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Abstract:  The control of discrete event systems (DES) has been widely studied in the past two 
decades. Finite-state automata (FSA) and Petri nets (PN) are the two principal modelling 
formalisms for this study. Supervisory control theory (SCT), based on language and FSA 
concepts, is a well established framework for the study of discrete event control systems 
(DECS). PN-based approaches to the control design have been considered as an alternative 
framework. In the PN-based control of DES, given an uncontrolled PN model of a system and a 
set of specifications, a PN-based controller consisting of monitors (control places) is 
synthesised to solve the problem. In general, forbidden-state specifications are considered. 
Another heavily studied specification is to obtain the live system behaviour (non-blockingness 
in SCT terminology) for a given PN model by computing a PN-based controller. Unfortunately, 
PN-based analysis tools cannot deal with uncontrollable transitions. Therefore, to date there is 
no general technique for the correctness analysis of the computed PN-based controllers. This 
paper proposes a novel and general methodology to carry out the correctness analysis for the 
computed PN-based controllers by using the TCT implementation tool of SCT. Three examples 
are considered for illustration. 

 
      Keywords: discrete event systems (DES), Petri nets (PN), finite state automata (FSA), supervisory 
      control theory (SCT) 
__________________________________________________________________________________ 
 
1. Introduction 
 

The control of discrete event systems (DES) has been widely studied in the past two decades. 
There are mainly two modelling formalisms for this study: finite-state automata (FSA) and Petri nets 
(PN). Supervisory control theory (SCT) is based on language and FSA concepts and was originally 
introduced to extend control theory concepts for continuous systems to the discrete event environment 
[1-4]. SCT is a well established framework for the study of discrete event control systems (DECS). On 
the other hand, PN-based approaches to the control design have been considered as an alternative 
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framework [5-9]. This is mainly because the state-space representation of PN as a vector addition 
system can result in a compact system description, thus keeping the net structure small even though the 
number of possible markings may become large.  PN models lend themselves not only to the 
systematic construction of supervisory controllers, but also to the analysis of various qualitative 
properties and quantitative performance evaluation.  The disadvantage of the PN models is that, in 
general, optimal supervisors need not exist within the class of PN even though the counterpart SCT 
problem may be solvable in the framework of automata.  

In the PN-based control of DES, an uncontrolled PN model of a system represents the open-
loop system. Without any means of control, the open-loop system would not behave as requested. 
Given an uncontrolled PN model of a system and a set of specifications, a PN-based controller 
consisting of monitors or control places is synthesised to solve the problem. When the uncontrolled PN 
model and the computed PN-based controller are augmented, the controlled model is obtained, which 
also represents the closed-loop system. In general, the specifications considered are of forbidden-state 
ones. Another heavily studied specification is to obtain live system behaviour (non-blockingness in 
SCT terminology) for a given PN model by computing a PN-based controller. Unfortunately, to date 
there is no general technique for the correctness analysis of the computed PN-based controllers.  
Heuristically, this analysis can be carried out by considering the reachability graph of a given PN 
model [10], but when dealing with complex models this method becomes impractical due to huge 
reachability graphs. In addition, it is not possible to deal with uncontrollable transitions with the 
currently available PN analysis tools. Therefore, it is crucial to obtain a general methodology to carry 
out the correctness analysis for the computed PN-based controllers. This paper proposes a general 
methodology to carry out the correctness analysis for the computed PN-based controllers by using the 
TCT implementation tool [11] of SCT. TCT (Toy Control Theory) is a standard software package 
developed under the supervision of Professor W. N. Wonham, the founder of SCT, for carrying out all 
necessary computations of SCT. 

In brief, the correctness analysis is carried out as follows. To start with, it is assumed that an 
uncontrolled PN model, the specifications, and the PN-based controller, i.e. a set of monitors (control 
places), are given. Then the correctness analysis is carried out based on the following three main steps: 
(1) Transform the given problem from the PN domain to the automata domain and solve the problem 
by using TCT tool based on SCT. This transformation involves the representation of both uncontrolled 
PN model and the specifications as automata models. The proper supervisor obtained in this step is 
called RWSUPER and represents the maximally permissive and non-blocking behaviour for the 
considered problem; (2) Represent the PN-based controller as an automaton and obtain the controlled 
model of the system in the automata domain by using the synchronous product of automaton 
representation of the PN-based controller and automaton representation of the uncontrolled PN model. 
The supervisor obtained in this step is called PNSUPER and represents the controlled behaviour for the 
considered problem that survives under the supervision of the PN-based controller; and (3) Compare 
RWSUPER and PNSUPER. If these two are identical, then it can be concluded that the PN-based 
controller is maximally permissive and non-blocking.  

The transformation from the PN domain to the automata domain has already been used [12-13]. 
The detailed treatment of this transformation involving more general classes of PN is proposed in this 
paper. It is well known that PN can be transformed into automata by means of the reachability graph 
[14]. Some recent work can also be seen [15-18] dealing with transformation from PN to automata. 
Transformation from automata to PN is also possible [19]. This transformation has already been 
applied to the control of DES [18, 20-22].  

The purpose of this paper is to propose a general methodology for carrying out the correctness 
analysis for the computed PN-based controllers by using the TCT implementation tool of SCT. To 
show the applicability of the proposed method, three examples are considered in detail. 
  The remainder of the paper is organised as follows. PN with weighted input, output, inhibitor 
and enabling arcs are defined in Section 2. FSA and SCT are briefly reviewed in Section 3. Section 4 
defines and explains the proposed mappings from PN to their automata representations. In Section 5, 
the proposed analysis technique of PN-based controllers by using TCT is explained. In Section 6, three 
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examples are considered in detail to show the applicability of the proposed analysis technique. Finally, 
conclusions are given in Section 7. 
 
2. PN with Weighted Input, Output, Inhibitor and Enabling Arcs 
 

PN are widely used as a formal tool for the design, analysis and control of DES. PN were 
named after Carl A. Petri, a contemporary German mathematician and computer scientist, who 
introduced a net-like mathematical tool for the study of communication with automata [23]. For PN 
basics the reader is referred to Peterson [24]. A weighted-arc PN is the one in which weights are 
associated with arcs. The arc mappings may take values over a set of all non-negative integers. In this 
case, each arc is said to have multiplicity w, where w represents the weight of arcs. Ordinary PN have a 
multiplicity of 1. The weight of an arc is indicated by a non-negative integer assigned to the arc. 
Unlike a standard PN, a PN with inhibitor arcs has the possibility of testing whether a place is void of 
tokens (zero-testing ability). Inhibitor arcs are a well known extension for standard PN. Inhibitor arcs 
are well suited to model a specific condition testing as opposed to producing and consuming tokens. 
The addition of inhibitor arcs gives PN the same modelling power as a Turing machine [25]. In this 
paper, weighted inhibitor arcs are considered in addition to ordinary inhibitor arcs. The former can be 
used for testing whether the number of tokens in a place is less than a certain threshold number [25]. 
As a complement of inhibitor arc, enabling arc was introduced by Uzam and Jones [26-27]. The 
introduction of enabling arcs causes PN to have one testing ability, i.e. the ability to test whether a 
place has a token(s). As with inhibitor arcs, enabling arcs are also well suited to model a specific 
condition testing. In this paper, weighted enabling arcs are considered in addition to ordinary enabling 
arcs. The former can be used for testing whether the number of tokens in a place is larger than or equal 
to a certain threshold number [26-27]. 

Formally a PN with weighted input, output, inhibitor and enabling arcs can be defined as 
follows: 

PN = (P, T, Pre, Post, In, En, M0) 
where:  
 P = {p1, p2, ..., pn} is a finite, non-empty set of places ; 
 T = {t1, t2, ..., tm} is a finite, non-empty set of transitions, P     and P  T=  
 Pre: (PT)  is an input function that defines weighted input arcs from places to transitions, 

where N is a set of non-negative integers ; 
 Post: (TP)  is an output function that defines weighted output arcs from transitions to places ; 
 In: (PT)  is an inhibitor function that defines weighted inhibitor arcs from places to  

transitions ; 
 En: (PT)  is an enabling function that defines weighted enabling arcs from places to 

transitions ; 
 M0 : P is the initial marking. 
 
PN with weighted input, output, inhibitor and enabling arcs consist of two types of nodes called places, 
represented by circles (), and transitions, represented by bars ( ). There are three types of arcs 
used, namely ordinary (input or output) arc, represented by a directed arrow ( ), inhibitor arc, 
represented by an arrow whose end is a circle ( ), and finally enabling arc, represented by a 
directed arrow whose end is empty ( ). Weighted and directed ordinary arcs connect places to 
transitions and vice versa, whereas weighted enabling arcs and inhibitor arcs connect only places to 
transitions. The number of tokens in places represents the current state of the system and transitions 
represent events. Each transition has a set of input and output places, which represent the pre-condition 
and post-condition of the transition respectively. The marking of the PN is represented by the number 
of tokens in each place. Tokens are represented by black dots (). Movement of tokens between places 
describes the evolution of the PN and is accomplished by the firing of the enabled transitions. 
“Enabling rules” and “firing rules” are associated with transitions. The enabling rules state the 
conditions under which transitions are allowed to fire. The firing rules define the marking modification 
induced by the transition firing. The enabling rules define the conditions that allow a transition t to fire, 
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and the firing rules specify the change of state produced by the transition. Both the enabling and the 
firing rules are specified through arcs. In particular, the enabling rules involve input arcs, inhibitor arcs 
and enabling arcs, while the firing rules depend on input arcs and output arcs. Note that input arcs play 
a double role as they are involved both in enabling and in firing. The following enabling and firing 
rules are used to govern the flow of tokens.    
 
Enabling Rules:  In a PN with weighted input, output, inhibitor and enabling arcs, there are three rules 
which define whether a transition is enabled to fire. These pre-conditions must be satisfied for a 
transition to fire:  

1. If an input place p of a transition t is connected to t with a weighted input arc Pre(p,t), then t is 
said to be enabled when p contains at least the number of tokens equal to the weight of the 
directed input arc, i.e. M(p)  Pre(p,t). This is shown in Figure 1(a), where t1 is enabled if 
there are two or more tokens in p1. Therefore, t1 is enabled as p1 contains three tokens, i.e. 
M(p1) = 3 and Pre(p1,t1) = 2. 

2. If an input place p of a transition t is connected to t with a weighted inhibitor arc In(p,t), then t 
is said to be enabled when p contains fewer tokens than the weight of the inhibitor arc, i.e. 
M(p) < In(p,t). This is shown in Figure 1(b), where t1 is enabled provided that there are two or 
more tokens in p1 and there are fewer than three tokens in p3. Therefore, t1 is enabled as 
M(p1) = 3 with Pre(p1,t1) = 2, and M(p3) = 2 with In(p3,t1) = 3. 

3. If an input place p of a transition t is connected to t with a weighted enabling arc En(p,t), then t 
is said to be enabled when p contains at least a number of tokens equal to the weight of the 
enabling arc, i.e. M(p)  En(p,t). This is shown in Figure 1(c), where t1 is enabled provided 
that there are two or more tokens in p1 and there are at least four tokens in p3. Therefore, t1 is 
enabled as M(p1) = 3 with Pre(p1,t1) = 2, and M(p3) = 4 with En(p3,t1) = 4.  

