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Abstract: Credit risk evaluation systems play an important role in the financial 
decision-making by enabling faster credit decisions, reducing the cost of credit analysis 
and diminishing possible risks. Credit scoring is the most commonly used technique for 
evaluating the creditworthiness of the credit applicants. The credit models built with 
this technique should satisfy two important criteria, namely accuracy, which measures 
the capability of predicting the behaviour of the customers, and transparency, which 
reflects the ability of the model to describe the input-output relation in an 
understandable way. In our paper, two credit scoring models are proposed using two 
types of fuzzy systems, namely Takagi-Sugeno (TS) and Mamdani types. The accuracy 
and transparency of these two models have been optimised. The TS fuzzy credit 
scoring model is generated using subtractive clustering method while the Mamdani 
fuzzy system is extracted using fuzzy C-means clustering algorithm. The accuracy and 
transparency of the two resulting fuzzy credit scoring models are optimised using two 
multi-objective evolutionary techniques. The potential of the proposed modelling 
approaches for enhancing the transparency of the credit scoring models while 
maintaining the classification accuracy is illustrated using two benchmark real world 
data sets. The TS fuzzy system is found to be highly accurate and computationally 
efficient while the Mamdani fuzzy system is highly transparent, intuitive and humanly 
understandable. 
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Introduction 
 

The global financial crisis of 2008 reveals the importance of the credit risk evaluation 
decisions not only on the financial institutions and banks but also on both global and local 
economy. Many major banks collapsed and others suffered heavy losses as a result of mortgage 
payment default. Hence, decision support tools that aim to enhance the manager’s decision may 
play a valuable role in decision-making by allowing faster and more accurate decisions.   

Credit scoring is the most commonly used method for evaluating the creditworthiness of 
the applicants. Before this method came into use, judgmental method was the only way to 
differentiate between the good applicants who are likely to repay their debts and the bad ones who 
are denied because of the high potential of defaulting on their debts. This approach to credit 
assessment has been criticised for being inconsistent, costly and time consuming. In recent years, 
credit scoring which replaced the judgmental method, aims at classifying credit applicants into bad 
and good customers with respect to their features such as age, income, and marital status [1].       

Accuracy and transparency are two important criteria that should be satisfied by any credit 
scoring model. A highly accurate credit model enables correct assessment, thus avoiding any 
heavy losses associated with wrong predictions while transparent credit model enables financial 
analysts to understand the decision process. 
     The literature on credit scoring shows that statistical methods such as linear discriminant 
analysis and logistic regression are the most commonly used methods in building credit scoring 
models [2]. However, artificial intelligence techniques such as neural networks and genetic 
algorithms provide a new alternative to statistical methods in optimising non-linear, complex and 
real world systems [1, 3-5].  
    The main reason artificial intelligence techniques are seldom used in credit risk evaluation 
industry is the lack of explanatory capabilities of these methods. Hence, the enhancement of the 
transparency of the artificial-intelligence-based credit scoring model is one of the key factors of 
their successful deployment [6]. The main advantage of the fuzzy system is its transparency. 
Through the hybridisation of the transparency of the fuzzy system with the excellent learning 
capacity of the artificial intelligence techniques, some limitations of single-methods transparency 
may be overcome. Using this approach, some credit scoring models have been proposed using 
neuro-fuzzy [7-8] and genetic fuzzy [9] techniques to solve the transparency problem. Hoffman et 
al. [9] proposed a genetic fuzzy system for credit scoring and compared it with Nefclass, a neuro-
fuzzy algorithm. The results showed that the performance of the genetic fuzzy algorithm is better 
than Nefclass [10] while the latter is more transparent. In addition, the above stated study reveals 
the classical trade-off between accuracy and transparency in the fuzzy systems. Hence, such 
problem has to be carefully addressed and balanced based on the needs and the objective of the 
credit scoring user.   
     In a recent study [3], the main soft computing methods applied in credit scoring models 
were surveyed. However, the multi-objective genetic algorithm, which is an efficient technique to 
get a maximum trade-off between conflicting objectives, has not been investigated for its handling 
of the accuracy and transparency trade-off in the fuzzy-based credit scoring models. The multi-
objective genetic algorithm has, however, been successfully applied in the design phase of the 
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fuzzy-rule-based system modelling [11]. Specifically, it has been used in this phase to find an 
appropriate balance between transparency and complexity of the fuzzy-rule-based system [12]. 
Moreover, the multi-objective Pareto optimal solutions, the adopted approach in this paper, give 
more realistic solutions to the problem by allowing the decision-maker to choose between 
different solutions based on his needs and conditions. This paper aims at investigating the 
significance of this approach for addressing the above stated problem using two real-world data 
sets. 
      In this paper, two credit scoring models are built using Takagi-Sugeno (TS) and Mamdani 
fuzzy systems. Particularly, the accuracy and transparency of the resulting credit fuzzy models are 
enhanced using two different multi-objective genetic algorithms. To illustrate the potentiality of 
the proposed methods, two benchmark data sets, namely German [13] and Australian [14] credit 
data sets, are used. An overview of the multi-objective genetic optimisation methods is first 
detailed, followed by the description of the adopted methodology and the data sets used in this 
study.  
      
