obtained from equation (2). Then find the eigenvalue p1 
or p2 and the eigenvector X1(x). 

(4)  In the third iteration, substitute the solution equation (12) in the boundary conditions and use q2 
as a function of q1, or q1 as a function of q2, from the relationship equation (13). S1x through S6x 
are calculated from X1(x). Then find the eigenvalue q1 or q2 and the eigenvector Y2(y). 

(5)  Compare q1 and q2 from equations (4) and (2). If the difference satisfies the specified tolerance 
level, the last q1 and q2 can be taken as the final solution. Otherwise, continue the iterative 
calculation by repeating steps (2) to (4). 

(6)   The natural frequency is calculated from equation (14) or (17). 
 
 
 
 

 
 
 
 
 

 
 

Figure 2.  Iteration procedure 
 

Numerical Verification and Accuracy 
 

For numerical calculation, the present method is applied to a rectangular plate with various aspect 
ratios b/a, natural frequencies and boundary conditions. The method considers individual plate modes as 
the product of a separable function in the x, y coordinate directions. The notation for the plate mode (i, 
j) is a plate mode which is the product of the ith mode for the x coordinate direction and the jth mode for 
the y coordinate direction. The notation for boundary condition, for example CFCS, is as follows. The 
first and third letters mean the boundary condition along x=0 and x=a respectively, and the second and 

W01 = X0 Y1 

W11 = X1 Y1 

W21 = X1 Y2 

W22 = X2 Y2 

Converged solution 

X0 : Initial trial 

: Iteration no.1 

: Iteration no.2 

: Iteration no.3 

: Iteration no.4 
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fourth letters mean the boundary condition along y=0 and y=b respectively. The letters C, S and F mean 
the clamped, simply supported and free boundary conditions respectively.  

The iteration example of the (1, 1) plate mode of an isotropic square plate with CCCC boundary 
condition is illustrated in Table 1. The (1, 1) plate mode is the product of the first mode of the x and y 
coordinate directions. The first iteration chooses the first mode of the free vibration of the clamped 
beam in the x coordinate direction, A, as an initial trial function. S1x through S6x are calculated for the 
substitution of q2 as a function of q1. The first eigenvalues q1 and q2 and the eigenvector in the y 
coordinate direction are 4.304, 6.567 and B respectively. In the second iteration, the eigenvector in the 
y coordinate direction from the first iteration is used to determine S1y through S6y for the substitution of 
p2 as a function of p1. The first eigenvalues p1 and p2 and the eigenvector in the x coordinate direction 
are 4.312, 6.525 and C respectively. The iterative calculation is repeated until the difference of the 
modal parameter in the x or y coordinate direction satisfies the specified tolerance. The fourth iteration 
is the end iteration due to the modal parameter in the x coordinate direction of the second and fourth 
iteration being identified, where p1 = 4.312 and p2 = 6.525. The plate mode shape is the product of the 
eigenvector in the x and y coordinate directions, DCyxw ),( , as shown in the last column. 

 

Table 1.  (1, 1) Plate mode of an isotropic square plate with CCCC boundary condition 
 
Iteration Assumed solution Solution 

No. X(x) or Y(y) Eigenvalue Eigenvector X(x) or Y(y) Mode shape 

1 A 
 
 

q1 = 4.304 
q2 = 6.567 
 

B  

2 B 
 
 

p1 = 4.312  
p2 = 6.525 

C  

3 C 
 
 

q1 = 4.312 
q2 = 6.526 
 

D  

4 D 
 
 
 

p1 = 4.312  
p2 = 6.525 
 
 

C 

Note: A = cos(4.730x) + 0.132cosh(4.730x), B = cos(4.304y) + 0.041cosh(6.567y) 
  C = cos(4.312x) + 0.042cosh(6.525x), D = cos(4.312y) + 0.042cosh(6.526y)  
 

For the plate mode shape, the contour representing the lateral deflection is zero and is called the 
nodal line. The nodal line is defined by the dash line. The nodal lines (i, j) of the (1, 1) through (3, 3) 
square plate mode with CCCC boundary conditions are illustrated in Figure 3. The nodal lines of the  (i, 
j) plate mode are the i-1 and j-1 lines in the x and y coordinate directions respectively. For example, the 
nodal lines for the (3, 2) plate mode are 2 and 1 lines in the x and y coordinate directions respectively. 
The frequency parameter Dmab /  is evaluated by substituting q1 and q2 obtained from the third 
iteration into equation (14), or by substituting p1 and p2 obtained from the fourth iteration into equation 
(17), producing 35.998, as shown in Table 2. 
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Figure 3.  Nodal lines of the mode of square plate with CCCC boundary condition 
 