 
Transition t1 in Figure 1(d) represents all enabling rules at the same time. It is enabled if  

M(p1)  2 due to Pre(p1,t1) = 2, and if  M(p2) < 3 due to In(p2,t1) = 3, and if  M(p3)  4 due to 
En(p3,t1) = 4. It can be seen that t1 is enabled with the initial marking given in Figure 1(d).  
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                 (a)                              (b)                                    (c)                                      (d) 

 
Figure 1.  Illustration of enabling rules 

 
Firing Rules: In a PN with weighted input, output, inhibitor and enabling arcs, when an enabled 
transition t fires, it removes Pre(pi,t) tokens from each input place pi and deposits, at the same time, 
Post(t,po) tokens in each output place po. The firing of an enabled transition t does not change the 
marking of the input places that are connected to t only by weighted enabling arcs or weighted 
inhibitor arcs. Firing rules can be followed from Figure 1 and Figure 2. As explained, all transitions 
shown in Figure 1 are enabled. When these transitions are fired the new markings are obtained as 
shown in Figure 2, based on the firing rules. 
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Figure 2.  Illustration of firing rules 

 
The firing of an enabled transition changes the marking, i.e. the token distribution of a PN. A 

marking Mi is said to be reachable from an initial marking M0 if there exists a sequence of firings that 
can transform M0 to Mi. A firing sequence is represented by  = t1, t2, t3......tm. To show Mi is reachable 
from M0 by , the following representation is used: M0 [ > Mi. A PN is said to be ordinary if the arcs 
are not weighted (by default the weight of an arc is 1). A PN is said to be k-bounded or bounded if the 
number of tokens in each place does not exceed a finite number ‘k’ for every marking reachable from 
the initial marking M0. A PN is said to be safe if all its places are safe. A place ‘p’ is safe if it contains 
no more than one token. In other words, a PN is called safe if it is 1-bounded. A PN is said to be 
conservative if the total number of tokens in all its places for all reachable markings is constant. A 
transition is said to be live if for all markings of the PN there is a firing sequence which takes the net to 
a marking, in which the transition is enabled. A PN is live if all its transitions are live. A live PN 
indicates the absence of deadlocks in the operation of the modelled system. A PN is said to be 
reversible if the initial marking M0 is reachable from each marking. In this paper, bounded PN are 
considered. In later parts of this paper, safe and ordinary PN (SOPN) with inhibitor and enabling arcs 
are considered.  
 
3. FSA and SCT  
 

FSA are a classical tool used for many years for the study of DES. A finite automaton 
incorporates both principal system features, i.e. system states and system transitions in an abstract 
form. A FSA (or simply automaton), denoted by G, is a six-tuple G=(Q, , f, Γ, q0, Qm), where Q is the 
set of states,  is the finite event set, f: Q×→Q is the partial transition function, Γ: q → 2 is the 
active event function, Γ(q) is the set defined for every state of G and represents the feasible events of q,  
q0 is the initial state and Qm  Q is the set of marked states representing the completion of a given task 
or operation. A simple automaton model with two states is shown in Figure 3. This automaton has two 
states labelled with q0 and q1; q0 with a double arrow is the initial (and marked) state while q1 with an 
exiting arrow is the marked state of the automaton. A directed arrow represents the transition functions 
of the automaton. Labels of transitions (e1, e2) correspond to events.  

The language generated by G is denoted by L(G) and is defined as L(G) = {s *: f(q0,s) is 
defined}. The language marked by G is denoted by Lm(G) and is defined as Lm(G) = {s*: 
f(q0,s)Qm}. The DES modelled as automaton G is said to be non-blocking if L(G)= mL (G) . DES 
named as A and B can be composed of a synchronous product (parallel composition) operation. The 
synchronous product of two automata is denoted by A||B and represents the synchronous behaviour of 
two automata. In the resulting automaton, common events occur synchronously while the other events 
occur asynchronously [28-29]. 
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q0 q1
e1

e2
 

Figure 3.  A simple automaton model 
 

SCT was introduced to extend control theory concepts for continuous systems to the discrete-
event environment [2, 4].  In SCT, a forbidden state problem [2] specifies the conditions that must be 
avoided, typically the simultaneous utilisation of some resource by two or more users. In addition, 
SCT generally requires the controlled system to be non-blocking (namely that specified target states, 
often just the initial state, be maintained reachable), and to be maximally permissive, i.e. to permit the 
occurrence of all events not leading to violation of the foregoing requirements. DES evolve on 
spontaneously occurring events. Let  be a finite set of events; the set of all finite concatenations of 
events in   is denoted by *. An element of this set is called a string. The number of events gives the 
length of the string. A string with no element is denoted by  and is called empty string. A subset L  
* is called a language over . For a string s*, s  denotes the prefix of s and is defined as s = {sp 
* | t  * (spt=s)}. Extension of this definition to language prefix closure of a language L is denoted 
by L . A language L satisfying the condition L= L  is said to be prefix-closed [28-29]. 

The SCT makes use of formal languages to model the uncontrolled behaviour of DES (plant) 
and specifications for the controlled behaviour. The objective is to restrict the behaviour of the system 
to a desired one, which is represented by the specifications. This is done by disabling some events to 
prevent the occurrence of some undesired strings in the system. The disabling action is accomplished 
by another simultaneously executing automaton called the supervisor. The system cannot be forced by 
the supervisor to generate new events. In SCT, events are divided into two disjoint sets, i.e. 
controllable events and uncontrollable events. These sets are denoted by c  and uc respectively. The 
supervisor has no effect on uncontrollable events, which means that the supervisor cannot disable 
uncontrollable events. The existence of a supervisor is guaranteed if the desired language satisfies 
controllability conditions. This condition is defined as K uc ∩ M  K , where K  is the language that 
will be generated under the control of supervisor and M is the language generated by the uncontrolled 
system.  

The behaviour of a DES under the control of supervisor S is denoted by L(S/G). A language K 
is called Lm(G)-closed when the language satisfies condition K= K ∩Lm(G). If the desired behaviour 
K ∩Lm(G) is controllable and Lm(G)-closed, then K =L(S/G) = mL (S/ G) , and this means that the 
controlled behaviour is non-blocking [29].  
 
4. Mappings from PN to FSA 
 
4.1 Mappings from SOPN to FSA 
 

In this section, a set of mappings from SOPN to FSA is proposed. The mapping strategy is 
based on the representation of a SOPN place by an automaton with two states. The transitions between 
these states or self-looped transition from a state define the behaviour of the modelled SOPN. Each 
transition of a SOPN is represented by a transition with an associated event within its automaton 
counterpart. Note that the transitions considered in this section are all shown as uncontrollable, but it is 
also possible to consider them as controllable. In this respect there is no difference. Also note that the 
concurrent firing of enabled transitions is not considered and therefore at any time only one transition 
can fire. The conversion from a set of fundamental SOPN modules utilised in the modelling of DES to 
FSA is presented as follows. 
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4.1.1. Mapping for a single place with an input and an output transition  
A single place with one input transition and one output transition is shown in Figure 4, together 

with its automaton representation. In Figures 4(a) and 4(b), the initial markings of p1 are M0(p1) = 0 
and 1 respectively. In this SOPN, t1 and t2 are labelled with ‘a’ and ‘b’ respectively to represent the 
respective events. In Figure 4(a), initially t1 is enabled. If it is fired, a token is deposited in p1. If p1 
contains a token, then t2 is enabled to fire. When p1 contains a token and t2 is fired, the token is 
removed from p1. In the automaton representation of the SOPN shown in Figure 4(a), there are two 
states: s0 is the initial and marker state and represents the absence of a token in p1, while s1 represents 
the presence of a token in p1. At the initial state, if event ‘a’ occurs, then automaton changes its state 
from s0 to s1. When the automaton is in s1 and event ‘b’ occurs, then automaton changes its state from 
s1 to s0. In Figure 4(b), initially t2 is enabled. If it is fired, the token is removed from p1. When p1 is 
void of token, t1 is enabled to fire. When t1 is fired, a token is deposited in p1. In the automaton 
representation of the SOPN shown in Figure 4(b), there are two states: s0 is the initial and marker state 
and represents the presence of a token in p1, while s1 represents the absence of a token in p1. At the 
initial state, if event ‘b’ occurs, then automaton changes its state from s0 to s1. When the automaton is 
in s1 and event ‘a’ occurs, then automaton changes its state from s1 to s0.   
 

     (a)

p1  

t1  

t2  

a  

b  

p1  
a  

b  

s1 s0 CAP(p1)=1  

          (b)  

p1  

t1  

t2  

a  

b  

p1  a  

b  

s1 s0 CAP(p1)=1  

 
 

     Figure 4. A single place with one input transition and one output transition and its automaton 
     representation:  (a) with the initial marking M0(p1) = 0;  (b) with the initial marking M0(p1) = 1 
 
 
4.1.2. Mapping for choice  
 

A choice can be made between two or more activities (processes) in order to let just one of 
them start. To model this property in PN, a place with more than one output transition is used. A 
choice example is shown in Figure 5, together with its automaton representation. In Figures 5(a) and 
5(b), the initial markings of p1 are M0(p1) = 0 and 1 respectively. In this SOPN, t1, t2 and t3 are 
labelled with ‘a’, ‘b’ and ‘c’ respectively to represent the respective events. The mapping for choice is 
obvious from both figures and the state change from one state to another takes place based on the 
occurrence of the respective events as explained in the previous mappings. 
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       Figure 5.  A choice example between transitions t2 and t3 and its automaton representation:  
       (a) with the initial marking M0(p1) = 0; (b) with the initial marking M0(p1) = 1 
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4.1.3. Mapping for merge  
Two or more activities (processes) can be merged. To model this property in PN, a place with 

more than one input transition is used. A merge example is shown in Figure 6, together with its 
automaton representation. In Figures 6(a) and 6(b), the initial markings of p1 are M0(p1) = 0 and 1 
respectively. In this SOPN, t1, t2 and t3 are labelled with ‘a’, ‘b’ and ‘c’ respectively to represent the 
respective events. The mapping for merge is obvious from both figures and the state change from one 
state to another takes place based on the occurrence of the respective events as explained in the 
previous mappings. 
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         Figure 6.  A merge example between transitions t2 and t3 and its automaton representation:   
         (a) with the initial marking M0(p1) = 0;  (b) with the initial marking M0(p1) = 1 
 
