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Abstract: For a fruit-picking robot in natural scenes, feature extraction of fruits occluded by 
leaves and branches based on machine vision is a key problem. In this study, the cluster 
barycentre (CB), edge barycentre (EB), circular Hough transform (CHT) and least square 
circle fitting (LSCF) are used to extract the features of fruit. The results indicate that the first 
two methods cannot accurately determine the circle in the presence of partial occlusion. The 
objects extracted by the CHT method include false targets in addition to longer time and 
larger memory required. The LSCF method, on the other hand, can accurately extract the 
features in a real-time mode. When the occluded area ratio is less than 52%, or the occlusion 
angle is less than 216°, the accuracy of feature extraction using LSCF can meet the 
requirements of the robot operation. 

Keywords: near-spherical fruits, machine vision, least square circle fitting (LSCF), feature 
extraction, robotic harvesting 

 

INTRODUCTION  
 

Owing to labour shortage and high labour cost, the cost of manual harvesting accounts for over 
40% of the total cost in citrus production [1]. Mechanical mass harvesting is unsuitable for fresh 
agricultural products for it usually damages the fruits and trees. Robotic selective harvesting is an 
effective way to cope with labour shortage and rise of production cost, and to meet the need of 
harvesting fresh agricultural products. 
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The use of robots to pick tree fruits was proposed by Schertz and Brown in a review of citrus 
mechanical harvesting system in 1968 [2]. In the past forty years, studies on robotic harvesting of 
oranges [3-5], apples [6-7], strawberry [8-9], tomatoes [10-12] and other fruits were reported. The 
increasing computational power and the availability of advanced sensors and robotic technology have 
facilitated the development of robotic harvesting technology. However, robotic harvesting is not yet 
commercially available. The challenges for robotic selective harvesting as suggested by Sarig [13] are 
the vision system for fruit recognition and location, the end-effector for fruit removal and the 
coordination of these two components. 

Fruit recognition and location are the priority of harvesting robot. Machine vision, thermal 
imaging and laser ranging techniques were used to realise these operations by some researchers [14-15]. 
Considering the working efficiency, machine vision has become preferred. In general, the machine vision 
system of a harvesting robot is composed of a binocular camera which acquires images in the scene and 
a computer programmed to recognise and locate the desired objects through image segmentation, 
feature extraction, stereo match, and three-dimensional measurement techniques. 

A fruit can be segmented from the background in the scene where significant colour contrast 
exists between the fruit (such as apples, oranges and tomatoes) and the canopy. However, the existence 
of overlapping of objects and the occlusion by branches and leaves in the unstructured natural scenes 
make it difficult to segment complete fruit region. All of these result in the deviation in feature 
extraction and spatial location. An appropriate method which can accurately extract features from 
incomplete target images has become one of the key research targets of harvesting robot. For 
positioning of near-spherical fruit, spatial features such as the centre coordinate and radius must be 
extracted. In a 2D image, the fitting circle of fruit contour can be used to present the object, where the 
centre and radius of the circle are the features. 

The simplest solution to circle fitting is to compute the barycentre of the cluster of object region 
pixels (cluster barycentre method, CB) [16-18]. In this simple approach, the radius of the circle can be 
estimated as the maximum distance of the pixels from the barycentre. To reduce the calculation, the 
edge barycentre method (EB) was proposed, which only considers the boundary pixels, and the radius is 
computed as the mean distance of the boundary pixels from the estimated centre [16-18]. These 
approaches, however, do not take full advantage of our knowledge of a circle's shape and  more refined 
parametric approaches have been proposed. The circular Hough transform (CHT) and its modification 
were used to locate centres of objects based on their contours and do not require the full outline of the 
objects [19-21]. Using both the edge and the directional images, a modified CHT was applied to detect 
circular arcs that should correspond to tomato contours [19]. The obtained results were very sensitive 
to the user-specified threshold value and the best result for a 99% threshold value was 68% correct 
detection and 42% false detection. The contour of the leaves was one of the major problems since the 
analysis algorithm interpreted them as possible fruits. Grasso and Recce [22] used CHT to estimate the 
locations of centres based on the citrus edges in natural scenes. The authors reported problem when 
oranges were partially occluded by leaves. Cai et al. [21] used modified CHT to extract the centre 
coordinates and radii and recover the shapes of citrus without occlusion or with slight occlusion.  