  Table 2.  (1, 1) Frequency parameters Dmab /  of an isotropic square plate 
 

Boundary condition 
 Method 

 Ref [2] Ref [3] Ref [4] Ref [7] Present 

CCCC  35.999 35.999 35.998 35.998 35.998 

SSSS  19.739    19.739 
 

The (1, 1) frequency parameters of an isotropic square plate, an orthotropic rectangular plate and 
the [0/90]s laminated composite rectangular plate with SSSS boundary condition are evaluated to verify 
the accuracy of the present method as illustrated in Tables 2-4. In the case of the isotropic square plate, 
one can consider the bending stiffness of the composite plate as D11 = D22 = (D12+D66) = D, and in the 
case of the orthotropic rectangular plate, as D11 = D22, (D12+D66) = 0.5D11. The mechanical properties 
of the [0/90]s laminated composite rectangular plate are G12 = 0.5E2 and 12 = 0.25. 
      The natural frequencies of the symmetrically laminated composite rectangular plate are evaluated 
by the present method and the FEM (ANSYS). In the present method, the natural frequency is obtained 
by dividing the natural circular frequency from equation (14) or equation (17) with 2π. In the FEM, a 
mesh size 64 x 64 of an 8-node, 3-D shell element with six degrees of freedom at each node is 
employed. The convergence of the mesh size of the (1, 1) natural frequencies of the [0/90]s laminated 
composite square plate is illustrated in Table 5. The natural frequencies of the unidirectional 0 and 
cross-ply symmetrically laminated composite rectangular plates are illustrated in Tables 6 and 7 
respectively. The mechanical properties of the Kevlar 49 and the plate dimensions are E1 = 138 GPa, E2 
= 8.96 GPa, G12 = 7.1 GPa, G23 = 2.82 GPa, 12 = 0.3, 23 = 0.59, mass per unit volume = 1600 kg/m3, 
a = 1 m, aspect ratio b/a = 0.5, 1.0 and 2.0, and thickness = 2.5 mm. 
 
 

(1, 1) (1, 2) (1, 3) 

(2, 1) (2, 2) (2, 3) 

(3, 1) (3, 2) (3, 3) 
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Table 3.  (1, 1) Frequency parameters 22/ Dmab  of an orthotropic rectangular plate 
 

Boundary b = 0.5a  b = a  b = 2a 

condition Ref [3] Present  Ref [3] Present  Ref [3] Present 

CCCC 95.391 95.391  33.917 33.917  23.848 23.848 

CCCS 69.687 69.687  29.625 29.625  23.447 23.447 

CCSS 67.497 67.497  24.610 24.610  16.874 16.874 

CSCS 50.349 50.349  26.809 26.809  23.172 23.172 

CSSS 47.325 47.325  21.163 21.163  16.497 16.497 

SSSS 45.228 45.228  17.095 17.095  11.307 11.307 

      
 
Table 4.  (1, 1) Frequency parameters 22

2 /)/( Dmab   of the [0/90]s laminated composite 
rectangular plate with SSSS boundary condition 
 

a/b 
E1 = 10E2  E1 = 20E2  E1 = 40E2 

Ref [8] Present  Ref [8] Present  Ref [8] Present 
0.5 8.515 8.515  9.355 9.355  9.917 9.917 
1.0 2.519 2.519  2.638 2.638  2.721 2.721 
1.5 1.531 1.531  1.536 1.536  1.539 1.539 
2.0 1.246 1.246  1.229 1.229  1.216 1.216 
2.5 1.138 1.138  1.119 1.119  1.105 1.105 
3.0 1.087 1.087  1.071 1.071  1.059 1.059 

 

Table 5.  Convergence of mesh size of the (1, 1) natural frequencies of the [0/90]s laminated composite 
square plate 
 