 
4.1.4. Mapping for fork (concurrency) 
 

Fork (concurrency) represents two or more concurrent processes initiated at the same time. To 
model this property in PN, a transition with more than one output place is used. A fork example is 
shown in Figure 7, together with its automaton representation. Initially, it is assumed that there are no 
tokens in p1 and p2. In this SOPN, t1, t2 and t3 are labelled with ‘a’, ‘b’ and ‘c’ respectively to 
represent the respective events. Initially only t1 is enabled. When there is no token in p1 and p2 and t1 
is fired, then a token each is put in p1 and p2. This means that both activities represented by p1 and p2 
are initiated at the same time. When there is a token in p1 (or p2), t2 (respectively t3) is enabled. When 
p1 (or p2) contains a token and t2 (respectively t3) is fired, the token is removed from p1 (respectively 
p2). Each place is represented by a two-state automaton as shown in Figure 7. Then the automaton 
representation of the SOPN, shown in Figure 7, is obtained by the synchronous product p1||p2 of 
automata models p1 and p2. In the automaton model p1||p2, there are four states, Q = {s0, s1, s2, s3}, 
representing the SOPN markings M(p1,p2)T = {00, 11, 01, 10} respectively. The state change from one 
to another takes place based on the occurrence of the respective events as explained in the previous 
mappings. 
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Figure 7.   A fork (concurrency) example for p1 and p2 and its automaton representation 
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4.1.5. Mapping for join (synchronisation)   
Two or more activities (processes) can be joined (synchronised). To model this property in PN, 

a transition with more than one input place is used. A join example is shown in Figure 8, together with 
its automaton representation. To represent the respective events, t1, t2 and t3 are labelled with ‘a’, ‘b’ 
and ‘c’ respectively. Initially both t1 and t2 are enabled. When there is no token in p1 (or p2) and t1 
(respectively t2) is fired, then a token is put in p1 (respectively p2). When there is a token each in p1 
and p2, this means that both activities represented by p1 and p2 are ready to be joined (synchronised). 
When there is a token each in p1 and p2 and t3 is fired, the tokens are removed from p1 and p2 and 
thus the two processes are joined (synchronised). Each place is represented by a two-state automaton 
as shown in Figure 8. Then the automaton representation of the SOPN, shown in Figure 8, is obtained 
by the synchronous product p1||p2 of automata models p1 and p2. In the automaton model p1||p2, there 
are four states, Q = {s0, s1, s2, s3}, representing the SOPN markings M(p1,p2)T = {00, 11, 10, 01} 
respectively. The state change from one to another takes place based on the occurrence of the 
respective events as explained in the previous mappings. 

p1  

t1  

t3  

a   b  

p1  
a  

c  

s1 s0 

t2  b  

p2  

c  

p2  

s1 s0 
c  

p1 || p2  

s0 

s1 
s2 s3 

c   
b  

b  a  

a  

CAP(p2)=1  CAP(p1)=1  

 
Figure 8.  A join (synchronisation) example for p1and p2 and its automaton representation  

 
 
4.1.6. Mapping for an inhibitor arc 
 

A single place with one input transition, one output transition and an inhibitor arc In(p1,t3) is 
shown in Figure 9, together with its automaton representation. In Figures 9(a) and 9(b), the initial 
markings of p1 are M0(p1) = 0 and 1 respectively. In this SOPN, t1, t2 and t3 are labelled with ‘a’, ‘b’ 
and ‘c’ respectively to represent the respective events. In Figure 9(a), initially both t1 and t3 are 
enabled and can fire. If t1 is fired, a token is deposited in p1. If p1 contains a token, then t2 is enabled 
to fire but t3 is not enabled and therefore cannot fire. When p1 contains a token and t2 is fired, the 
token is removed from p1. In brief, when there is no token in p1, t3 is enabled to fire but when there is 
a token in p1, t3 is not enabled to fire. In the automaton representation of the SOPN shown in Figure 9 
(a), there are two states: s0 is the initial and marker state and represents the absence of a token in p1, 
while s1 represents the presence of a token in p1. At the initial state, the self-looped transition [s0, c, 
s0] allows event ‘c’ to occur. If the automaton is in s0 and if event ‘a’ occurs, then it changes its state 
from s0 to s1. When the automaton is in s1, event ‘c’ is not allowed to occur. When the automaton is in 
s1 and event ‘b’ occurs, then it changes its state from s1 to s0. In Figure 9(b), initially only t2 is 
enabled and since there is a token in p1, t3 is not enabled. If t2 is fired, the token is removed from p1. 
When p1 is void of token, both t1 and t3 are enabled to fire. When t1 is fired, a token is deposited in 
p1. In the automaton representation of the SOPN shown in Figure 9(b), there are two states: s0 is the 
initial and marker state and represents the presence of a token in p1, while s1 represents the absence of 
a token in p1. When the automaton is in s0, event ‘c’ is not allowed to occur. At the initial state, if 
event ‘b’ occurs, then the automaton changes its state from s0 to s1. When the automaton is in s1, 
event ‘c’ is allowed to occur by means of the self-looped transition [s1, c, s1].  When the automaton is 
in s1 and event ‘a’ occurs, then the automaton changes its state from s1 to s0.  
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  Figure 9.  A place p1 with one input transition, one output transition and an inhibitor arc In(p1,t3), 
  and its automaton representation:  a) with the initial marking M0(p1) = 0;  b) with the initial 
  marking M0(p1) = 1 
 
 
4.1.7. Mapping for an enabling arc  

A single place with one input transition, one output transition and an enabling arc En(p1,t3) is 
shown in Figure 10, together with its automaton representation. In Figures 10(a) and 10(b), the initial 
markings of p1 are M0(p1) = 0 and 1 respectively. In this SOPN, t1, t2 and t3 are labelled with ‘a’, ‘b’ 
and ‘c’ respectively to represent the respective events. In Figure 10(a), initially only t1 is enabled and 
since there is no token in p1, t3 is not enabled. If t1 is fired, a token is put in p1. When there is a token 
in p1, both t2 and t3 are enabled to fire. When there is a token in p1 and t3 is fired, the token remains 
in p1. When there is a token in p1 and t1 is fired, the token is removed from p1. In the automaton 
representation of the SOPN shown in Figure 10(a), there are two states: s0 is the initial and marker 
state and represents the absence of a token in p1, while s1 represents the presence of a token in p1. 
When the automaton is in s0, event ‘c’ is not allowed to occur. At the initial state, if event ‘a’ occurs, 
then the automaton changes its state from s0 to s1. When the automaton is in s1, event ‘c’ is allowed to 
occur by means of the self-looped transition [s1,c,s1]. When the automaton is in s1 and event ‘a’ 
occurs, then the automaton changes its state from s1 to s0. In Figure 10(b), initially both t1 and t3 are 
enabled and can fire. When there is a token in p1 and t3 is fired, the token remains in p1. When there is 
a token in p1 and t1 is fired, the token is removed from p1. If p1 contains no token, then t1 is enabled 
to fire but t3 is not enabled and therefore cannot fire. When p1 contains no token and t1 is fired, a 
token is put in p1. In brief, when there is a token in p1, t3 is enabled to fire, but when there is no token 
in p1, t3 is not enabled to fire. In the automaton representation of the SOPN shown in Figure 10(b), 
there are two states: s0 is the initial and marker state and represents the presence of a token in p1, 
while s1 represents the absence of a token in p1. At the initial state, the self-looped transition [s0,c,s0] 
allows event ‘c’ to occur. When the automaton is in s0 and event ‘b’ occurs, then the automaton 
changes its state from s0 to s1. When the automaton is in s1, event ‘c’ is not allowed to occur. When 
the automaton is in s1 and event ‘a’ occurs, then the automaton changes its state from s1 to s0.  
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             Figure 10.  A place p1 with one input transition, one output transition and an enabling  
             arc En(p1,t3), and its automaton representation: (a) with the initial marking M0(p1) = 0;   
             (b) with   the initial marking M0(p1) = 1 
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4.1.8. Mapping for mutual exclusion   
Mutual exclusion is used to avoid the simultaneous use of a common resource, examples of 

which include machines, robots and fixtures in the manufacturing context. There may be two or more 
processes trying to access the common resource at the same time. Consider a mutual exclusion 
example shown in Figure 11, together with its automaton representation. Initially, it is assumed that 
there are no tokens in p1 and p2 while there is a token in p3. In this SOPN, t1, t2, t3 and t4 are labelled 
with ‘a’, ‘b’, ‘c’ and ‘d’ respectively to represent the respective events. In this SOPN, p1 and p2 
represent two processes using a common resource represented by a token in p3. Here, p3 ensures the 
following: M(p1) + M(p2) + M(p3) = 1. This means that at any time the sum of tokens in places p1, p2 
and p3 is just 1.  Initially both t1 and t3 are enabled. When there is no token in p1 (or p2) and there is a 
token in p3, if t1 (respectively t3) is fired, then the token is removed from p3 and a token is put in p1 
(respectively p2). This means that only one activity represented by t1 or t3 can be initiated. When there 
is a token in p1 (or p2), t2 (respectively t4) is enabled. When p1 (or p2) contains a token and t2 
(respectively t4) is fired, the token is removed from p1 (respectively p2) and a token is deposited in p3. 
Each place is represented by a two-state automaton as shown in Figure 11. Then, the automaton 
representation of the SOPN shown in Figure 11 is obtained by the synchronous product p1||p2||p3 of 
automata models p1, p2 and p3. In the automaton model p1||p2||p3, there are three states, Q = {s0, s1, 
s2}, representing the following SOPN markings: M(p1,p2,p3)T = {001, 100, 010} respectively. The 
state change from one state to another takes place based on the occurrence of the respective events as 
explained in the previous mappings. 
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t1  t3  

a   

b  
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a  c  

s1 s0 

t2  b  

p2  
c   
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t4  d  

p3  a, c   

b, d  
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s1 s0 
s0 

s1 s2 
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c   
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  p1||p2||p3 

CAP(p1)=CAP(p2)=CAP(p3)=1 
  

Figure 11.  A mutual exclusion example in SOPN and its automaton representation 
 

The place p3 shown in Figure 11 is called a control place or a monitor and is widely used in the 
literature to enforce control specifications. In this particular example the specification to be enforced is 
M(p1) + M(p2) ≤ 1. This means that the sum of tokens in places p1 and p2 must be less than or equal 
to 1. At this point an alternative way to enforce the same specification is considered.  

Consider a mutual exclusion example shown in Figure 12, together with its automaton 
representation. Initially, it is assumed that there are no tokens in p1 and p2. Initially both t1 and t3 are 
enabled, as both p1 and p2 are void of tokens. When there is no token in p1 (or p2) and t1 (respectively 
t3) is fired, then a token is put in p1 (respectively p2). When there is a token in p1 (respectively p2), 
the inhibitor arc In(p1,t3) (respectively In(p2,t1)) inhibits t3 (respectively t1) from firing. This means 
that only one activity represented by t1 or t3 can be initiated. When there is a token in p1 (or p2), t2 
(respectively t4) is enabled. When p1 (or p2) contains a token and t2 (respectively t4) is fired, the 
token is removed from p1 (respectively p2). Each place is represented by a two-state automaton as 
shown in Figure 12. Then the automaton representation of the SOPN shown in Figure 12 is obtained 
by the synchronous product p1||p2 of the automata models p1 and p2. In the automaton model p1||p2, 
there are three states, Q = {s0, s1, s2}, representing the following SOPN markings: M(p1,p2)T = {00, 
10, 01} respectively. The state change from one to another takes place based on the occurrence of the 
respective events as explained in the previous mappings. As can be seen, the synchronous products 
p1||p2||p3 and p1||p2 in Figures 11 and 12 respectively are identical. In other words, these automata 
generate the same language and therefore the SOPN shown in Figure 11 and the one shown in Figure 
12 enforce the same specification. In this respect, these two SOPN are said to be “control equivalent.” 
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      Figure 12.  An alternative way to enforce the mutual exclusion specification M(p1) + M(p2) ≤ 1  
       in SOPN, and its automaton representation 
 

 
4.2.  Mappings from PN with Weighted Arcs to FSA  

In this section, a set of mappings from PN with weighted input, output, inhibitor and enabling 
arcs to FSA is proposed. The first requirement for mapping a PN with weighted input, output, inhibitor 
and enabling arcs to FSA is that the PN considered must be bounded; otherwise the mapping is not 
possible. The token capacity of a given place p, represented as CAP(p), must be known to start the 
mapping. Then each place p of a given PN model is considered separately, together with its input, 
output, inhibitor and/or enabling arcs. If p is bounded in accordance with CAP(p)  b, for instance, 
then p is modelled by a buffer with capacity b (i.e. b+1 states). For example, if a PN place p has a 
token capacity of 3, i.e. CAP(p)  3, then it can be represented by 4 states. The transitions (including 
the self-loops) between states of the automaton characterise the behaviour of the PN modelled. Every 
transition of p is represented by a transition within the automaton model of p. For the examples 
considered here, a label is assigned for each transition to represent the respective event. Note that the 
transitions considered in this section are all shown as uncontrollable, but it is also possible to consider 
them as controllable. In this respect, there is no difference. Also note that the concurrent firing of 
enabled transitions is not considered and therefore at any time only one transition can fire. In this 
section, some important mapping examples are considered. In these examples, only one place is 
considered with different arcs to show the proposed method.  
 