Multi-Objective Genetic Algorithms 

 
Many real-world problems have multiple conflicting objectives that should be 

simultaneously considered, as the optimisation of a particular solution with respect to one 
objective can give unacceptable results with respect to other objectives. A reasonable approach to 
multi-objective optimisation problem is to find a set of solutions, each of which achieves the 
objectives in a balanced way without being dominated by any other solution. Genetic algorithms, 
the meta-heuristic techniques inspired by the evolutionary biology, are well suited to this class of 
problems [15].  

There are two approaches in multi-objective genetic algorithms optimisation. The first is 
to combine the various objective functions into a single function in a linear fashion using weight 
factors. The drawback of this approach lies in the determination of the optimal weight values that 
characterise the user preferences. The second approach finds the non-dominated Pareto optimal 
set of solutions for all optimal compromises between the conflicting objectives. It is a practical 
approach as the decision-maker can find solutions with different trade-off levels. A number of 
algorithms have been proposed [16-17] and the elitist non-dominated sorting genetic algorithm II 
(NSGA-II) [18] is among the well-known and most commonly used multi-objective genetic 
algorithms in the literature. 

The NSGA-II was introduced to overcome the following drawbacks of NSGA [19]:  (i) 
computation  complexity, (ii) non-elitism approach and (iii) the need for specifying a sharing 
parameter. This algorithm has two features which makes it an efficient algorithm. The first one is 
that the fitness function of the solution is based on non-dominated ranking and a crowding 
measure, and the second is the elitist-generation update procedure. A non-dominated rank is 
assigned to each individual using the relative fitness. The concept of non-dominated solution can 
be defined as follows: Individual or solution 'A' dominates 'B' if the two following conditions hold:  
(i) 'A' is strictly better than 'B' in at least one objective and 
(ii)  'A' is no worse than 'B' in all objectives. 



 
Maejo Int. J. Sci. Technol.  2010, 4(01), 136-158 

 

 

139 

An outline of the elitism-preserving mechanism of NSGA-II is written as follows:  
Step 1: Generate an initial population with N chromosomes. 
Step 2: Generate an offspring population by iterating the following procedures N times: 

(1) Select a pair of parent solutions from the current population. 
(2) Generate an offspring from the selected parent solutions by genetic operations. 

Step 3: Merge the offspring population and current population. Then select the best N solutions 
from the merged population to construct the next population. 
Step 4: If a pre-specified stopping condition is satisfied, terminate the execution of the algorithm.  
Otherwise, return to Step 2. In the former case, we choose all the non-dominated solutions in the 
merged population in Step 3 as the final solutions. 

Controlled elitist genetic algorithm, a variant of NSGA-II, was proposed by Deb and Goel 
[20] for controlling the extent of the elite members of the population to maintain the diversity of 
the population for convergence to an optimal Pareto front. The controlling mechanism is 
accomplished by allowing only a certain portion of the population to be included in the currently-
best-non-dominated solutions. The controlled NSGA-II has a better convergence than the original 
NSGA-II [20], and since we apply the multi-objective genetic algorithm in different steps of 
optimisation, we choose to use the controlled NSGA-II in our study rather than the original 
NSGA-II in order to reduce the computational cost. 