Boundary  Mesh size 
condition  2x2 4x4 8x8 16x16 32x32 64x64 

CCCC  89.087 100.588 101.086 101.504 101.558 101.558 
CCCS  86.286 95.144 96.431 96.872 96.927 96.927 
CCSS  67.547 71.164 71.726 71.924 71.949 71.949 
CFCC  78.816 87.636 89.978 90.526 90.605 90.605 
CFCF  78.110 87.030 88.901 89.349 89.405 89.405 
CFCS  78.664 87.383 89.556 90.062 90.132 90.132 
CFSC  57.985 62.094 63.124 63.374 63.404 63.404 
CFSF  57.651 60.838 61.570 61.748 61.771 61.771 
CFSS  57.754 61.583 62.498 62.718 62.742 62.742 
CSCS  83.499 91.839 93.552 94.004 94.059 94.059 
CSSS  63.207 67.047 67.846 68.048 68.072 68.072 
FSCS  24.904 25.671 25.971 26.047 26.063 26.063 
FSFS  17.935 17.965 17.981 17.986 17.986 17.986 
SSFS  19.866 20.534 20.702 20.744 20.752 20.752 
SSSS  45.264 47.607 48.044 48.133 48.144 48.144 
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Table 6.  Natural frequencies of the [0]4 laminated composite rectangular plate 
 
(1)  Boundary condition CCCC 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 146.130 145.397  102.081 101.592  96.696 96.295 

(1, 2) 302.299 299.966  127.192 126.600  100.315 99.831 

(1, 3) 555.059 548.308  178.585 177.714  107.671 107.158 

(2, 1) 298.399 295.269  269.499 266.664  265.060 262.274 

(2, 2) 423.333 418.502  288.738 285.706  268.635 265.806 

(2, 3) 653.828 644.244  327.230 323.824  275.099 272.198 

(3, 1) 545.963 536.114  522.745 513.407  518.569 509.310 

(3, 2) 647.953 636.133  540.051 530.388  522.185 512.838 

(3, 3) 847.768 830.895  572.655 562.375  528.440 518.980 

 
(2)  Boundary condition CCCS 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 127.192 126.462  100.315 99.810  96.608 96.140 

(1, 2) 256.654 254.955  120.275 119.661  99.656 99.166 

(1, 3) 485.547 480.822  164.861 164.035  106.085 105.561 

(2, 1) 288.738 285.501  268.635 265.783  264.972 262.184 

(2, 2) 389.848 385.232  285.121 282.037  268.276 265.436 

(2, 3) 593.597 585.588  318.92 315.462  274.271 271.335 

(3, 1) 540.051 530.183  522.18 512.825  518.516 509.247 

(3, 2) 624.615 612.754  537.713 527.981  521.918 512.579 

(3, 3) 799.550 783.608  567.276 551.803  527.872 518.375 

 
(3)  Boundary condition CCSS 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 105.833 105.243  72.184 71.920  67.1591 66.965 

(1, 2) 245.820 244.214  97.462 97.007  71.280 71.035 

(1, 3) 479.172 474.492  148.400 107.666  79.732 79.414 

(2, 1) 242.543 240.403  219.274 217.680  215.031 213.535 

(2, 2) 354.715 350.935  238.289 236.371  218.841 217.268 

(2, 3) 569.048 561.692  276.635 274.196  225.751 224.050 

(3, 1) 471.233 464.645  451.405 445.473  447.343 441.525 

(3, 2) 563.812 554.870  468.578 462.184  451.129 445.196 

(3, 3) 750.246 736.857  501.090 493.857  457.681 451.580 
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Table 6. (continued) 
 
(4)  Boundary condition CFCC 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 100.644 100.090  96.647 96.161  95.930 95.458 

(1, 2) 156.852 155.620  105.935 105.342  97.687 97.197 

(1, 3) 311.322 308.453  132.549 131.718  101.911 101.381 

(2, 1) 268.865 265.950  264.940 262.115  264.137 261.333 

(2, 2) 317.926 313.990  274.476 271.486  266.241 263.402 

(2, 3) 447.216 440.793  297.021 293.648  270.708 267.792 

(3, 1) 522.206 512.763  518.409 509.081  517.594 508.283 

(3, 2) 567.928 557.136  528.024 518.431  519.820 510.460 

(3, 3) 680.763 666.671  549.166 539.005  524.408 514.915 

 
(5)  Boundary condition CFCF 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 95.749 95.211  95.743 95.242  95.744 95.261 