4.2.1. Mapping for a single place with a token capacity CAP(p)  b   

Here, two mapping examples are considered. As can be seen from Figure 13, the first example 
involves mapping for a single place p1 with a token capacity CAP(p1)  4, together with an ordinary 
input arc Pre(t1,p1) = 1 and an ordinary output arc Post(p1,t2) = 1. Initially it is assumed that p1 is 
void of tokens. As long as the number of tokens in p1 is fewer than 4, every firing of t1 deposits a 
token in p1. Provided that there is a token(s) in p1, every firing of t2 removes a token from p1. To 
represent the respective events, t1 and t2 are labelled with ‘a’ and ‘b’ respectively. Since p1 is bounded 
in accordance with CAP(p)  4, it is modelled by a buffer with capacity 5 as shown in Figure 13. State 
s0 is the initial and marker state and represents the absence of tokens in p1. States s1, s2, s3 and s4 
represent the presence of 1, 2, 3 and 4 tokens in p1 respectively. In the automaton model, the 
occurrence of event ‘a’ represents both the firing of t1 and the depositing of a token in p1, while the 
occurrence of event ‘b’ represents both the firing of t2 and the removing of a token from p1.   

As can be seen from Figure 14, the second example involves mapping for a single place p1 
with a token capacity CAP(p1)  6, together with an ordinary input arc Pre(t1,p1) = 1, an ordinary 
output arc Post(p1,t2) = 1, a weighted input arc Pre(t3,p1) = 2, and a weighted output arc Post(p1,t4) = 
3. Initially it is assumed that p1 is void of tokens. As long as the number of tokens in p1 is fewer than 
6, every  firing of t1 deposits a token in p1. Similarly, if the number of tokens in p1 is fewer than 5, 
every firing of t3 deposits two tokens in p1. Provided that there is a token(s) in p1, every firing of t2 
removes  a  token from p1.  Similarly,  if the number of tokens in p1 is greater than or equal to 3, every  
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        Figure 13.  A single place with a token capacity CAP(p1)  4, together with an ordinary input 
         arc Pre(t1,p1) = 1 and an ordinary output arc Post(p1,t2) = 1, and its automaton representation  
 
firing of t4 removes three tokens from p1. To represent the respective events, t1, t2, t3 and t4 are 
labelled with ‘a’, ‘b’, ‘c’ and ‘d’ respectively. Since p1 is bounded in accordance with CAP(p)  6, it is 
modelled by a buffer with capacity 7 as shown in Figure 14. State s0 is the initial and marker state and 
represents the absence of tokens in p1. States s1, s2, s3, s4, s5 and s6 represent the presence of 1, 2, 3, 
4, 5 and 6 tokens in p1 respectively. In the automaton model, the occurrence of event ‘a’ represents 
both the firing of t1 and the depositing of a token in p1, while the occurrence of event ‘b’ represents 
both the firing of t2 and the removing of a token from p1. Likewise, the occurrence of event ‘c’ 
represents both the firing of t3 and the depositing of two tokens in p1, while the occurrence of event 
‘d’ represents both the firing of t4 and the removing of three tokens from p1.    
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       Figure 14.  A single place with a token capacity CAP(p1)  6, together with a weighted input  
       arc Pre(t3,p1) = 2  and a weighted output arc Post(p1,t4) = 3,  and its automaton representation  

 
 
4.2.2. Mapping for weighted inhibitor arc 
 

Mapping for weighted inhibitor arc is explained by means of an example in this section.  As 
can be seen from Figure 15, this example involves mapping for a single place p1 with a token capacity 
CAP(p1)  5, together with an ordinary input arc Pre(t1,p1) = 1, an ordinary output arc Post(p1,t2) = 1 
and a weighted inhibitor arc In(p1,t3) = 4. Initially it is assumed that p1 is void of tokens. As long as 
the number of tokens in p1 is fewer than 5, every firing of t1 deposits a token in p1. Provided that there 
is a token(s) in p1, every firing of t2 removes a token from p1. As long as the number of tokens in p1 is 
fewer than 4, t3 is allowed to fire; otherwise it is not allowed to fire. The firing of t3 does not change 
the number of tokens present in p1. To represent the respective events, t1, t2, and t3 are labelled with 
‘a’, ‘b’ and ‘c’ respectively. Since p1 is bounded in accordance with CAP(p)  5, it is modelled by a 
buffer with capacity 6 as shown in Figure 15. State s0 is the initial and marker state and represents the 
absence of tokens in p1. States s1, s2, s3, s4 and s5 represent the presence of 1, 2, 3, 4 and 5 tokens in 
p1 respectively. In the automaton model, the occurrence of event ‘a’ represents both the firing of t1 
and the depositing of a token in p1, while the occurrence of event ‘b’ represents both the firing of t2 
and the removing of a token from p1. Self-loops [s0,c,s0], [s1,c,s1], [s2,c,s2] and [s3,c,s3] are added to 
states s0, s1, s2 and s3 respectively to represent that the occurrence of event ‘c’ is allowed in these 
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states. On the other hand, as there are no such self-loops assigned to states s4 and s5, the occurrence of 
event ‘c’ is not allowed in these states. 
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Figure 15.  A single place with a token capacity CAP(p1)  5, together with a  
weighted inhibitor arc In(p1,t3) = 4 and its automaton representation  

 
 
4.2.3. Mapping for weighted enabling arc   
 

Mapping for weighted enabling arc is explained by means of an example in this section.  As 
can be seen from Figure 16, this example involves mapping for a single place p1 with a token capacity 
CAP(p1)  5, together with an ordinary input arc Pre(t1,p1) = 1, an ordinary output arc Post(p1,t2) = 1 
and a weighted enabling arc En(p1,t3) = 4. Initially it is assumed that p1 is void of tokens. As long as 
the number of tokens in p1 is fewer than 5, every firing of t1 deposits a token in p1. Provided that there 
is a token(s) in p1, every firing of t2 removes a token from p1. As long as the number of tokens in p1 is 
larger than or equal to 4, t3 is allowed to fire; otherwise it is not allowed to fire. The firing of t3 does 
not change the number of tokens present in p1. To represent the respective events, t1, t2 and t3 are 
labelled with ‘a’, ‘b’ and ‘c’ respectively. Since p1 is bounded in accordance with CAP(p)  5, it is 
modelled by a buffer with capacity 6 as shown in Figure 16. State s0 is the initial and marker state and 
represents the absence of tokens in p1. States s1, s2, s3, s4 and s5 represent the presence of 1, 2, 3, 4 
and 5 tokens in p1 respectively. In the automaton model, the occurrence of event ‘a’ represents both 
the firing of t1 and the depositing of a token in p1, while the occurrence of event ‘b’ represents both 
the firing of t2 and the removing of a token from p1. Self-loops [s4,c,s4] and [s5,c,s5] are added to 
states s4 and s5 respectively to represent that the occurrence of event ‘c’ is allowed in these states. On 
the other hand, as there are no such self-loops assigned to states s0, s1, s2 and s3, the occurrence of 
event ‘c’ is not allowed in these states. 
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Figure 16.  A single place with a token capacity CAP(p1)  5, together with a  

            weighted enabling arc En(p1,t3) = 4 and its automaton representation  
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5. Analysis of PN-Based Controllers by Using TCT   
The proposed analysis approach based on TCT software can be summarised as follows:  
1. Assume that an uncontrolled PN model (UPNM) of a DES with initial marking, feedback 

control elements (a set of control places) and also the related set of forbidden-state 
specifications are given. 

2. Check that UPNM is bounded and determine explicit bounds on the place markings. 
3. Convert the UPNM and the specifications into equivalent buffer models. Buffer models of 

UPNM and specifications are called PLANT and SPEC respectively. 
4. Apply SCT to obtain a Ramadge-Wonham (RW) supervisor (RWSUPER) for a given 

problem by using PLANT and SPEC. 
5. Convert the given feedback control elements (a set of control places) into equivalent buffer 

models called C1, C2, C3, ….  
6. Obtain a controlled model called PNSUPER by using PLANT and buffer models of the 

given feedback control elements C1, C2, C3, …. 
7. Compare RWSUPER and PNSUPER to see if they are identical. 

 
In this paper, PN-based controllers enforcing forbidden-state specifications are analysed to see 

whether they are correct. In addition, liveness enforcing feedback control elements can also be 
analysed. In such problems, the specification is non-blockingness with respect to the initial state. In the 
literature, control places (or monitors) are very common feedback control elements with ordinary (or 
weighted) input and output arcs. However, in some problems it is also possible to carry out the same 
control action with some other type of control elements containing inhibitor arcs. The computations for 
the SCT can be performed by standard SCT software; in this paper the package TCT [11] is used. A 
quick review on some of the TCT commands used in this paper is given in the Appendix.  

The boundedness computation in step 2 can be carried out with available PN tools [30] or, in 
simple cases, by inspection or application by hand of integer programming [29]. For step 3, to carry 
out the conversions, the mappings proposed in Section 4 can be used. In the conversion of UPNM into 
PLANT the following steps are followed. First, each place of UPNM, together with its input and 
output transitions (with input, output and possibly inhibitor or enabling arcs), is converted into an 
automaton (a buffer) model. Next, all automata models for the places are defined by using the Create() 
command within the TCT. Then the synchronous product command, namely Sync(), of TCT is used to 
obtain the PLANT automata model of UPNM. It can be shown that the PLANT model is actually 
isomorphic to the reachability graph of UPNM. If the problem considered is that of a forbidden-state 
problem, then in the conversion of specifications into SPEC, the following 3 steps are followed. First, 
if the specification requires more than one automaton model, namely SPEC1, SPEC2, … SPECn, then 
they are all constructed and defined by using the Create() command within the TCT. Second, self-
loops labelled with events that are possible in PLANT but not constrained by automaton model of each 
specification must be adjoined to one another. To accomplish this task, Selfloop() command is used. 
Finally, Meet() command of TCT is used to obtain the SPEC automaton model of the specifications. If 
the problem considered is that of a liveness enforcing problem, then the specification is non-
blockingness with respect to the initial state. In this case, the non-blockingness specification is 
obtained by using Allevents() command: ALL = Allevents(PLANT), which results in a 1-state DES 
called ALL with all events of PLANT as self-loops.   