 
Methodology 
 

The credit scoring models were implemented using MATLAB 7.5.0. The two proposed 
methods, which are based on Takagi-Sugero (TS) and Mamdani fuzzy systems are described in 
the respective order as follows.  
 
First approach: Takagi-Sugeno-fuzzy-based system 
 

In the first approach, the fuzzy systems were extracted from the data by a subtractive 
clustering method and then the resulting fuzzy rules were optimised to increase the accuracy using 
genetic algorithms. In the last two steps a multi-objective genetic algorithm was applied to 
preserve the accuracy of the fuzzy model to a given value while enhancing the transparency of the 
fuzzy model by reducing the customer input and fuzzy sets in the rule base. The steps are outlined 
below.  
Step 1: Structure and parameter initialisation using subtractive clustering algorithm. In this 
step, a fuzzy system of TS type was generated using subtractive clustering method [21] which is 
an efficient and fast algorithm used for estimating the number of clusters and the location of 
cluster centres in a set of data. The linear least-square estimation was then used to determine each 
rule consequent equation. This algorithm has the advantage of describing the TS fuzzy model with 
few rules [21]. The TS fuzzy model [22] uses fuzzy rules with fuzzy antecedents and functional 
consequent parts. This model is represented by a series of fuzzy rules of the form: 
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where Rk is the label of the kth fuzzy rule, f  represents the output variable , and Ak is the fuzzy 
set that is defined over input , where  is the n-dimensional pattern vector. Ak is 
represented by Gaussian membership functions of the form: 
 

 
where cik and aik are the centre and the width of the Gaussian function respectively. 

Step 2: Structure and parameter optimisation by genetic algorithm. In the second step, a 
genetic algorithm was applied to increase the accuracy of the initial fuzzy system by searching for 
the most suitable value of centre cik and width aik of each fuzzy set in the rule base. The fitness 
function of the genetic algorithm for an individual Si is given by: 

 
where fitnacc(Si) is the fitness function of the accuracy measured by the percentage of correctly 
classified training patterns. The parameters of membership functions in the antecedents of each 
fuzzy rule were encoded into a chromosome. Thus, the i-th chromosome is a string of the form: 

 

The first individual of the initial population was generated as a copy of the premise 
parameters of the initial fuzzy rules generated from step 1. The initialisation from a good 
population may speed up the convergence of the solution. The remaining individuals were 
initialised with random values. The best individuals in the population were always selected and 
kept unchanged in the next generations according to the elitist strategy. The simplest form of 
crossover, which is the single-point crossover, was adopted. At the end of this step, the highest-
accuracy fuzzy model was obtained. 
 

Step 3: Feature selection using multi-objective genetic algorithm. The objective of this step is 
to reduce input dimensions by choosing the relevant subset of features. To achieve this, we need 
first to keep the accuracy achieved in the previous GA optimisation step as high as possible while 
choosing the subset which contains the smallest number of features. 

The modelling objectives of fuzzy system S in this step can be written as follows: 
 
Maximise  facc(S) ,  Minimise finput(S)                                                                   (5) 

where facc(S) is the fuzzy system accuracy measured by the percentage of correctly classified 
training patterns and fitninput(S) is the total number of selected features of a fuzzy system. To 
simultaneously achieve these two objectives, controlled elitist genetic algorithm (controlled 
NSGA II) was applied. The results of this step are Pareto-front solutions that represent a number 
of fuzzy models with different accuracy numbers of input values. The fuzzy model chosen in this 
case is based on the need of the user, that is, if the accuracy is more important than the 
transparency then a fuzzy model with high accuracy and high number of features will be chosen. 
As stated before, our objective is to enhance the transparency while keeping almost the same 
accuracy. So a fuzzy model which has accuracy value near to the initial fuzzy model was chosen. 
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The final result of this step is a fuzzy model with relatively good classification accuracy and 
relatively fewer number of features. 