Although CHT is a simple approach to detect near-spherical fruit, it is a computationally 
intensive approach with respect to time and memory. The main alternative method for the detection and 
analysis of near-circular features is the least-square circle fitting (LSCF). Researches in which least-
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square fitting of circles has been used in astronomy, physics, biology, quality control and metrology can 
be found reported in the literature [17, 23-26]. The main objectives of this investigation are: 1) to find a 
suitable method to fit circles and extract features that can represent the near-spherical fruit (citrus, 
apples, pears, tomatoes, etc.), and 2) to analyse the impact of the extent of occlusion or overlapping on 
feature extraction. 

 
MATERIALS AND METHODS 
 
Materials 
 

The near-spherical citrus tested in this study was planted in Jiangxinzhou, Zhenjiang City, China. 
The fruit (commonly called Miyagawa) are primarily sold in the fresh market. Therefore, selective 
harvesting is the best way to maximise the market value of the fruit. The equatorial or long diameter of 
the harvested fruit ranges between 60-78 mm. The equatorial diameter and height (short diameter) of 
the single fruit used for this laboratory analysis were 71.2 mm and 64.6 mm respectively. 

 
Image Acquisition 
 

Citrus images were obtained in a self-made image acquisition device composed of a light box 
with diffuse illumination, a charge coupled device and a host computer. Diffusers were installed in the 
light box wall as well as the dome. Multiple internal reflection caused the light to show no preferred 
direction. There was no shadow or strong reflection in the images. The camera of the charge coupled 
device was a LU075C (Lumenera Corporation, Canada). The main controlling computer had a Pentium 
IV CPU (3.0 GHz) and a memory of 1.5 G. All images were digitised into 640×480×24-bit colour 
bitmap images in RGB (red, green, blue) colour space. 

The sample citrus was fixed at the centre of a white bottom, the citrus equator being 
perpendicular to the floor. A total of 56 images of the citrus were obtained in the laboratory, the first 
one being that of the unoccluded fruit and the rest, those of the fruit occluded with leaves (Figure 1). 
The occluded area ranged from 0 to 94% and the occluded contour angle ranged from 0 to 320°. Only 
one fruit sample was used to capture all the 56 images and during the image acquisition, the citrus fruit 
was not moved to ensure that its central location was unchanged. 

An image for the validation test was captured in October of 2008 in a natural scene of an 
orchard using the same camera and computer. 

 
Software 
 

In this work, the images were captured and processed by a self-developed software based on 
Visual C++ 2008 (Microsoft Co., USA), LuCam SDK V4.2 (Lumenera Corporation, Canada) and 
MVTec Halcon 8.0 (MVTec Software GmbH, Germany) software platforms. 

 
Image Segmentation 
 

Segmentation separates the object (fruit) of interest from the background, which is the first step 
for object recognition. Its performance is critical to fruit detection since the segmentation output serves  
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Figure 1. Fitting circles of five images using different methods. In the first row (a-e), the original 
images are shown. The images shown in 2nd, 3rd, 4th and 5th rows are fitted using CB, EB, CHT and 
LSCF respectively. 
 
as input to succeeding processes. In occluded citrus images obtained in the lab, object (foreground) 
segmentation from the background (leaves and white paper) was simple. In this study, all the images 
were decomposed into R, G and B (red, green and blue) component images at first. By analysing the 
grey values and grey histograms of the component images and colour difference images, it was found 
that there was an obvious difference between citrus and background in the G-B colour difference 
images, and this difference did not exist in other component images. In computer vision, Otsu algorithm 
[27]was used to automatically perform histogram-shape-based image thresholding. The citrus 
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(foreground) regions were segmented using Otsu method. Then the holes in the fruit region were filled 
using hole filling. 

The next step was the removing of the regions which did not correspond to the physical citrus in 
the binary image. The regions can have several properties and an important one is the area. This 
property can remove any region that is too small to be an object. So the regions were removed using 
size filtering and the citrus binary images were then obtained.  

Due to occlusion by leaves and branches, many citrus images were incomplete, and there were 
different degrees of concave, which had a great impact on the circle fitting. Convex hull operation [28-
29] was used to eliminate concaves and reduce their impact for fitting.  

 
Feature Extraction 
 

To locate a near-spherical fruit in a 2-D image, the coordinate of its centre and its radius can be 
accessed through circle fitting of the fruit region. In this paper, all the four approaches (CB, EB, CHT 
and LSCF) were used to extract the fruit’s features. 

In CB method, the fruit centre was the barycentre of the object cluster and the radius could be 
estimated as the maximum distance of the pixels from the barycentre. So the features could be 
computed using the citrus binary images. The results of CB are shown in Figure 1(f-j). 

