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Abstract: The diffusion velocity method (DVM), a version of vortex element method 
(VEM), was used to model the steady state, laminar natural convection flows along 
isothermal vertical plates and in isothermal vertical channels. For each case, numerical 
models were developed using DVM from the vorticity transport equation and the energy 
equation. This study shows that the diffusion velocity method is a viable numerical tool at 
modelling not only fluid flow problems but also the heat transfer problems.  
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Introduction  
 

Many engineering problems are represented by non-linear, partial differential equations. In 
order to simplify these problems which may be difficult to solve analytically, different numerical 
methods are used to analyse the problems. Some of these numerical methods are: the finite difference 
method, the finite element method and the Monte Carlo method. 

Another numerical method that has been used successfully to study and analyse very complex, 
unsteady fluid flows and thermal engineering problems is the vortex element method (VEM). This 
method is simple to implement as it requires simple mathematics compared to other numerical 
methods that may require many mathematical operations such as variational calculus and matrix 
inversions [1].  

An engineering problem involves flows of gases or liquids over solid bodies. Examples 
include: air flows over cars and aeroplanes; wind blowing over bridges and buildings; and sea waves 
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slashing against the supporting columns of an off-shore oil rig. Often these flows do not follow the 
contour of the solid surface completely, but may be formed separate from it, e.g. a wake behind a ship. 
Such separated flows are difficult to handle by conventional numerical schemes. The main reason for 
basing the numerical method on the vorticity is that typically only a small portion of the flow contains 
vorticity. This can lead to significant savings in storage and computational effort [2]. A number of 
numerical schemes model diffusion by vortex methods without using a mesh, which is based on the 
Lagrangian approach. However, the VEM is grid-free in implementation [2-3].  

Recent applications of the vortex methods based on the Biot-Savart law have been extended to 
numerical prediction of unsteady and complex characteristics of various flows related to difficult 
engineering problems concerning flow-induced vibration, off-design operation of fluid machinery, 
automobile aerodynamics, biological fluid dynamics, etc. Kamemoto [4] described how VEM, with its 
simple algorithms based on physics of flow, has been used to find the virtual operation of fluid 
machinery (pumps and water turbines), and the calculated flows around bluff bodies, an oscillating 
airfoil and a swimming fish. 

Cheng et al. [5] developed a hybrid vortex method to simulate two-dimensional viscous 
incompressible flows over a bluff body. It was based on a combination of the diffusion-vortex method 
and the vortex-in-cell method whereby the flow field is divided into two regions. In the region near the 
body surface the diffusion-vortex method is used to solve the Navier-Stokes equations while the 
vortex-in-cell method is used in the exterior domain. They compared the results obtained with those 
from the finite difference method and other vortex methods and experiments. Which showed that the 
method is well adapted to calculate two-dimensional external flows at high Reynolds number. 

Ghoniem and Oppenheim [6] applied random-walk vortex method to an assortment of 
problems of diffusion of momentum and energy in one dimension as well as heat conduction in two 
dimensions in order to assess its validity and accuracy. The numerical solutions obtained were found to 
be in good agreement with the exact solution except for a statistical error introduced by using a finite 
number of elements. They claimed further that the error could be reduced by increasing the number of 
elements or by using ensemble averaging over a number of solutions. 

The concept of the diffusion velocity method (DVM), a version of the VEM, was extensively 
discussed by Ogami [7]. The velocity is defined in order that the vorticity is conserved in the transfer 
of diffusion process as it is so in the convection process. Unlike the other vortex element methods, this 
technique handles vorticity equation in a deterministic manner by calculating the diffusion velocity to 
account for diffusion in the flow [8]. Ogami [8] used the DVM to simulate the diffusion of vorticity 
and temperature from one-dimensional vorticity transport equation and compared the results with the 
analytical solutions. The method was successfully used to treat the diffusion equation (Re = 0), the 
boundary layer and two-dimensional flows around a circular cylinder (Re = 0.1 ~ 107), aerofoil, the 
Burger equation, and the equations of incompressible fluid. 

This study employs the diffusion velocity technique to model the natural convection along 
isothermal plates and in isothermal channels. The channels, consisting of two parallel vertical plates, 
are asymmetrically heated at uniform wall temperature. The Nusselt numbers are obtained with the 
velocity and the temperature distributions. 
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The Governing Equations  
The continuity equation and the Navier-Stokes equations for Newtonian, two-dimensional, 

incompressible flow are presented as follows: 
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Also, the energy equation, assuming no viscous dissipation or thermal generation, is 
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Variables u and v are the velocity components in x and y directions respectively, fx and fy are 
the components of the gravitational acceleration in the x and y directions respectively, T is the fluid 
temperature, P is the fluid pressure, t is the time, α is the fluid thermal diffusivity,   is the kinematic 
viscosity, and ρ is the fluid density [9-10]. 