The following is the design of the chromosome used for feature selection (step3) as well as 
the genetic operators applied for exploring the search space by testing every possible combination 
of candidate features and selecting the relevant ones.  
Chromosome design  

The chromosome  which represents the selected features is denoted by a concatenated 
binary bit string of length  (   is the total number of features in the data set), where each binary 
bit denotes whether a given input is selected during the feature selection process. In this 
implementation, the selected features were set to 1 while the non-selected features were set to 0. 
Figure 1 shows the structure of an example of one chromosome after the selected feature process 
in the Australian data set. The total number of features is 14 and the selected inputs which have 
the value 1 are: 1, 2, 5, 8, 9, 10, 13 and 14. 

 

 
Figure 1.  Chromosome of the genetic algorithm used in the feature selection 

 
Genetic operators  

A new population  of chromosomes (fuzzy systems) was generated using the genetic 
operations: selection, crossover and mutation. To generate a new fuzzy system , first a pair of 
parent fuzzy systems was selected from the current population using tournament selection based 
on the Pareto ranking and the crowding distance. In order to maintain the diversity in the next 
population, the best non-dominated solutions were kept down to only 35% (which is the default 
value defined by the algorithm [23]) of the population. In addition, the crowding measure was 
used to calculate the crowding distance for each individual on a non-dominated front. After the 
selection step, the uniform crossover and uniform mutation with a range of 0.01 were applied. 
These genetic operations were applied for fuzzy sets selection step (next step) and also for fuzzy 
sets replacement process in the second approach because they involve similar problem.   
 

Step 4: Fuzzy sets selection using multi-objective genetic algorithm. The final step in the 
optimisation process is the removal of the fuzzy sets whose effect on the fuzzy system is not 
important. In this case, we have two objectives; the first one is to maximise the classification 
accuracy of the fuzzy system while minimising the number of fuzzy sets in the fuzzy system is the 
second objective. The objectives of the fuzzy system S are written as follows: 
 
          Maximise facc(S) ,  Minimise  fsets(S)                                                                         (6) 

where facc(S) is the accuracy of the fuzzy system measured by the percentage of correctly 
classified training patterns and fsets(S) is the number of selected fuzzy sets. To accomplish these 
two objectives, controlled elitist genetic algorithm was applied. Among the Pareto-front solutions 



 
Maejo Int. J. Sci. Technol.  2010, 4(01), 136-158 

 

 

142 

that represent fuzzy models with different accuracy numbers of fuzzy set trade-off, a fuzzy system 
with accuracy almost equal to the initial fuzzy system was chosen. After this final stage, a fuzzy 
model with relatively good classification accuracy and less fuzzy sets was obtained. 

The following is a description of the chromosome design used for fuzzy set selection (step 
4). In this step, we adopt the same genetic operators as in step 3. 
 
Chromosome design  

The chromosome  which represents the selected antecedents is denoted by a 
concatenated binary bit string of length , where  and  are the number of inputs 
after feature selection phase and the number of rules in the fuzzy system respectively. Each binary 
bit in the string denotes whether a given fuzzy antecedent is selected. In this case, the selected 
antecedents were set to 1 and non-selected antecedents were set to 0. Figure 2 shows the 
structure of the chromosome used in the antecedent fuzzy sets selection phase.  

 

 
 
Figure 2.  Chromosome of the genetic algorithm used in the antecedent fuzzy set selection phase 
 
 
Second approach: Mamdani-fuzzy-based system 
 

In the second approach, we used Mamdani fuzzy system [24] in place of Takagi-Sugeno 
one. First, the initial Mamdani fuzzy system was generated using fuzzy C-means clustering (FCM) 
method [25]. The generated Mamdani fuzzy rules are written as: 
 

  
where Rk is the label of the kth fuzzy rule, Ak is the fuzzy set defined over the input  where 

 is the n-dimensional pattern vector while  is a fuzzy set defined over the 
output variable  . All the fuzzy sets in the rule base are represented by Gaussian function.  