The other three approaches for feature extraction needed citrus contours. The contours could be 
obtained using edge detection. In EB method, only the boundary pixels could be considered. The centre 
was the barycentre of the boundary and the radius was computed as the mean distance of the border 
pixels from the estimated centre. The results of EB are shown in Figure 1(k-o). 

 
Circular Hough transformation (CHT) 
 

In image processing, CHT is widely adopted as a circle can be defined by a triplet of values, i.e. 
(pc, c)R , where pc ( , )c cx y  is the circle's centre and cR  is its radius. Then the (pc, c)R  space can 

be discretised into a finite number of accumulation cells, each corresponding to a specific circle, and a 
counter is linked with it. In this method, the whole edge pixels are extracted firstly from the image: 

1{ }i i NP   . Then for each iP , the counters of all those cells (pc, c)R  that are compatible with iP  are 

increased by one. When all the points have been considered, the most probable circle centre and radius 
are included in the accumulation cell with the highest count. However, this is not easy to implement, 
and the CHT method is very slow. Moreover, it needs a large room for memory to reach a relatively 
high accuracy since accuracy is proportional to the size of the discretised cells [30-31]. The results of 
CHT are shown in Figure 1(p-t). 

 
Least-square circle fitting (LSCF)  

To fit a circle through all points 1...{ ( , )}i i i i NP x y 
 of the contour, an error is defined for each 

point iP  as the distance between iP  and the circumference. The cost function is defined as: 

2

1
( )

N

i c
i

E R


                      (1) 

where 2 2( ) ( )i i c i c i cP P x x y y                                (2) 
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is the distance of a generic point from the circle's centre. cP  is the centre of the fitting circle and cR  is 

its radius. The cost function minimisation leads to a non-linear optimisation which can be solved 
iteratively using non-linear optimisation techniques [32].  

The LSCF is not robust to large outliers since points that lie far from the circle have a very large 
weight in the optimisation because of the squared distance. To reduce the influence of distant points, we 
can introduce a weight function for the points. The Huber weight function and Tukey weight function 
are usually used [32]. In this study, we used Tukey weight function, which is given by: 

 
2 2[1 ( / ) ] ( )

( )
0 ( )

i i
i

i

   
 

 

  



=                 (3) 

where   is the clipping factor and i  is the distance of the points to the circle. The cost function 

becomes: 
2
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( )
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i i c
i

E R 


                                             (4) 

The object circle can be gained through minimising iterations of the functions. The results of LSCF are 
shown in Figure 1(w-y). 
 
Measurement of Occlusion 
 

Different kinds and degrees of occlusion partially hiding the citrus fruit can lead to the reducing 
of visible area and incomplete extraction of the original contour of the citrus. As the occlusion degrees 
vary, the feature extraction accuracy also does. For each image obtained in the lab, the occluded area 
ratio ( oaR ) and the occluded angle ( o ) were defined to represent the occlusion level of the object. 

oaR was defined as: 

                             (1 ) 100%v
oa

u

AreaR
Area

                                      (5)                  

where uArea is the area of the unoccluded citrus computable from the first image, and vArea  is the 

visible area of the citrus with various degrees of occlusion. Occluded contours may have only one 
paragraph or more paragraphs (Figure 1d and Figure 2). o  is defined as the sum of every occluded 

angle (Figure 2), which can be computed by the following formula: 

                                          
1

N

o i                                                            (6) 

where N  is the number of occluded paragraphs of fruit contour, i  is the angle of occluded paragraph 
No. i , which can be obtained through the law of cosines.  By calculation, oaR ranged from 0 to 94%, 
and o  ranged from 0 to 320° in this experiment. 
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Figure 2.  Diagram of occluded angles of fruit 
 

RESULTS AND DISCUSSION   
 
Analysis for Simulation Examples 
 

The proposed algorithms were tested by the images obtained both in the laboratory and in the 
field, and the relationship between feature extraction accuracy and occlusion was analysed. For all 
methods, the higher the occlusion level was, the stronger the impact on the feature extraction became 
(Figure 1). The following indicators, viz. radius ratio ( rr ) and ratio of centre offset ( cr ), were used to 

evaluate the feature extraction accuracy. They were defined as: 

 o
r

u

rr
r

                          (7) 

where ur is the radius of fruit without occlusion and or is the radius of fruit with occlusion; and 

 c
u

Dr
r

                           (8) 

where D  is the distance between the centres of the citrus with and without occlusion. From Figure 1(f, 
k, p and w), it could be found that ur  and the centres were different with different methods.  