(1, 2) 106.432 105.693  98.460 97.930  96.407 95.921 

(1, 3) 167.132 165.526  109.758 109.042  98.757 98.237 

(2, 1) 263.922 260.964  263.921 261.044  263.921 261.085 

(2, 2) 278.501 275.256  267.520 264.605  264.787 261.945 

(2, 3) 336.718 331.867  280.142 276.937  267.729 264.826 

(3, 1) 517.401 507.858  517.385 507.975  517.388 508.023 

(3, 2) 533.275 523.320  521.267 511.767  518.302 508.900 

(3, 3) 591.097 579.101  534.415 524.491  521.484 511.979 

 
(6)  Boundary condition CFCS 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 98.460 97.919  96.407 95.922  95.902 95.432 

(1, 2) 137.590 136.492  103.550 102.962  97.419 96.929 

(1, 3) 266.094 263.893  125.300 124.488  101.101 100.568 

(2, 1) 267.520 264.602  264.787 261.963  264.119 261.316 

(2, 2) 305.380 301.505  272.993 269.991  266.067 263.228 

(2, 3) 412.832 406.862  292.648 289.260  270.211 267.288 

(3, 1) 521.267 511.810  518.295 508.974  517.591 508.272 

(3, 2) 558.869 548.060  526.952 517.356  519.709 510.334 

(3, 3) 654.862 641.040  546.097 535.900  524.052 514.554 
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Table 6. (continued) 
 
(7)  Boundary condition CFSC 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 72.610 72.293  67.215 66.999  66.234 66.049 

(1, 2) 139.205 138.057  79.481 79.082  68.618 68.396 

(1, 3) 301.769 299.031  111.804 111.093  74.255 73.955 

(2, 1) 219.557 217.910  214.998 213.462  214.068 212.567 

(2, 2) 275.258 272.268  225.998 224.230  216.493 214.941 

(2, 3) 415.360 409.687  251.767 249.520  221.648 219.985 

(3, 1) 451.463 445.440  447.247 441.358  446.343 440.490 

(3, 2) 501.785 494.174  457.858 451.664  448.810 442.883 

(3, 3) 623.742 612.383  481.156 474.313  453.865 447.795 

 
(8)  Boundary condition CFSF 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 65.980 65.727  65.980 65.760  65.980 65.781 

(1, 2) 79.834 79.245  69.625 69.352  66.880 66.676 

(1, 3) 149.981 148.437  84.179 83.628  70.035 69.771 

(2, 1) 213.819 212.153  213.818 212.238  213.819 212.281 

(2, 2) 230.45 228.388  217.953 216.323  214.815 213.277 

(2, 3) 295.472 291.526  232.396 230.388  218.197 216.576 

(3, 1) 446.125 440.018  446.113 440.148  446.116 440.202 

(3, 2) 463.589 457.000  450.394 444.340  447.121 441.187 

(3, 3) 526.653 517.535  464.876 458.312  448.080 444.572 

 
(9)  Boundary condition CFSS 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 69.625 69.330  66.880 66.666  66.197 66.012 

(1, 2) 117.344 116.325  76.345 75.957  68.248 68.025 

(1, 3) 255.010 252.805  103.208 102.520  73.162 72.862 

(2, 1) 217.523 216.307  214.815 213.281  214.048 212.546 

(2, 2) 260.969 258.200  224.245 222.470  216.287 214.734 

(2, 3) 378.438 373.259  246.702 244.436  221.051 219.388 

(3, 1) 450.394 444.360  447.124 441.237  446.324 440.477 

(3, 2) 491.695 484.121  456.672 450.458  448.665 442.740 

(3, 3) 595.709 585.020  477.710 470.837  453.468 447.385 
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Table 6. (continued) 
 
(10)  Boundary condition CSCS 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 114.779 114.051  99.113 98.604  96.485 96.017 

(1, 2) 217.513 216.163  114.779 114.149  99.113 98.619 

(1, 3) 421.958 418.724  152.854 152.046  104.728 104.194 

(2, 1) 282.135 278.869  267.948 265.087  264.225 262.104 

(2, 2) 362.621 358.081  282.135 279.016  267.948 265.106 

(2, 3) 540.018 533.026  311.768 308.252  273.490 270.560 

(3, 1) 535.686 525.759  521.686 512.332  518.448 509.188 

(3, 2) 605.709 593.804  535.686 525.915  521.686 512.341 

(3, 3) 757.555 742.228  562.335 551.913  527.322 517.827 

 
(11)  Boundary condition CSSS 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 90.654 90.069  70.534 70.266  66.987 66.793 