The next step is to replace the fuzzy sets of the generated fuzzy system by new fuzzy sets. 
The reason behind this replacement is that the fuzzy sets resulting from clustering or learning 
method are usually not interpretable [10]. On the other hand, the new predefined fuzzy sets have 
clear linguistic interpretations such as low, average and high. The linguistic values of each 
attribute xi have to be defined before starting the replacement process. In our case, we use five 
linguistic values: very low, low, average, high and very high, and each of the linguistic values is 
defined within a specific range of values. Figure 3 shows an example of five linguistic values for 
the credit amount attribute in German credit data. These new fuzzy sets replace the existing ones 
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of the credit amount attribute in the fuzzy-rule-based system. This idea is similar to that applied by 
Ishibuchi et al [26].  
  In replacing the existing fuzzy sets by the new ones the following must be considered:   
- The replacement of an existing fuzzy set ik of the rule k and the i attributes by ’ik where ’ik 
is one of the linguistic values defined over the i attribute. (For example, ’ik could be either low, 
average or high.) 
- The replacement procedure has to improve the classification accuracy of the fuzzy system. 
- In addition to the five linguistic values, ‘don’t care’ is another linguistic value and it refers to 
unimportant fuzzy set that can be deleted without effecting the fuzzy system performance. 

In the first subsection below more explanation on the problem of replacing the existing 
fuzzy sets with linguistic values is given and the proposed solution is described. In the second 
subsection, a description of the chromosome design used for Mamdani-based fuzzy system is 
given.   

 

 
Figure 3.  Linguistic fuzzy sets of the credit amount attribute – German data set 

 
Problem formulation  

Let i be the number of linguistic values in each attribute. So, for each attribute i , we 
have  possible antecedent fuzzy sets. In addition, ‘don’t care’ is considered as another fuzzy set. 
In this case, we have possible cases and each antecedent fuzzy set ik in the fuzzy rules 
is selected from the given  linguistic values and ‘don't care’. The total number of possible 
combinations of the antecedent linguistic values in the fuzzy rules is 

, where  is the number of linguistic values of  and  
is the number of antecedent fuzzy sets in the fuzzy rules.  

The task now is to search for the best combination of these antecedent linguistic values 
that achieves the two objectives, namely maximising the classification accuracy and maximising 
the transparency by increasing the number of ‘don’t care’ fuzzy sets in the rule base. These two 
objectives of the fuzzy system S can be written as: 

               Maximise facc(s), Maximise ftransp (s)                                                                   (8) 
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where facc(s) is the classification accuracy of the fuzzy system measured by the percentage of 
correctly classified training patterns and  ftransp is the transparency measured by the number of 
‘don’t care’ fuzzy sets in the rule base. To solve this combinatorial problem with these two 
objectives, a controlled elitist genetic algorithm is applied. Since ‘don't care’ conditions can be 
omitted, fuzzy rules with many ‘don't care’ conditions are written as short fuzzy rules. 
 
Chromosome design  

The chromosome  is coded as follows:  
 

 

where  and  denote the number of features and fuzzy rules respectively.  is the linguistic 
antecedent value and  is the consequent class. The length of the chromosome is . 
We used six linguistic values: very low, low, average, high, very high and ‘don’t care’.  Each of 
these linguistic values is defined by a number. In our case, we set the values 0, 1, 2, 3, 4 and 5 to 
denote ‘don’t care’, very low, low, average, high and very high respectively. For the consequent 
class, we set 0 and 1 for negative and positive class respectively. In this case, each antecedent 
condition   and the consequent class .  

The following is an example to further explain this idea. Assume that we generate a fuzzy 
system with 3 inputs and 2 rules in the clustering step and then we get the string 01204521 as one 
of the best Pareto solutions at the end of the multi-objective optimisation process. Figure 4 shows 
the decoding process of the 01204521 string. Since we have 3 inputs and one output, the length 
of string encoding one rule is four. Decoding process of the previous string results in the 
following rules: 
Rule1: If input 1 is ‘don’t care’, input 2 is very low and input 3 is low, then outcome is negative.  
Rule2: If input 1 is high, input 2 is very high and input 3 is low, then outcome is positive. 
    