If the problem considered is that of a forbidden-state problem, then step 4 is performed by 
supcon() command of TCT as follows: RWSUPER = Supcon(PLANT,SPEC). If the problem 
considered is that of a liveness enforcing problem, then step 4 is performed as follows: RWSUPER = 
Supcon(PLANT,ALL). Since RWSUPER is the result of a Supcon computation, it is automatically 
proper, i.e. trim, controllable and non-blocking with respect to PLANT. That it is maximally 
permissive is also a consequence of the semantics of Supcon, but maximal permissiveness is not 
included in the definition of “proper”. This is a consequence of the semantics of Supcon, as stated 
explicitly by Wonham [29]. The proper RWSUPER obtained will be used as a proper supervisor 
reference to test the correctness of the PN-based feedback control elements.  
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In step 5, to carry out the conversions, the mappings proposed in Section 4 can be used. In the 
conversion of given feedback control elements (a set of control places) into equivalent buffer models, 
the following steps are followed. First, each feedback control element (a control place), together with 
its input and output transitions (with input, output and possibly inhibitor or enabling arcs), is converted 
into an automaton (buffer) model. Next, all automata models, called C1, C2, C3, …, for the given 
feedback control elements are defined by using the Create() command within the TCT. 

In step 6, a controlled model, namely PNSUPER, is obtained by using PLANT and C1, C2,  
C3, …. To carry out this task, the synchronous product command, namely Sync(), is used. As with 
RWSUPER, PNSUPER obtained also represents the controlled behaviour of the PLANT, i.e. the 
subset of uncontrolled behaviour that this time survives under PN-based supervision.  

In the final step, RWSUPER and PNSUPER are compared to see if they are identical (up to 
possible recoding of state sets). To carry out this task, the test command Isomorph() is used as follows: 
Isomorph(PNSUPER,RWSUPER). If RWSUPER and PNSUPER are identical (or not identical), the 
outcome of this test will be ‘true’ (respectively ‘false’). If the test result is ‘true’, then this proves the 
correctness of the PN-based feedback control elements. In that case it can be concluded that 
PNSUPER obtained by using PN-based feedback control elements is proper, i.e. maximally permissive 
and non-blocking. Note that when considering liveness enforcing problem, i.e. non-blockingness with 
respect to the initial state, if all transitions are controllable, then the trimmed plant, obtained by Trim() 
command as follows: TPLANT = Trim(PLANT), will also be isomorphic to PNSUPER (or 
RWSUPER). To check this property, the following test is carried out by using Isomorph() command: 
Isomorph(TPLANT,PNSUPER). However, when considering the liveness enforcing problem, if there 
are both controllable and uncontrollable transitions within the considered UPNM, then trimmed plant 
TPLANT = Trim(PLANT) may not be isomorphic to the PNSUPER (or RWSUPER). In that case, the 
RWSUPER is the supremal controllable sublanguage defining the maximally permissive and non-
blocking behaviour. Isomorph can certainly be used to check the equality of closed and respectively 
marked behaviours in each of two DES, e.g. G1 and G2. If Isomorph(G1,G2) = true, then indeed one 
has that L(G1) = L(G2) and Lm(G1) = Lm(G2).  If, however, Isomorph(G1,G2) = false, it may still be 
the case that the language equalities are true.  In the case of a ‘false’ outcome one must check, in 
addition, Isomorph(MG1,MG2) = true/false, where MGi = Minstate(Gi). If this second Isomorph 
returns ‘true’, then (even though the first Isomorph returns ‘false’) the language equalities do actually 
hold; if ‘false’, then one or both of the language equalities fails.  This point has been made explicitly 
[29]. 

Up to now the analysis of optimal PN-based supervisors is explained. However, in the PN 
literature it is possible to come across suboptimal solutions to a given control problem. In order to 
analyse the correctness of a given suboptimal PN-based solution, RW-type supervisor RWSUPER can 
still be used as a reference for optimal controlled behaviour. Here, how this analysis is carried out is 
explained. The analysis steps explained above are still followed up to the last step (step 7). It is 
obvious that in this case the PN-based controlled model will be a sublanguage of the one generated by 
RWSUPER. Firstly, the suboptimal behaviour generated by PN-based controlled model PNSUPER is 
checked to see that it is not conflicting with the RWSUPER as follows: 
Nonconflict(PNSUPER,RWSUPER). This test must result in “true”. Secondly, the reachable Cartesian 
product of PNSUPER and RWSUPER is computed: MRW_PN = Meet(PNSUPER,RWSUPER). The 
resulting DES MRW_PN must be equal to that of PNSUPER because in this case any suboptimal 
solution such as PNSUPER is expected to be sublanguage of the optimal solution RWSUPER. In short, 
the following result must be obtained: true = Isomorph(MRW_PN,PNSUPER;identity).  
 
 
 
6. Application Examples  

In this section three examples are considered to show the applicability of the proposed analysis 
method. The detailed computation steps are provided in the TCT-generated log files for each example.  
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6.1. Example 1 
 

The first example consists of a simple flexible manufacturing system (FMS) with deadlock 
(liveness enforcing) problem. Two different controllers solving the deadlock problem for this FMS are 
verified to be correct and “control equivalent.” Note that the PN considered in this example is in the 
class of SOPN unless otherwise stated. Consider the FMS shown in Figure 17 with two machines M1 
and M2, each of which can process only one part at a time, and one robot, which can hold one part at a 
time. The parts enter the FMS through input/output buffers I/O1 and I/O2. Two parts are considered: 
P1 and P2. Initially it is assumed that there are no parts in the system. The production sequences are: 

 
    P1: M1  Robot  M2 
    P2: M2  Robot  M1 
 

Machine 1 Machine 2 

Robot  

L/U L/U Input /
Output 1 

Input /
Output 2 

 
Figure 17.  An example of  FMS 

 
Figure 18(a) shows the PN model (PNM) of the FMS taken from Uzam [20] for these 

production sequences. In this model there are eleven places, P = {p1, p2, …, p11}, and eight 
transitions, T = {t1, t2, …, t8}. All transitions are assumed to be controllable. Places p2, p5 and p8 
represent the operation of M1, Robot and M2 respectively for the first production sequence. The 
number of tokens in p1, i.e. M(p1) = 3, represents the number of concurrent activities that can take 
place for P1. Similarly, places p10, p7 and p4 represent the operation of M2, Robot and M1 
respectively for the second production sequence. The number of tokens in p11, i.e. M(p11) = 3, 
represents the number of concurrent activities that can take place for P2. Places p3, p6 and p9 denote 
the shared resources M1, Robot and M2 respectively. In order to have the correct system behaviour, it 
is desirable that each production sequence can finish. It can be shown that this system suffers from 
deadlock problem and for this system the specification is to obtain the live system behaviour (non-
blockingness in SCT terminology). It can be shown that places p1 and p11 are redundant and therefore 
they can be removed from the model without any problem. When they are removed from the model, a 
SOPN model is obtained for the FMS as shown in Figure 18(b).   
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(a)

p1  p11   

t1  

t4  t5  

t8  

p2  p3  p4  

p5  p6  p7  

p8  p9  p10  

t2  

t3  t6  

t7  

Machine 1  

Robot    

Machine 2  

       (b)

p2  p3  p4  

p5  p6  p7  

p8  p9  p10  

t1  

t2  

t3  

t4  t5  

t6  

t7  

t8  Machine 1  

Robot    

Machine 2  

 
 
              Figure 18.  (a) PN model of FMS for two production sequences; (b) SOPN model for the 
              FMS (UPNM) 
 

 
It can be verified that the PN model of the FMS suffers from deadlock (the same applies to the 

SOPN). In the reachability graph of this model, there are 20 states, 15 of which are good states 
representing the optimal live behaviour and 5 of which are bad ones including 2 deadlock states. The 
maximally permissive controller obtained previously [20] is depicted in Figure 19(a). When the 
controller is augmented with the uncontrolled model (SOPN), the controlled model shown in Figure 
19(b) is obtained.  

 
 

(a)

t1  

t2  

t3  

t5  

t6  

t7  
C3  

C2  

C1  

      (b)

p2  

p3  

p4  

p5  

p6  

p7  

p8  
p9  

p10  

t1  

t2  

t3  

t4  t5  

t6  

t7  

t8  

C3  

C2  

C1  

 
 

             Figure 19.  (a) Controller previously obtained [20] for Example 1;  (b) Controlled model  
              for the FMS 
 

For this example the proposed analysis approach is followed as shown below.  
Step 1. The UPNM is the one given in Figure 18(b); feedback control elements are three control places 
as depicted in Figure 19(a), and the specification for the UPNM is non-blockingness with respect to the 
initial state, i.e. liveness enforcing.  
Step 2.  It can be verified that UPNM is bounded with the place marking bounds p2:1, p3:1, p4:1, 
p5:1, p6:1, p7:1, p8:1, p9:1 and p10:1. It can be seen that UPNM is actually a SOPN. 
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Step 3.  Each place of UPNM is converted into an equivalent buffer model as shown in Figure 20.  The 
following event coding is used in the conversion process according to the TCT requirement that odd 
and even integers be used for controllable and uncontrollable events respectively.  
Event coding for Example 1: 
      UPNM: t1 t2 t3 t4 t5 t6 t7 t8   
         TCT:  1 3 5 7 15 13 11 9 
  

 

p2  p4  

p8  

t1  

t2  

t3  

t4  

t7  

t8  

p5  

t2  

t3  

p10  

t5  

t6  

p7  

t6  

t7  

1  

3  

p2  

3  

5  

p5  

5  

7  

p8  

11  

9  p4  

13  

11  p7  

15 

13  p10  

p3  

t1  

t2  

t3  

t7  

t8  

p9  

t3  

t4  t5  

t6  

p6  

t6  

t7  t2  

1, 11 

3, 9  

3, 13   

5, 11 

5, 15   

7, 13 

p9  

p6  

p3  

  
Figure 20.  Mappings from UPNM to automata in Example 1 

 
 

  The following steps are carried out using TCT. In the following, PLANT defines automaton 
representation of UPNM.  
First each place is created as an automaton as follows: 
p2 = Create(p2,[mark 0],[tran [0,1,1],[1,3,0]])  (2,2) 
p3 = Create(p3,[mark 0],[tran [0,1,1],[0,11,1],[1,3,0],[1,9,0]])  (2,4) 
p4 = Create(p4,[mark 0],[tran [0,11,1],[1,9,0]])  (2,2) 
p5 = Create(p5,[mark 0],[tran [0,3,1],[1,5,0]])  (2,2) 
p6 = Create(p6,[mark 0],[tran [0,3,1],[0,13,1],[1,5,0],[1,11,0]])  (2,4) 
p7 = Create(p7,[mark 0],[tran [0,13,1],[1,11,0]])  (2,2) 
p8 = Create(p8,[mark 0],[tran [0,5,1],[1,7,0]])  (2,2) 
p9 = Create(p9,[mark 0],[tran [0,5,1],[0,15,1],[1,7,0],[1,13,0]])  (2,4) 
p10 = Create(p10,[mark 0],[tran [0,15,1],[1,13,0]])  (2,2)  
Then the PLANT is the synchronous product of all places, i.e. PLANT = 
p2||p3||p4||p5||p6||p7||p8||p9||p10 and is obtained as follows (and depicted in Figure 21):  
PLANT = Sync(P2,P3)  (4,6)  Blocked_events = None   
PLANT = Sync(PLANT,P4)  (3,4)  Blocked_events = None   
PLANT = Sync(PLANT,P5)  (6,10)  Blocked_events = None   
PLANT = Sync(PLANT,P6)  (12,20)  Blocked_events = None   
PLANT = Sync(PLANT,P7)  (8,12)  Blocked_events = None   
PLANT = Sync(PLANT,P8)  (16,30)  Blocked_events = None   
PLANT = Sync(PLANT,P9)  (32,60)  Blocked_events = None   
PLANT = Sync(PLANT,P10)  (20,34)  Blocked_events = None   
 