(1, 2) 204.740 203.455  90.655 90.183  70.534 70.285 

(1, 3) 414.685 411.499  135.004 134.292  77.942 77.616 

(2, 1) 234.777 232.659  218.455 216.855  214.937 213.436 

(2, 2) 324.789 321.127  234.777 232.823  218.455 216.876 

(2, 3) 513.130 506.817  268.453 265.971  224.838 223.134 

(3, 1) 466.287 459.682  450.866 444.915  447.276 441.459 

(3, 2) 542.997 534.098  466.287 459.859  450.866 444.928 

(3, 3) 705.590 692.887  495.624 488.405  457.077 450.964 

 
(12)  Boundary condition FSCS 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 51.696 51.479  22.408 22.321  16.573 16.543 

(1, 2) 178.770 178.132  51.696 51.545  22.408 22.341 

(1, 3) 393.258 390.834  104.156 103.887  34.054 33.960 

(2, 1) 125.740 124.626  101.457 100.940  96.027 95.612 

(2, 2) 240.372 238.154  125.740 124.833  101.457 100.935 

(2, 3) 447.414 443.104  171.454 170.131  111.146 110.474 

(3, 1) 290.303 287.215  270.198 267.831  265.542 263.160 

(3, 2) 386.963 381.572  290.304 287.360  270.198 267.682 

(3, 3) 575.454 566.813  328.028 324.248  278.302 275.571 
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Table 6. (continued) 
 
(13)  Boundary condition FSFS 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 42.969 42.940  10.729 10.733  2.682 2.683 

(1, 2) 172.013 171.569  42.969 42.940  10.735 10.733 

(1, 3) 387.159 384.950  96.727 96.586  24.162 24.153 

(2, 1) 60.005 59.462  23.613 23.393  10.865 10.775 

(2, 2) 190.950 189.852  60.005 59.635  23.613 23.446 

(2, 3) 406.362 403.381  115.158 114.61  39.690 39.459 

(3, 1) 136.407 135.033  105.802 105.32  98.249 97.913 

(3, 2) 261.636 258.604  136.407 135.311  105.802 105.292 

(3, 3) 473.670 468.161  188.229 186.475  118.489 117.734 

 
(14)  Boundary condition SSFS 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 47.737 47.552  15.001 14.916  5.903 5.864 

(1, 2) 176.906 176.283  47.737 47.604  15.001 14.938 

(1, 3) 392.079 389.664  101.590 101.328  28.789 28.707 

(2, 1) 102.365 101.423  74.511 74.203  68.061 67.895 

(2, 2) 224.713 222.705  102.365 101.649  74.511 74.221 

(2, 3) 436.568 432.438  152.234 151.105  85.799 85.342 

(3, 1) 243.464 241.356  220.832 219.563  215.544 214.333 

(3, 2) 348.803 344.303  243.464 241.546  220.832 219.466 

(3, 3) 546.216 538.45  285.155 282.340  229.993 228.382 

 
(15)  Boundary condition SSSS 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 73.313 72.782  48.313 48.143  43.585 43.516 

(1, 2) 195.924 194.707  73.313 72.905  48.313 48.166 

(1, 3) 409.306 406.184  122.783 122.131  57.859 57.613 

(2, 1) 193.253 191.815  174.343 173.533  170.246 169.562 

(2, 2) 293.255 290.111  193.253 192.000  174.343 173.558 

(2, 3) 491.133 485.278  231.440 229.562  181.765 180.816 

(3, 1) 402.477 398.250  385.382 381.925  381.416 378.103 

(3, 2) 486.526 479.726  402.477 398.449  385.382 381.941 

(3, 3) 659.824 648.987  434.818 429.885  392.272 388.619 
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Table 7.  Natural frequencies of the [0/90]s laminated composite rectangular plate 
 
(1)  Boundary condition CCCC 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 193.481 192.319  102.125 101.558  91.450 90.899 