Following the Lagrangian scheme, the alternative expression of the governing equations of 
viscous and incompressible flow gives the vorticity transport equation as  
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where vorticity, 
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Considering the diffusive term only in the vorticity equation, then 
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The solution to equation (7) was given by Batchelor [11] as  
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where )( 22 yxr   and Γ is the vortex strength or circulation [12] 

 
Numerical Formulations 
 

The initial velocity,  , is induced by a buoyancy effect created by the temperature difference 
between the plate and the fluid in contact with its surface, and is given as  

st
y
Tg 
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                                                                                              (9) 

where s  is the elemental length, t  is the time step, β is the volumetric thermal expansion 
coefficient, and g is acceleration due to gravity. 

Velocity and temperature vortices with strengths Γ and Θ respectively, which are created on 
one elemental surface of m  elements into which a plate is divided are given by 

Γq = γΔs                                                                                                          (10) 
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where  
s

Lm
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 ; t   ;  q = 1, 2, 3,...m; and L is the plate length.  

The elemental length has a great influence on the strength of the vortices. The vortices are 
initially distributed and separated at distance Δs before diffusing. The vorticity of each velocity vortex 
and the temperature of each temperature particle are respectively given by 
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For flow on a flat plate, each velocity vortex or temperature particle has a corresponding 
negative image. The distances between a vortex and the inducing vortex and its corresponding image 
can be deduced respectively by 

22
1 )()(),( ijijjj yyxxyxr  and 22
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Here i = j = 1, 2, 3,…N, and N is the number of vortices on the plate surface and in space. However, i 
is not equal to j most of the times. Figure 1 shows an inducing vortex with its image and how r1 and r2 
are determined from a vortex of interest. 

The divergences of equations (12) and (13) are respectively w.  and T. , which can be 
written in the forms: 
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The diffusion velocity of each velocity vortex is induced by all the velocity vortices and their 
corresponding images. Also, the diffusion velocity of temperature particle is induced by all the 
temperature particles and their corresponding images. As discussed by Ogami [8], the diffusion 
velocities of each velocity vortex and temperature particle are now respectively given as 
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The diffusion distances of each velocity vortex and temperature particle can be expressed 
respectively as 

tud wjvj                                                                                                   (18) 
and tud TjTj                                                                                            (19) 

These distances are added to the original positions to move the vortex and particle to other 
positions. For convection, each vortex is repositioned to a new location using the induced velocities (u, 
v) by neighbouring velocity vortices. 
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Figure 1.  Interaction of vortices on a vertical flat plate 
 
The slip flow condition is met when the velocity on each elemental surface is approximately 

zero and the numerically calculated temperature is approximately equal to the initial temperature of the 
plate. To check for the slip flow condition, the velocity on the elemental surface can be determined as 
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The corresponding temperature on the surface is determined as 

B

N

i

t
r

t
r

i
e Tee

t
T 






















1

)4()4(
2
2

2
1

4



                                                     (21) 

The practical substitution for the given boundary condition is 
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where Tw is the wall temperature. At each time step, the strength of a vortex is increased by adding 
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   to equation (9) and Te is substituted for T in equation (11) until the slip flow condition is 

met. 
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The velocity and temperature distributions at specific locations in the hydrodynamic and 
thermal boundary layers are determined when the slip flow condition is meant for the velocities and 
temperatures on the plate surfaces. The two components of the velocity distribution are obtained as 
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The temperature at any point can be obtained from 
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where m and n are the positions of the velocity or temperature along and normal to the plate 
respectively. 

 
Natural Convection in Channels 
 

The type of channels described here are two parallel plates placed vertically. The number of 
images of a vortex or a particle is infinite, but for easy computation the number of the images is 
reduced to eight; therefore, we have one positive vortex with four positive images and four negative 
images [1]. 

As discussed by Petinrin [13], the vorticity of each velocity vortex and the temperature of each 
temperature particle can then be respectively given as 
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Also, the distances of each vortex from the inducing vortex and its images can be determined as 
r1 to r9, where h is the distance of the plates apart, i.e. 
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Results and Discussion 
 

The results of the numerical analysis, which was solved with Visual Basic programming 
language, are automatically displayed on Microsoft Excel Workbook. The velocity and temperature 
distributions are displayed on the Sheet 1 and Sheet 2 of the workbook respectively. 