 



Maejo  Int. J. Sci. Technol.  2010, 4(03), 360-396  
 

 

379

  
 
Figure 21.  The automaton PLANT = p2||p3||p4||p5||p6||p7||p8||p9||p10 representing                
the uncontrolled system behaviour  in Example 1  

 
The problem considered is that of liveness enforcing. Therefore, the specification is non-

blockingness with respect to the initial state and it is obtained by using Allevents() command as 
follows: ALL = Allevents(PLANT)  (1,8). In addition, the following test shows that PLANT will block 
in the absence of control: false = Nonconflict(PLANT,ALL).  
Step 4.  A RW supervisor RWSUPER is obtained as follows: RWSUPER = Supcon(PLANT,ALL)  
(15,24). The RW-type supervisor RWSUPER obtained is depicted in Figure 22. 
 

 
Figure 22. The supervisor RWSUPER computed for Example 1   
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Step 5.  The given feedback control elements, i.e. a set of control places, are converted into equivalent 
buffer models as shown in Figure 23. Control places are created within TCT as follows: 
C1 = Create(C1,[mark 0],[tran [0,1,1],[0,15,1],[1,3,0],[1,13,0]])  (2,4) 
C2 = Create(C2,[mark 0],[tran [0,3,1],[0,15,1],[1,5,0],[1,13,0]])  (2,4) 
C3 = Create(C3,[mark 0],[tran [0,1,1],[0,13,1],[1,3,0],[1,11,0]])  (2,4) 
 
 

C1  

t1  

t2  t3  t5  

t6 

C3  

t1  

t2  t6  

t7  

C2  

t5  

t6  t2  

1, 15  

3, 13  

3, 15   

5, 13 

1, 13 

3, 11 

C1  C3  C2  

  
 

Figure 23.  Mappings from given feedback control elements to automata in Example 1 
 
Step 6. The controlled model PNSUPER (PNSUPER = PLANT||C1||C2||C3) is obtained by using 
PLANT and buffer models of the given feedback control elements C1, C2, and C3 as follows: 
PNSUPER = Sync(PLANT,C1)  (17,26)  Blocked_events = None   
PNSUPER = Sync(PNSUPER,C2)  (16,25)  Blocked_events = None   
PNSUPER = Sync(PNSUPER,C3)  (15,24)  Blocked_events = None    
Step 7. The following test verifies that the controlled model PNSUPER obtained is isomorphic 
(identical) to RWSUPER:  true = Isomorph(PNSUPER,RWSUPER; identity). This means that the 
controller obtained in the PN domain is also a proper supervisor, i.e. it is maximally permissive and 
non-blocking.   

The following shows that the optimal controlled (maximally permissive and non-blocking) 
behaviour PNSUPER is simply the language generated by the trimmed plant as expected. This is 
because all transitions are controllable. 
TPLANT = Trim(PLANT)  (15,24) 
true = Isomorph(TPLANT,PNSUPER; identity)    

Here, alternative feedback control elements are established and tested for Example 1. When the 
control places C1, C2 and C3 are examined in detail, it can be seen that these three control places 
implement a control mechanism in which, when there is a token in p2 or p5, t5 is not allowed to fire. 
This means that t5 is stopped from firing when M(p2) = 1 or M(p5) = 1. Likewise, when there is a 
token in p7 or p10, t1 is not allowed to fire, i.e. t1 is stopped from firing. This means that t1 is stopped 
from firing when M(p7) = 1 or M(p10) = 1. Actually, this control mechanism can be implemented by 
using the feedback control elements shown in Figure 24(a). When these feedback control elements are 
augmented with the uncontrolled model (SOPN), the controlled model shown in Figure 24(b) is 
obtained. Now the correctness of this new controller consisting of the alternative feedback control 
elements shown in Figure 24(a) is verified.  

From this point onward the proposed analysis approach is followed for the new controller from 
step 5 as shown below.   
Step 5. The feedback control elements shown in Figure 24(a) are converted into equivalent buffer 
models as shown in Figure 25. Control places are created within TCT as follows: 
SP1 = Create(SP1,[mark 0],[tran [0,1,1],[0,15,0],[1,3,0]])  (2,3) 
SP2 = Create(SP2,[mark 0],[tran [0,3,1],[0,15,0],[1,5,0]])  (2,3) 
SP3 = Create(SP3,[mark 0],[tran [0,1,0],[0,13,1],[1,11,0]])  (2,3) 
SP4 = Create(SP4,[mark 0],[tran [0,1,0],[0,15,1],[1,13,0]])  (2,3) 
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               Figure 24.  (a) Alternative feedback control elements constructed for Example 1;  
               (b) Controlled model obtained by means of alternative feedback control elements 
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Figure 25.  Mappings from PN to automata for the new controller 

 
Step 6. The controlled model CM1 (CM1 = PLANT||SP1||SP2||SP3||SP4) is obtained by using PLANT 
and buffer models of the new feedback control elements SP1, SP2, SP3 and SP3 as follows: 
CM1 = Sync(PLANT,SP1)  (20,31)  Blocked_events = None   
CM1 = Sync(CM1,SP2)  (20,30)  Blocked_events = None   
CM1 = Sync(CM1,SP3)  (19,28)  Blocked_events = None   
CM1 = Sync(CM1,SP4)  (15,24)  Blocked_events = None    
Step 7. Finally, the test below verifies that the new controlled model CM1 is identical in terms of 
control action to that of RWSUPER, which also means that it is identical to PNSUPER. In other 
words, both controlled models shown in Figure 19(b) and Figure 24(b) generate the same language and 
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therefore they enforce the same specification. In this respect, the feedback control elements shown in 
Figure 23 and the ones shown in Figure 24(a) are said to be “control equivalent.”  
true = Isomorph(RWSUPER,CM1;identity)   
 
6.2. Example 2 
 

As a second example, a generalised mutual exclusion constraint (GMEC) to be enforced on a 
PNM is considered. This example is taken from Basile et al. [31] and it consists of the UPNM shown 
in Figure 26. In the UPNM there are seven places, P = {p1, p2, ..., p7}, and six transitions, T = {t1, t2, 
... , t6}. The initial marking is M0 = (0, 0, 0, 0, 0, 2, 2)T. It can be verified that the UPNM shown in 
Figure 26 is bounded, live, reversible and conservative. In the UPNM, transitions t1, t5 and t6 are 
controllable while transitions t2, t3 and t4 are uncontrollable. The specification, namely GMEC, to be 
enforced on this UPNM is M(p1) ≤ 1, i.e. the number of tokens in place p1 must be fewer than or equal 
to 1. There are three solutions to be analysed for this example. The first two of them are two different 
optimal solutions and the third one is a suboptimal solution. These three solutions are considered 
respectively in the next three subsections.   

 
 

t1 

t2 

t3 t4 

t5 t6 

p1 

p2 p3 

p4 p5 

p6 p7 

  
           
           Figure 26.  A PN with controllable (t1, t5, t6) and uncontrollable (t2, t3, t4) transitions [31] 
           (without dashed arcs and places)  
 
 
6.2.1. Example 2 – optimal solution 1 
 

In order to optimally enforce GMEC M(p1) ≤ 1 on the UPNM shown in Figure 26, the control 
places C1, C2, C3 and C4 in Figure 27 are provided [10]. It was shown [10] that the controlled model 
in Figure 28 can produce the supremal controllable sublanguage which has 32 states with 62 
transitions. In short, the controlled model shown in Figure 28 is maximally permissive and non-
blocking.   
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        Figure 27.  Four control places [10] enforcing the constraint M(p1) ≤ 1 optimally on the PN 
        shown in Figure 26 
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        Figure 28.  The controlled PN model obtained by including four control places within the PN 
        shown in Figure 26 
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For this example, to verify the correctness of control places C1, C2, C3 and C4, the proposed 
analysis approach is followed as shown below.   
Step 1. The UPNM is the one given in Figure 26; the feedback control elements are the control places 
as depicted in Figure 27, and the specification for the UPNM is M(p1) ≤ 1, i.e. the number of tokens in 
place p1 must be less than or equal to 1.  
Step 2. It can be verified that UPNM is bounded with the place marking bounds p1:2, p2:2, p3:2, p4:2, 
p5:2, p6:2 and p7:2.  
Step 3. Each place of UPNM is converted into an equivalent buffer model as shown in Figure 29.  The 
following event coding is used in the conversion process according to the TCT requirement that odd 
and even integers be used for controllable and  uncontrollable events respectively.  
Event coding for Example 2: 
       UPNM: t1 t2 t3 t4 t5 t6   
         TCT:  1 2 30 4 5 61 
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Figure 29.  Mappings from UPNM to automata and specification model SPEC in Example 2 
 
  The following steps are carried out using TCT. In the following, PLANT defines automaton 
representation of UPNM.  
First, each place is created as an automaton as follows: 
P1 = Create(P1,[mark 0],[tran [0,2,1],[1,1,0],[1,2,2],[2,1,1]])  (3,4) 
P2 = Create(P2,[mark 0],[tran [0,30,1],[1,2,0],[1,30,2],[2,2,1]])  (3,4) 
P3 = Create(P3,[mark 0],[tran [0,4,1],[1,2,0],[1,4,2],[2,2,1]])  (3,4) 
P4 = Create(P4,[mark 0],[tran [0,5,1],[1,5,2],[1,30,0],[2,30,1]])  (3,4) 
P5 = Create(P5,[mark 0],[tran [0,61,1],[1,4,0],[1,61,2],[2,4,1]])  (3,4) 
P6 = Create(P6,[mark 0],[tran [0,5,1],[1,1,0],[1,5,2],[2,1,1]])  (3,4) 
P7 = Create(P7,[mark 0],[tran [0,61,1],[1,1,0],[1,61,2],[2,1,1]])  (3,4)  
Then the PLANT is the synchronous product of all places, i.e. PLANT = P1||P2||P3||P4||P5||P6||P7, and 
is obtained as follows:  
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PLANT = Sync(P1,P2)  (9,16)  Blocked_events = None   
PLANT = Sync(PLANT,P3)  (27,62)  Blocked_events = None   
PLANT = Sync(PLANT,P4)  (81,222)  Blocked_events = None   
PLANT = Sync(PLANT,P5)  (243,774)  Blocked_events = None   
PLANT = Sync(PLANT,P6)  (90,232)  Blocked_events = None   
PLANT = Sync(PLANT,P7)  (46,104)  Blocked_events = None   
 