(1, 2) 469.651 464.362  152.510 151.765  97.518 96.953 

(1, 3) 898.655 881.793  249.217 247.785  111.734 111.147 

(2, 1) 313.322 309.597  256.188 252.850  249.409 246.115 

(2, 2) 549.079 541.605  288.967 285.445  254.144 250.807 

(2, 3) 959.142 940.036  361.009 356.951  263.753 260.352 

(3, 1) 533.285 521.866  493.182 482.191  487.584 476.672 

(3, 2) 720.807 706.154  518.596 507.273  491.953 480.954 

(3, 3) 1090.160 1064.000  573.029 561.292  500.115 488.978 

 
(2)  Boundary condition CCCS 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 152.510 151.625  97.518 96.927  91.089 90.534 

(1, 2) 387.666 384.487  136.904 136.197  95.912 95.336 

(1, 3) 778.985 768.074  222.186 221.039  107.889 107.290 

(2, 1) 288.967 285.182  254.144 250.773  249.227 245.930 

(2, 2) 478.949 473.995  280.300 276.711  253.354 250.015 

(2, 3) 846.367 832.686  341.883 337.882  261.669 258.423 

(3, 1) 518.596 506.985  491.953 480.927  487.462 476.548 

(3, 2) 666.875 652.987  513.249 501.830  491.447 480.437 

(3, 3) 990.124 968.900  560.252 548.256  498.895 487.745 

 
(3)  Boundary condition CCSS 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 137.269 136.574  72.242 71.949  63.536 63.310 

(1, 2) 381.317 378.238  119.737 119.247  70.075 69.806 

(1, 3) 775.394 764.560  211.588 210.591  85.471 85.143 

(2, 1) 248.488 246.061  208.084 206.211  202.334 200.563 

(2, 2) 453.917 449.041  238.428 236.248  207.152 205.306 

(2, 3) 831.045 818.053  307.398 304.631  217.091 215.086 

(3, 1) 455.339 447.527  425.601 418.623  419.229 413.743 

(3, 2) 616.821 606.346  449.298 441.847  425.031 418.053 

(3, 3) 954.976 936.472  501.235 493.040  433.317 426.167 

 



Maejo. Int. J. Sci. Technol.  2010, 4(03), 512-532  
 

 

527

Table 7. (continued) 
 
(4)  Boundary condition CFCC 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 97.635 96.982  91.175 90.605  90.202 89.648 

(1, 2) 200.611 199.067  106.120 105.409  92.514 91.935 

(1, 3) 475.593 470.517  157.102 156.112  99.276 98.646 

(2, 1) 254.611 251.173  249.265 245.944  248.278 244.981 

(2, 2) 332.550 327.751  261.871 258.325  250.730 247.387 

(2, 3) 568.059 559.489  297.811 293.799  256.467 253.030 

(3, 1) 492.296 481.197  487.439 476.489  486.647 475.549 

(3, 2) 557.483 544.619  499.170 487.891  488.975 477.976 

(3, 3) 751.789 734.541  528.782 561.800  494.415 483.262 

 
(5)  Boundary condition CFCF 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 89.949 89.392  89.974 89.405  89.975 89.416 

(1, 2) 101.379 100.501  92.923 92.303  90.699 90.131 

(1, 3) 209.883 208.139  109.979 109.134  93.633 93.017 

(2, 1) 248.018 244.635  248.018 244.678  248.019 244.703 

(2, 2) 263.801 259.951  251.944 248.524  248.972 245.642 

(2, 3) 350.810 345.196  267.746 263.932  252.300 248.888 

(3, 1) 486.070 475.161  486.216 475.229  486.223 475.262 

(3, 2) 503.507 491.831  490.453 479.334  487.231 476.245 

(3, 3) 580.894 566.391  505.892 494.201  490.712 479.597 

 
(6)  Boundary condition CFCS 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 92.923 92.288  90.699 90.132  90.150 89.597 

(1, 2) 161.439 160.225  100.989 100.292  91.979 91.400 

(1, 3) 393.984 390.870  141.452 140.530  97.796 96.866 

(2, 1) 251.944 248.513  248.972 245.651  248.245 244.948 

(2, 2) 306.302 301.720  258.907 255.360  250.402 247.057 

(2, 3) 498.276 491.216  288.384 284.383  255.468 252.031 

(3, 1) 490.453 479.348  487.231 476.283  486.449 475.526 

(3, 2) 539.019 526.260  497.116 485.824  488.739 477.741 

(3, 3) 696.579 680.394  522.430 510.418  493.734 482.570 
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Table 7. (continued) 
 