 
 

Figure 4.  Chromosome coding with 3 inputs and 2 rules 

 

Data Sets 
 

We used two data sets, namely Germany credit data set [13] and Australian credit data set 
[14]. Both data sets are made publicly available to all users from the UCI Repository of Machine 
Learning Databases [13] and are mostly used to compare the performance of various classification 
models.  
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To eliminate the skewness and bias in the training and test samples, a common validation 
method called random sub-sampling validation was applied [27]. Using this method, the whole of 
the two data sets (German and Australian) were randomly divided into two parts: one for training 
and the other for testing. As commonly done in similar studies [27], 70% of the data were used 
for training purpose and 30% for testing the performance of the model. This process was repeated 
five times to create five pairs of training and test samples for each data set. To calculate the fuzzy 
classification accuracy for example, five fuzzy systems were built using the training data sets of 
the five data partitions (S1, S2, S3, S4 and S5)  and the accuracy result (validation result) was 
averaged over the classification accuracy of the corresponding five test sets. The advantage of this 
technique over k-fold and leave-one-cross validation methods is that the proportion of the 
training/testing split is independent of the number of iterations (folds). Table 1 presents the 
features of the data sets used in this study. (See Tables 9 and 10 in  Appendix for more details on 
the data attributes.) 

 
Table 1.  German and Australian data sets 
 

 No. of inputs Training set size Testing set size Data set size 

German data 20 700 300 1000 

Australian data 14 383 207 690 

 

 
Results and Discussion 

The first approach: TS-fuzzy-based system 
 

The results of the first step are summarised in Table 2. Since the transparency of the credit 
scoring model is one of the two modelling objectives, a compact fuzzy system with 3 fuzzy rules 
and relatively good accuracy was generated in the first step for both data sets.  

 
Table 2.  Classification accuracy of initial fuzzy systems with 3 rules using five randomly 
generated samples 
 

  S1 S2 S3 S4 S5 Average 
Training accuracy (%) 88.61 88.82 89.03 88.82 87.58 88.57 Australian 

data set Testing accuracy (%) 89.37 86.96 86.96 86.96 86.47 87.34 
Training accuracy (%) 75.57 75.71 77.86 76.29 77.43 76.57 German 

data set Testing accuracy (%) 75.00 69.67 74.67 73.33 71.33 72.80 
 

 
In the second step, a genetic algorithm was applied to improve the performance of the 

fuzzy system generated from the first step. The disadvantage of the genetic algorithm is its 
computational cost, but starting from a good point (initial fuzzy model) has speeded up the 
convergence of the genetic algorithm. For example, the genetic algorithm in the case of the 
Australian data-S1 took around 15 epochs to converge while it took around 16 epochs in the case 
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of the German data-S1. This reveals the complementary functioning between fuzzy clustering and 
genetic algorithm. The results of this step are shown in Table 3. As the table indicates, there is an 
increase in the prediction accuracy for both data sets. For the Australian data set, the classification 
accuracy for testing data increases from 87.34% to 88.89% while that for the German data set has 
a relatively significant increase from 72.80% to 77.07%. The difference in the enhancement may 
be due to the difference in the degree of the complexity in the two data sets. The German data is 
more complicated than the Australian one as the former has 20 inputs while the latter has 14 
inputs. Thus, the genetic algorithm seems to be more efficient in dealing with this complexity than 
the subtractive clustering algorithm. 