Recall that the specification is M(p1) ≤ 1, i.e. the number of tokens in place p1 must be less 
than or equal to 1. This specification can be represented as a buffer automaton model as depicted in 
Figure 29. This specification model simply declares that once event “2” occurs, it cannot reoccur until 
event “1” takes place. This defines specification M(p1) ≤ 1 as a buffer automaton model, which is 
defined within TCT as follows:  
SPEC = Create(SPEC,[mark 0],[tran [0,2,1],[1,1,0]])  (2,2) 

After this operation, self-loops labelled with events that are possible in PLANT but not 
constrained by the specification must be adjoined to each state. To do this, self-loops with event labels 
‘4’, ‘5’, ‘30’ and ‘61’ are adjoined to each state of SPEC as follows:  
SPEC = Selfloop(SPEC,[4,5,30,61])  (2,10) 
Note that as there is only one specification model, it is not necessary to use Meet() command.   
Step 4.  A RW supervisor RWSUPER is obtained as follows: 
RWSUPER = Supcon(PLANT,SPEC)  (32,62) 
The RW-type supervisor RWSUPER obtained is depicted in Figure 30 and is given below.  
RWSUPER # states: 32      state set: 0 ... 31     initial state: 0 
   marker states: 0  vocal states:  none # transitions: 62 
transitions:  
[0,5,1][0,61,2][1,5,3][1,30,4][1,61,5][2,4,6][2,5,5][2,61,7][3,30,8][3,61,9][4,5,8][4,61,10] 
[5,4,11][5,5,9][5,30,10][5,61,12][6,5, 11][6,61,13][7,4,13][7,5,12][8,30,14][8,61,15] 
[9,4,16][9,30,15][10,4,17] [10,5,15][10,61,18][11,5,16][11,30,17][11,61,19][12,4,19] 
[12,30,18][13,4,20][13,5,19][14,61,21][15,4,22][15,30,21][16,30,22][17,2,23][17,5,22] 
[17,61,24][18,4,24][19,4,25][19,30,24][20,5,25][21,4,26][22,2,27][22,30,26][23,1,0] 
[23,5,27][23,61,28][24,2,28][24,4,29][5,30,29][26,2,30][27,1,1][27,30,30][28,1,2][28,4,31] 
[29,2,31][30,1,4][31,1,6]   
 
Step 5. The given feedback control elements, i.e. control places C1, C2, C3 and C4, shown in Figure 
27, are converted into equivalent buffer models as shown in Figure 31. The control places C1, C2, C3 
and C4 are created within TCT as follows:  
C1 = Create(C1,[mark 0], [tran [0,5,1], [0,61,1], [1,5,2], [1,61,2], [2,2,0], [2,5,3], [2,61,3], [3,2,1]])  
(4,8) 
C2 = Create(C2,[mark 0],[tran [0,2,2], [0,5,1], [0,61,1], [1,2,3], [1,4,0], [1,5,2], [1,30,0], [1,61,2], 
[2,1,0], [2,4,1], [2,5,3], [2,30,1], [2,61,3], [3,1,1], [3,4,2], [3,30,2]])  (4,16) 
C3 = Create(C3,[mark 0], [tran [0,2,1], [0,30,1], [0,61,1], [1,2,2], [1,4,0], [1,30,2], [1,61,2], [2,1,0], 
[2,2,3], [2,4,1], [2,30,3], [2,61,3],[3,1,1],[3, 4,2]])  (4,14) 
C4 = Create(C4,[mark 0], [tran [0,2,1], [0,4,1], [0,5,1], [1,2,2], [1,4,2], [1,5,2], [1,30,0], [2,1,0], 
[2,2,3], [2,4,3], [2,5,3], [2,30,1], [3,1,1], [3,30,2]])  (4,14)  
Step 6. The controlled model PNSUPER1 (PNSUPER1 = PLANT||C1||C2||C3||C4) is obtained by 
using PLANT and buffer models C1, C2, C3 and C4 of given control places as follows: 
PNSUPER1 = Sync(PLANT,C1)  (37,76)  Blocked_events = None   
PNSUPER1 = Sync(PNSUPER1,C2)  (35,69)  Blocked_events = None   
PNSUPER1 = Sync(PNSUPER1,C3)  (34,66)  Blocked_events = None   
PNSUPER1 = Sync(PNSUPER1,C4)  (32,62)  Blocked_events = None   
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Figure 30.  The supervisor RWSUPER computed for Example 2   
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Figure 31.  Mappings from control places C1, C2, C3 and C4 to automata in Example 2 
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Step 7. The test below verifies that the controlled model PNSUPER1 obtained is isomorphic 
(identical) to RWSUPER. This means that the controller obtained in the PN domain is also a proper 
supervisor, i.e. it is maximally permissive and non-blocking.  
true = Isomorph(PNSUPER1,RWSUPER;identity)   
 
6.2.2. Example 2 – optimal solution 2 
 

As an alternative control mechanism to optimally enforce GMEC M(p1) ≤ 1 on the UPNM of 
Figure 26, the control place C shown in Figure 32(a) is also computed [10]. It was shown [10] that the 
controlled model in Figure 32(b) can produce the supremal controllable sublanguage which has 32 
states with 62 transitions. In short, the controlled model shown in Figure 32(b) is also maximally 
permissive and non-blocking.   
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Figure 32.  (a) A computed control place C [10];  (b) Controlled model  
 

As the first four analysis steps are the same as the ones provided in the previous section, for this 
example, to verify the correctness of the control place C, a proposed analysis approach is followed as 
shown below.   
Step 5. The given feedback control element, i.e. control place C shown in Figure 32(a), is converted 
into an equivalent buffer model as shown in Figure 33. The control place C is created within TCT as 
follows: 
C = Create(C,[mark 0],[tran[0,5,1],[0,61,1],[1,5,2],[1,61,2],[2,1,0],[2,5,3],[2,61,3], [3,1,1]])  (4,8)  
Step 6.  The controlled model PNSUPER2 (PNSUPER2 = PLANT||C) is obtained by using PLANT 
and buffer model C of the given control place as follows: 
PNSUPER2 = Sync(PLANT,C)  (32,62)  Blocked_events = None    
Step 7. The test below verifies that the controlled model PNSUPER2 obtained is isomorphic 
(identical) to RWSUPER. This means that the controller obtained in the PN domain is also a proper 
supervisor, i.e. it is maximally permissive and non-blocking.  
true = Isomorph(PNSUPER2,RWSUPER;identity)     
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Figure 33.  Mapping from control place C to automata in Example 2 

 
 
6.2.3. Example 2 – suboptimal solution 
 

In this section a suboptimal solution for enforcing GMEC M(p1) ≤ 1 on the UPNM shown in 
Figure 26 is analysed. In Basile et al. [31], two suboptimal control places, namely pc1 and pc2, as 
shown in Figure 34(a), are computed. Only one of them is necessary to enforce the GMEC M(p1) ≤ 1 
on the UPNM shown in Figure 26.  In this section the controlled model obtained by pc1 is analysed as 
shown in Figure 34(b).  
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           Figure 34.  (a) Two computed possible control places [31] for enforcing GMEC M(p1) ≤ 1 
           on the UPNM shown in Figure 26;  (b) Controlled model obtained by pc1  
 

For the suboptimal case in Example 2, the first four analysis steps are the same as the ones 
provided in the previous section.   
Step 5. The given feedback control element pc1 is converted into an equivalent buffer model PC1 as 
shown in Figure 35. PC1 is created within TCT as follows: 
PC1 = Create(PC1,[mark 0],[tran [0,5,1],[1,1,0]])  (2,2)  
Step 6. The controlled model SPNSUPER (SPNSUPER = PLANT||PC1) is obtained by using PLANT 
and buffer model PC1 of the given control place as follows: 
SPNSUPER = Sync(PLANT,PC1)  (21,38)  Blocked_events = None   
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Figure 35.  Mapping from pc1 to automaton model PC1 in Example 2 
  
Step 7. The following tests verify that the controlled model SPNSUPER obtained is the sublanguage 
of the optimal solution RWSUPER. This means that the controller obtained in the PN domain is a 
suboptimal supervisor for enforcing GMEC M(p1) ≤ 1 on the UPNM shown in Figure 26. 
true = Nonconflict(SPNSUPER,RWSUPER) 
MRW_PN = Meet(SPNSUPER,RWSUPER)  (21,38) 
true = Isomorph(MRW_PN,SPNSUPER;identity) 
 
6.3. Example 3    
 

In this section, an example of FMS prone to deadlock, as shown in Figure 36(a), is considered. 
The system is composed of two robots, namely R1 and R2, each of which can hold one part at a time, 
and three machines, namely M1, M2 and M3.  M3 can process only one part at a time while M1 and 
M2 can process two parts at a time. For loading of the system, there are two loading buffers I1 and I2, 
and for unloading, there are three unloading buffers O1, O2 and O3. The action areas of robot R1 are 
I1, M1 and M3, and for robot R2, they are M1 and M2. For the sake of simplicity, it is assumed that 
inputting parts from I2 to M2 and outputting parts from M3 to O1, M2 to O2, and M1 to O3 are the 
part of machining operation.  As shown in Figure 36(b), two part types are considered: P1 and P2. P1 
is taken from I1 by R1 and it is either put into M3 or M1. After being processed by M3, P1 is moved 
to O1 by M3. When put into M1, P1 is processed by M1 and after that it is moved from M1 to M2 by 
R2. After being processed by M2, P1 is finally moved to O2 by M2. In the production process of P1, 
R1&M3 or R1&M1 and R2&M2 are used. Similarly, P2 is taken from I2 by M2, and after being 
processed by M2 it is moved from M2 to M1 by R2. Finally, after being processed by M1, P2 is 
moved to O3 by M1. In the production process of P2, M2&R2&M1 are used.  
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Figure 36.  (a) An example of FMS;  (b) The production sequences 
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Figure 37(a) shows the PNM of the system [18]. Initially it is assumed that there are no parts in 
the system. In the PNM there are fifteen places, P = {p1, p2, …, p10, R1, R2, M1, M2, M3}, and 
eleven transitions, T =  {t0, t1, t2, …, t10}. It is assumed that once the manufacturing of the products 
starts, no event in the production processes can be prevented from occurring. Therefore, only 
transitions t1, t2 and t10 are controllable. Places p2 and p3 represent the operation of R1 and M3 
respectively for the production sequence of the part type P1. Similarly, places p2, p4, p5 and p6 
represent the operation of R1, M1, R2 and M2 respectively for production sequence of the part type 
P1. For production sequence of the part type P2, places p9, p8 and p7 represent the operation of M2, 
R2 and M1 respectively. The number of tokens in p1, i.e. M(p1) = 3, represents the number of 
concurrent activities that can take place for P1. The number of tokens in p10, i.e. M(p10) = 3, 
represents the number of concurrent activities that can take place for P2. Places R1 and M3 denote the 
resources robot 1 and machine 3 respectively. Places M1, R2 and M2 denote the shared resources 
machine 1, robot 2 and machine 2 respectively. Initial markings of places R1, R2 and M3 are all one 
as robots can hold one part and machine 3 can process one part at a time. Initial markings of places M1 
and M2 are all two as machine 1 and machine 2 can process two parts at a time. In order to have 
correct system behaviour, it is desirable that each production sequence can finish. It can be shown that 
this system suffers from deadlock problem and for this system the specification is to obtain the live 
system behaviour (non-blockingness in SCT terminology). The optimal (maximally permissive and 
non-blocking) controller consisting of three control places, namely pc1, pc2 and pc3, obtained by 
Ghaffari et al.[18] is depicted in Figure 37(b). When the controller is augmented with the uncontrolled 
PNM, the controlled model shown in Figure 37(c) is obtained. It was reported [18] that the controlled 
model shown in Figure 37(c) can produce the optimal live behaviour with 215 good states. 