(7)  Boundary condition CFSC 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 72.342 71.979  63.653 63.404  62.316 62.100 

(1, 2) 188.598 187.222  83.137 82.688  65.468 65.211 

(1, 3) 470.997 465.073  142.015 141.225  74.453 74.117 

(2, 1) 208.623 206.702  202.383 200.583  201.235 199.472 

(2, 2) 296.625 293.078  217.008 214.935  204.075 202.255 

(2, 3) 545.876 538.326  258.099 255.479  210.707 208.803 

(3, 1) 425.999 418.926  420.594 413.685  419.189 412.651 

(3, 2) 497.904 488.802  433.606 426.333  422.293 415.336 

(3, 3) 706.154 692.229  466.400 458.186  428.323 421.164 

 
(8)  Boundary condition CFSF 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 62.005 61.757  62.005 61.771  62.005 61.782 

(1, 2) 76.702 76.058  65.950 65.645  62.986 62.753 

(1, 3) 197.907 196.358  87.702 87.110  66.936 66.636 

(2, 1) 200.839 199.086  200.934 199.125  200.935 199.152 

(2, 2) 218.906 216.506  205.443 203.547  202.032 200.237 

(2, 3) 315.813 311.367  223.598 221.231  205.869 203.979 

(3, 1) 419.234 412.221  419.228 412.298  419.241 412.332 

(3, 2) 438.236 430.514  423.906 416.841  420.354 413.430 

(3, 3) 522.780 512.084  440.948 433.274  421.378 417.137 

 
(9)  Boundary condition CFSS 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 65.950 65.618  62.986 62.742  62.243 62.028 

(1, 2) 146.474 145.460  76.576 76.148  64.727 64.472 

(1, 3) 387.312 384.362  124.569 123.863  72.096 71.762 

(2, 1) 205.443 203.523  202.032 200.234  201.195 199.429 

(2, 2) 267.255 263.985  213.507 211.425  203.683 201.862 

(2, 3) 473.111 466.783  247.305 244.696  209.555 207.618 

(3, 1) 423.906 416.837  420.357 413.452  419.208 412.625 

(3, 2) 477.432 468.889  431.274 424.002  422.027 415.070 

(3, 3) 647.417 634.742  459.289 451.260  427.532 420.418 
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Table 7. (continued) 
 
(10)  Boundary condition CSCS 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 124.247 123.437  94.660 94.059  90.835 90.279 

(1, 2) 315.594 313.694  124.247 123.545  94.660 94.077 

(1, 3) 668.684 662.073  197.927 196.964  104.649 104.037 

(2, 1) 273.482 269.661  252.712 249.328  249.079 245.779 

(2, 2) 420.358 415.174  273.482 269.842  252.712 249.352 

(2, 3) 744.034 734.132  325.479 321.481  260.211 256.764 

(3, 1) 508.925 497.250  491.006 479.964  487.354 476.440 

(3, 2) 623.666 610.057  508.925 497.450  491.006 479.984 

(3, 3) 901.507 883.204  549.377 537.294  497.837 486.660 

 
(11)  Boundary condition CSSS 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 105.089 104.501  68.370 68.072  63.178 62.952 

(1, 2) 307.847 306.072  105.089 104.619  68.370 68.095 

(1, 3) 664.551 658.038  186.008 185.207  81.370 81.033 

(2, 1) 230.460 228.042  206.365 204.488  202.156 200.383 

(2, 2) 391.801 387.709  230.460 228.243  206.366 204.515 

(2, 3) 726.720 717.624  289.151 286.432  215.090 213.121 

(3, 1) 444.409 436.686  424.522 417.518  420.486 413.621 

(3, 2) 570.055 560.030  444.409 436.909  424.520 417.540 

(3, 3) 863.000 847.658  489.148 480.905  432.105 424.936 

 
(12)  Boundary condition FSCS 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 77.306 77.092  26.144 26.063  16.162 16.131 