The input parameters used to simulate natural convection on a single plate lying vertically are 
listed in Table 1. The fluid (air) thermophysical properties of the fliud are taken at film temperature. 

 
 Table 1.  The input parameters for natural convection over a single plate  
 

Length of the plates 0.5 m 
Fluid (air) temperature 100C 
Plate wall temperature 300C 
Coefficient of thermal expansion 0.00341 (K-1) 
Kinematic viscosity of air at 200C 0.0000157 m2/s 
Thermal diffusivity of air at 200C 0.000022 m2/s 

 

The logarithmic plot of Nusselt number against Rayleigh number is presented in Figure 2 by 
varying the plate wall temperature, Tw, from 400C to 1200C while keeping the fluid (air) temperature 
constant at 100C. The fluid properties are taken at film temperature. It can be deduced that the Nusselt 
number increases with the Rayleigh number for a fixed plate length as in Table 2. The slope of the plot 
is 3.47 while the intercept is -28.22 on the log scale and 6.08E-29 on the normal scale. 

Therefore, the relationship between Nusselt number and Rayleigh number is Nu =            
(6.08E-29)Ra3.47. Comparing this relationship with Nu = 0.59Ra0.25 as reported by Incropera and 
Dewitt [10], there is much deviation in the two correlations which may be due to convergence 
difficulties at the plate surface. The correlation coefficient of the plot is 0.9065. 
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Figure 2.  Logarithmic plot of Nusselt number (Nu) against Rayleigh number (Ra) for a vertical plate 
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Table 2.  Distribution of Rayleigh number with Nusselt number for natural convection over a single plate 
 

Tw (0C) Ra Nu Log(Ra) Log(Nu) 
40 336123348 27.0125 8.5265 1.4316 
60 479235019 84.0570 8.6805 1.9246 
80 594247932 144.6929 8.7740 2.1604 

100 655562931 297.4379 8.8166 2.4734 
120 706467195 362.2841 8.8491 2.5590 

 
 The Nusselt number increases with the wall temperature as presented in Figure 3. However, the 
relationship between them is not linear owing to the Nusselt number being also dependent on some of 
the fluid properties, e.g. the thermal conductivity, which keeps changing as the wall temperature 
changes. 
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Figure 3.  Effect of wall temperature on Nusselt number 

 
The input parameters for the symmetrically heated, isothermal plates listed in Table 3 were 

used to simulate natural convection in channels. The channels are two parallel plates placed vertically. 
The graph of logarithm of Nusselt number against logarithm of Rayleigh number in Figure 4 is 

obtained by varying the magnitude of the space, S, between the channel plates from S = 0.1m to 0.3m 
at a step of 0.05m. Input parameters are fed from Table 3. The slope of the plot is 0.51 while the 
intercept is -0.75 on the log scale and 0.18 on the normal scale. 

Therefore, the relationship between Nusselt number and Rayleigh number is Nu = 0.18Ra0.51 
(Figure 4). The Figure also shows a deviation in the Nusselt-Rayleigh relationship from other workers. 
Ofi and Hetherington [14] with finite element method obtained a relationship  Nu = 0.699Ra0.26; 
Bodoia and Osterle[15] obtained Nu = 0.56Ra0.25; and Ogundare[1] obtained Nu = 0.43Ra0.21.  
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            Table 3.  Input parameters for natural convection in vertical channel 
 

Length of plates 0.5 m 
Gap between plates 0.1m 
Fluid (air) temperature 100C 
Wall temperature of first plate 600C 
Wall temperature of second plate 600C 
Coefficient of thermal expansion 0.00325 
Kinematic viscosity of air at 350C 0.0000171 m2/s 
Thermal diffusivity of air at 350C 0.0000241 m2/s 
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Figure 4.  Logarithm plot of Nusselt number (Nu) against Rayleigh number (Ra) for vertical channel 

 
 
Conclusions 
 

Modelling of natural convection in isothermal vertical plates and channels has been 
successfully carried out with the diffusion velocity method, a version of the vortex element method. 
However, a large deviation recorded for correlation of Nusselt number and Rayleigh number for both 
the plate and the channel with existing correlations may stem from convergence difficulties 
encountered at the plate surface. 

 From the results obtained, it is established that as the wall temperature increases while keeping 
the mainstream fluid temperature constant, the thermal boundary layer thickness increases. The study 
has also established that the diffusion velocity method is a viable numerical tool capable of modelling 
fluid and heat transfer problems. 
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