For this example, to verify the correctness of the control places pc1, pc2 and pc3, the proposed 
analysis approach is followed as shown below.   
Step 1. The UPNM is the one given in Figure 37(a). Feedback control elements are three control 
places pc1, pc2 and pc3 as depicted in Figure 37(b), and the specification for the UPNM is non-
blockingness with respect to the initial state, i.e. liveness enforcing.  
Step 2.  It can be verified that UPNM is bounded with the place marking bounds p1:3, p2:1, p3:1, 
p4:2, p5:1, p6:2, p7:2, p8:1, p9:2, p10:3, R1:1, R2:1, M1:2, M2:2 and M3:1.   
Step 3.  Each place of UPNM is converted into an equivalent buffer model as shown in Figure 38.  The 
following event coding is used in the conversion process according to the TCT requirement that odd 
and even integers be used for controllable and uncontrollable events respectively.  
Event coding for Example 3: 
   UPNM:    t0 t1 t2 t3 t4 t5 t6  t7 t8 t9 t10     
 TCT:     0 1 21 30 4 50 6 70 8 90 101 

 
  The following steps are carried out using TCT. In the following, FMS defines automaton 
representation of UPNM . 
First, each place is created as an automaton as follows: 
P1 = Create(P1,[mark 0],[tran [0,0,1],[1,0,2],[1,6,0],[1,30,0],[2,0,3],[2,6,1],[2,30,1],[3,6,2], [3,30,2]])  
(4,9) 
P2 = Create(P2,[mark 0],[tran [0,0,1],[1,1,0],[1,21,0]])  (2,3) 
P3 = Create(P3,[mark 0],[tran [0,1,1],[1,30,0]])  (2,2) 
P4 = Create(P4,[mark 0],[tran [0,21,1],[1,4,0],[1,21,2],[2,4,1]])  (3,4) 
P5 = Create(P5,[mark 0],[tran [0,4,1],[1,50,0]])  (2,2) 
P6 = Create(P6,[mark 0],[tran [0,50,1],[1,6,0],[1,50,2],[2,6,1]])  (3,4) 
P7 = Create(P7,[mark 0],[tran [0,8,1],[1,8,2],[1,70,0],[2,70,1]])  (3,4) 
P8 = Create(P8,[mark 0],[tran [0,90,1],[1,8,0]])  (2,2) 
P9 = Create(P9,[mark 0],[tran [0,101,1],[1,90,0],[1,101,2],[2,90,1]])  (3,4) 
P10 = Create(P10,[mark 0],[tran [0,101,1],[1,70,0],[1,101,2],[2,70,1],[2,101,3],[3,70,2]])  (4,6) 
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 Figure 37.  (a)  PNM of the FMS [18];  (b) Three computed control places [18]; (c) Controlled model 
 

R1 = Create(R1,[mark 0],[tran [0,0,1],[1,1,0],[1,21,0]])  (2,3) 
R2 = Create(R2,[mark 0],[tran [0,4,1],[0,90,1],[1,8,0],[1,50,0]])  (2,4) 
M1= Create(M1,[mark 0],[tran [0,8,1],[0,21,1],[1,4,0],[1,8,2],[1,21,2],[1,70,0],[2,4,1], [2,70,1]])  (3,8) 
M2= Create(M2,[mark 0],[tran [0,50,1],[0,101,1],[1,6,0],[1,50,2],[1,90,0],[1,101,2],[2,6,1], [2,90,1]])  
(3,8) 
M3 = Create(M3,[mark 0],[tran [0,1,1],[1,30,0]])  (2,2) 
 
Then the FMS is the synchronous product of all places, i.e. FMS = 
p1||p2||p3||p4||p5||p6||p7||p8||p9||p10||R1||R2||M1||M2||M3 and is obtained as follows:  
FMS = Sync(P1,P2)  (8,23)  Blocked_events = None   
FMS = Sync(FMS,P3)  (16,36)  Blocked_events = None   
FMS = Sync(FMS,P4)  (48,132)  Blocked_events = None   
FMS = Sync(FMS,P5)  (96,280)  Blocked_events = None   
FMS = Sync(FMS,P6)  (36,88)  Blocked_events = None   
FMS = Sync(FMS,P7)  (108,408)  Blocked_events = None   
FMS = Sync(FMS,P8)  (216,852)  Blocked_events = None   
FMS = Sync(FMS,P9)  (648,2880)  Blocked_events = None   
FMS = Sync(FMS,P10)  (504,2168)  Blocked_events = None   
FMS = Sync(FMS,R1)  (504,2168)  Blocked_events = None   
FMS = Sync(FMS,R2)  (426,1696)  Blocked_events = None   
FMS = Sync(FMS,M1)  (341,1303)  Blocked_events = None   
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FMS = Sync(FMS,M2)  (261,933)  Blocked_events = None   
FMS = Sync(FMS,M3)  (261,933)  Blocked_events = None   
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Figure 38.  Mappings from UPNM to automata in Example 3 

  
The problem considered is that of liveness enforcing problem. Therefore, the specification is 

non-blockingness with respect to the initial state and it is obtained by using Allevents() command as 
follows: ALL = Allevents(FMS)  (1,11). In addition, the following test shows that FMS will block in 
the absence of control: false = Nonconflict(FMS,ALL).  
Step 4. A  RW supervisor RWSUPER is obtained as follows: 
RWSUPER = Supcon(FMS,ALL)  (215,771)  
Step 5. The given feedback control elements, i.e. control places pc1, pc2 and pc3, are converted into 
equivalent buffer models as shown in Figure 39. Control places are created within TCT as follows: 
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PC1 = Create(PC1,[mark 0],[tran [0,21,1], [0,101,1], [1,4,0], [1,21,2], [1,90,0], [1,101,2], [2,4,1], 
[2,90,1]])  (3,8) 
PC2 = Create(PC2,[mark 0],[tran [0,21,1],[0,90,1],[1,4,0],[1,8,0],[1,21,2],[1,90,2],[2,4,1], [2,8,1]])  
(3,8) 
PC3 = Create(PC3,[mark 0],[tran [0,4,1], [0,101,1], [1,4,2], [1,50,0], [1,90,0], [1,101,2], [2,50,1], 
[2,90,1]])  (3,8) 
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Figure 39.  Mappings from control places pc1, pc2 and pc3 to automata in Example 3 
 
Step 6. The controlled model PNSUPER (PNSUPER=FMS||PC1||PC2||PC3) is obtained by using FMS 
and buffer models of the given feedback control elements PC1, PC2 and PC3 as follows: 
PNSUPER = Sync(FMS,PC1)  (227,800)  Blocked_events = None   
PNSUPER = Sync(PNSUPER,PC2)  (223,793)  Blocked_events = None   
PNSUPER = Sync(PNSUPER,PC3)  (215,771)  Blocked_events = None    
Step 7. The following test verifies that the controlled model PNSUPER obtained is isomorphic 
(identical) to RWSUPER: true = Isomorph(RWSUPER,PNSUPER;identity). This means that the 
controller obtained in the PN domain is also a proper supervisor, i.e. it is maximally permissive and 
non-blocking. 

The following shows that the optimal controlled behaviour PNSUPER (or RWSUPER) is not 
simply the language generated by the trimmed plant. This is because not all transitions are controllable. 
In this case the optimal controlled behaviour PNSUPER (or RWSUPER) is the supremal controllable 
sublanguage defining the maximally permissive and non-blocking behaviour. 
TRIMFMS = Trim(FMS)  (232,838) 
false = Isomorph(PNSUPER,TRIMFMS) 
 
 
7. Conclusions  
 

This paper has proposed a novel and general methodology for carrying out the correctness 
analysis for the computed PN-based controllers by using the TCT implementation tool of SCT. 
Assuming that an uncontrolled PN model of a system, a set of specifications, and a PN-based 
controller are given, the proposed analysis method provides the result as to whether the PN-based 
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controller enforces the specification on the uncontrolled PN model optimally. Three examples have 
been considered for illustration.  
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10. Appendix 
 
TCT: General Information 
TCT is a program for the synthesis of supervisory controls for DES.  Generators and recognisers are 
represented as standard DES in the form of a 5-tuple: 
 
                      [Size, Init, Mark, Voc, Tran] 
 
Size is the number of states (the standard state set is {0, ..., Size-1}), Init is the initial state (always 
taken to be 0), Mark lists the marker states, Voc the vocal states, and Tran the transitions.  A vocal 
state is a pair [I,V] representing positive integer output V at state I.  A transition is a triple [I,E,J] 
representing a transition from the exit (source) state I to the entrance (target) state J and having event 
label E.  E is an odd or even non-negative integer, depending on whether the corresponding event is 
controllable or uncontrollable. 
 

event E 
              exit I  O----------------------->O  J entrance 

 
All DES transition structures must be deterministic: distinct transitions from the same exit state must 
carry distinct labels. 
 
TCT: Synthesis Procedures. A quick review of some of the TCT commands used in this paper: 
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DES = Create(DES) 

is a new discrete-event system (DES).  Option 1 allows fast user input via a sequence of prompts, 
resulting in direct creation of a .DES file.  Option 2 allows user to create a text (.ADS) file with 
any ASCII text editor; this file can be converted to a .DES file using the TCT procedure FD. 
 

DES2 = Selfloop(DES1,[SELF-LOOPED EVENTS]) 
is DES1 augmented by self-loops at each state, with common event labels listed by the user.  To 
prevent non-determinism, this list must not contain event labels appearing in DES1. 

 
DES3 = Sync(DES1,DES2) 

is the (reachable) synchronous product of DES1 and DES2.   
 

DES3 = Supcon(DES1,DES2) 
is a trim recogniser for the supremal controllable sublanguage of the marked ("legal") language 
generated by DES2 with respect to the marked ("plant") generated by DES1.  DES3 provides a 
proper supervisor for DES1.   

 
DES2 = Trim(DES1) 

is the trim (reachable and co-reachable) substructure of DES1. 
 
DES3 = Meet(DES1,DES2) 

is the meet (reachable Cartesian product) of DES1 and DES2. DES3 need not be co-reachable.   
 
DES2 =Allevents(DES1) 

is a one-state DES self-looped with all the events of DES1. 
 
True/False = Nonconflict(DES1,DES2) 

tests whether DES1 and DES2 are non-conflicting, namely whether all reachable states of the 
product DES are co-reachable.   

 
True/False = Isomorph(DES1,DES2) 

tests whether DES1 and DES2 are identical up to renumbering of states; if so, their state 
correspondence is displayed. 
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