The performance of the feature extraction using CB, EB, CHT and LSCF was compared 
quantitatively and the results are shown in Figures 1 and 3. To position accurately the objects on the 
tree, the criteria of the feature extraction were set so that the radius ratio ( rr ) was not less than 90% 
and the ratio of centre offset ( cr ) was not more than 10%. Results of the feature extraction using 

different algorithms under different occluded area ratios and angles are shown in Figure 3. In order to 
meet the demand of the feature extraction, the thresholds of oaR  and o  for different methods, shown 

in Table 1, were applied. 
From Figure 3 and Table 1, it was found that the impacts of occlusion on the  feature extraction 

for CB and EB were greater than those for CHT and LSCF. To meet the criteria of the feature 
extraction, the occluded area ratios ( oaR ) when using CB, EB, CHT and LSCF algorithm, were to be 
less than 25%, 27%, 54% and 52% respectively, or the occlusion angles ( o ) less than 95°, 100°, 222° 

and 216° respectively. 
With the increase of occlusion degree, the error of the feature extracted rose. The impact of 

contour occlusion on the feature extraction was greater than that of area occlusion. The curvature 
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stability and continuity of the remaining contour had a great influence on the feature extraction. If the 
contour curvature remained relatively stable, when occlusion angle reached up to 268°, the centres and 
radii were better extracted using CHT or LSCF.  When the visible areas were equal in different 
occlusion, the longer the remaining contour was, the higher the extraction accuracy became. 

 

 
Figure 3.  Distribution of feature extraction measurement: (a) radius ratio vs. occluded area ratio; (b) 
centre offset ratio vs. occluded area ratio;  (c) radius ratio vs. occluded angle; (d) centre offset ratio vs. 
occluded angle 
 
Table 1.  Thresholds to meet the requirements of feature extraction using different methods 

 90%rr   10%cr   90%rr  & 10%cr   

 oaR (%) o (°) oaR (%) o (°) oaR (%) o (°) 

CB <60 <224 <25 <95 <25 <95 
EB <33 <124 <27 <100 <27 <100 
CHT <90 <290 <54 <222 <54 <222 
LSCF <70 <268 <52 <216 <52 <216 

 

Due to occlusion, the precision of extraction inevitably declined for lack of the original contour. 
In this study, convex hull operation was used to reduce the impact of occlusion concaves by repairing 
the occlusion to a certain extent. 

The CB and EB apparently could not effectively extract the features. The reasons were the poor 
performance by using the barycentre of the cluster or edge as the fruit centre and by calculating the 
maximum or mean distance of the boundary pixels from the centre as the radius. The CHT and LSCF, 
on the other hand, worked well and could be used to extract the features of near-spherical fruit. 
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However, the accuracy of the CHT was limited when the accumulation cells discretised. Decreasing the 
size of the accumulation cells drastically increased computation time, making the CHT practically 
useless for many applications, especially ones that required real-time processing. 

 
Analysis in Natural Scenes 
 

In a natural scene, images of multiple objects are captured by the fruit-picking robot. The 
features of the fruit with different sizes require a suitable algorithm for real-time extraction. There are 
22 fruits in the image shown in Figure 4(a); 18 of them were segmented using Otsu algorithm on G-B, 
size filtering, hole filling, watershed segmentation employing distance transform, convex hull operation 
and roundness filtering.  

The features of all the 18 fruits could be extracted using LSCF as shown in Figure 4(b). By 
CHT, 18 objects were gained including 2 false objects and 2 fruit had not been extracted (Figure 4(c)). 
In the feature extraction of these 18 objects in this image, LSCF required 44.60 ms while CHT required 
92.91 ms (more than twice as long as for LSCF). Moreover, comparing Figures 4(b) and 4(c), the 
features obtained by LSCF were more accurate in presenting objects than those obtained by CHT. 
 

   
 (a)                                                  (b)                                                    (c) 

Figure 4. Feature extraction of images obtained in a natural scene: (a) original image; (b) feature 
extraction using LSCF; (c) feature extraction using CHT 

 
CONCLUSIONS 
 

The CB, EB, CHT and LSCF methods were presented and used to extract the features of near-
spherical fruit in 2-D images. It was also shown with simulation and real examples that the LSCF could 
locate the centre and estimate the radius of the fruit accurately, reliably and in a real-time mode, even in 
the presence of partial occlusion. If the occlusion area ratio was less than 52% or the occlusion angle 
was less than 216°, the object could be located accurately, suggesting that this algorithm can be used for 
designing the fruit-picking robot in natural scenes.  
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