(1, 2) 292.035 290.730  77.306 77.142  26.144 26.083 

(1, 3) 651.767 645.784  166.421 165.958  46.757 46.667 

(2, 1) 134.512 133.347  97.272 96.700  90.527 90.061 

(2, 2) 331.637 329.028  134.512 133.577  97.272 96.705 

(2, 3) 684.864 677.398  212.575 211.179  111.199 110.494 

(3, 1) 281.887 278.383  255.083 252.356  249.755 247.033 

(3, 2) 441.442 435.532  281.886 278.585  255.083 252.227 

(3, 3) 769.934 758.631  341.051 336.930  265.252 262.185 
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Table 7. (continued) 
 
(13)  Boundary condition FSFS 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 72.036 71.911  18.009 17.986  4.502 4.497 

(1, 2) 288.147 286.870  72.036 71.911  18.009 17.986 

(1, 3) 648.331 642.336  162.082 161.629  40.521 40.462 

(2, 1) 83.270 82.790  27.674 27.480  11.448 11.368 

(2, 2) 299.700 298.050  83.270 82.934  27.674 27.533 

(2, 3) 659.780 653.365  173.610 172.935  51.282 51.084 

(3, 1) 144.436 143.043  101.638 101.141  92.706 92.361 

(3, 2) 347.366 344.075  144.436 143.358  101.638 101.129 

(3, 3) 702.318 693.893  226.291 224.535  118.408 117.669 

 
(14)  Boundary condition SSFS 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 74.925 74.743  20.817 20.752  6.918 6.887 

(1, 2) 290.979 289.694  74.925 74.781  20.817 20.770 

(1, 3) 651.105 645.140  164.944 164.497  43.403 43.331 

(2, 1) 115.310 114.393  72.463 72.145  64.315 64.140 

(2, 2) 321.400 319.050  115.310 114.624  72.463 72.173 

(2, 3) 678.360 671.119  198.802 197.654  88.909 88.472 

(3, 1) 239.294 236.990  208.880 207.455  202.801 201.444 

(3, 2) 411.835 407.033  239.294 237.237  208.880 207.376 

(3, 3) 750.287 739.984  304.678 301.741  220.470 218.733 

 
(15)  Boundary condition SSSS 
 

(i, j) 
b = 0.5a  b = a  b = 2a 

Present FEM  Present FEM  Present FEM 

(1, 1) 92.209 91.729  48.313 48.144  41.282 41.207 

(1, 2) 302.581 300.897  92.209 91.846  48.313 48.172 

(1, 3) 661.475 655.043  178.202 177.492  64.767 64.550 

(2, 1) 193.252 191.688  165.130 164.200  160.189 159.386 

(2, 2) 368.837 365.419  193.252 191.910  165.130 164.232 

(2, 3) 712.813 704.268  259.070 257.126  175.379 174.334 

(3, 1) 385.271 380.406  363.096 359.037  358.611 354.703 

(3, 2) 522.682 515.204  385.271 380.653  363.096 359.062 

(3, 3) 829.881 816.669  434.817 429.336  371.543 367.306 
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CONCLUSIONS 
 

The extended Kantorovich method has been employed to analyse the free vibration of a 
symmetrically laminated composite rectangular plate with various boundary conditions. The frequency 
parameters of an isotropic square plate, an orthotropic rectangular plate and a cross-ply symmetrically 
laminated composite rectangular plate were evaluated in order to compare with previously published 
results on the topic. A good agreement with the results verifies the accuracy of the present method. The 
natural frequencies of symmetrically laminated composite rectangular plates were also evaluated by the 
present method and the finite element method. A good agreement with the finite element method 
verifies that the present method can be used to evaluate the natural frequencies of unidirectional 0, 
unidirectional 90 and cross-ply symmetrically laminated composite rectangular plates.  

The advantages of the present method are as follows. 
(1)   The rectangular plate vibration problem can be resolved by the use of ordinary differential 

equations. 
(2)   Any arbitrary function can be used as an initial trial function in the iterative calculation. An 

initial trial function which satisfies the boundary conditions will make the convergence of the final 
solution rapid. 

(3)   The final solution converges rapidly; therefore, the final solution can be obtained from the 
fourth iteration. 

(4)   The particular natural frequency can be obtained separately with good accuracy. In the 
Rayleigh-Ritz method, a larger number of shape functions must be used if a higher natural 
frequency is required. 

However, due to the fact that the present method considers individual modes as a product of separable 
functions in the x and y coordinate directions, it cannot provide for modes with curved nodal lines. 
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