In the third step, a multi-objective genetic algorithm was applied to select the most 
relevant inputs in both data sets. Table 4 summarises the results of this step. The names and 
characteristics of the selected inputs for the two data sets are listed in Tables 9-10 (Appendix). 
For example, as Table 4 shows, the selected inputs for the German data-S1 are: 1, 2, 3, 5, 8, 12, 
14 and 19 and the corresponding attributes are the following: (1) Status of existing checking 
account, (2) Duration in month, (3) Credit history, (5) Credit amount, (8) Installment rate, (12) 
Property, (14) Other installment plans, and (19) Telephone. The Australian data attributes have 
been changed to meaningless symbols to protect the confidentiality of the data. As can be seen 
from Table 4, there is an improvement in the transparency of the fuzzy systems for both data sets 
represented by the decrease in the number of the inputs while there is a slight decrease in the 
accuracy of the fuzzy systems. Particularly, in the Australian data set the accuracy is kept almost 
the same. Its average number of inputs of fuzzy models is 5.8 while it is 8.6 for the German data 
set. The new fuzzy system of the Australian data-S1 has only 6 inputs and the other inputs have 
been deleted without affecting the prediction accuracy of the model. Hence, there is a complexity 
(in this case unnecessary attributes) that should be removed without decreasing the model 
performance and that has no relation with the accuracy-transparency trade-off. Furthermore, there 
are some cases where removing some inputs may increase the accuracy (like in the case of 
Australian data-S5). On the other hand, results from the German data case reveal accuracy-
transparency trade-off. For example, the performance of the fuzzy system of sample 3 that 
contains 11 inputs is better than that of the other fuzzy models with fewer numbers of inputs.  

  
Table 3.  Classification accuracy of fuzzy systems after applying genetic algorithm on initial fuzzy 
systems 

  S1 S2 S3 S4 S5 Average 
Training accuracy (%) 88.82 88.00 90.06 89.65 89.44 89.19 Australian 

data set Testing accuracy (%) 89.86 87.92 88.41 89.37 88.89 88.89 
Training accuracy (%) 78.00 77.71 78.86 77.43 78.29 78.06 German 

data set Testing accuracy (%) 78.00 74.67 77.67 78.00 77.00 77.07 
 

In the final step, the unnecessary fuzzy sets were removed. Table 5 shows the results of 
this step for both data sets. For the Australian data set, the average number of fuzzy sets per rule 
decreases from 5.8 to 3 while the prediction accuracy is maintained as it was before transparency 
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optimisation. In the case of the German data set, there is an improvement in the transparency of 
the fuzzy system from 8.6 to 4.9 fuzzy sets per rule with a slight decrease in the prediction 
accuracy. The fuzzy rules resulting from the last step of the Australian data-S1 are depicted in 
Figures 5-6. As Table 5 shows, 8 fuzzy sets are removed with only a slight decrease in the 
classification accuracy from 89.86% to 89.37%. 

 

Table 4.  Classification accuracy of fuzzy systems and their corresponding number of selected 
inputs after applying feature selection procedure 

 S1 S2 S3 S4 S5 Average 

No.of selected 
inputs 

6 5 6 7 5 5.8 

Inputs selected  1, 4, 8, 9, 
11, 13 

1, 3, 4, 
10, 11 

1, 4, 7, 9, 
11, 13 

1, 3, 6, 8, 
9, 10, 11 

2, 7, 8, 
11, 14 

 

Training accuracy 
(%) 87.58 87.58 87.37 88.61 88.41 87.91 

Australian 
data set 

Testing accuracy 
(%) 89.86 87.92 87.92 88.41 89.37 88.70 

No.of selected 
inputs 

8 9 11 6 9 8.6 

Inputs selected  1, 2, 3, 5, 
8, 12, 14, 

19 

1, 2, 5, 8, 
9, 10, 11, 

15, 18 

1, 3, 6, 7, 
9, 10, 13, 

14, 15, 
18, 19 

1, 5, 7, 
10, 16, 

17 

1, 2, 4, 6, 
9, 10, 13, 

17, 19 

 

Training accuracy 
(%) 75.00 75.42 76.57 75.43 75.57 75.60 

German 
data set 

Testing accuracy 
(%) 75.33 73.00 77.00 75.00 75.67 75.20 

 

 

Table 5.  Classification accuracy of fuzzy systems and their corresponding number of selected 
fuzzy sets after applying fuzzy set selection procedure 

  S1 S2 S3 S4 S5 Average 

No.of selected fuzzy 
sets  (sets/rule) 

10 12 8 8 7 3  

Training accuracy (%) 88.00 87.58 88.20 88.82 88.41 88.20 Australian 
data set 

Testing accuracy (%) 89.37 88.41 87.92 88.89 89.41 88.60 

No.of selected fuzzy 
sets (sets/rule) 

12 12 14 17 18 4.9  

Training accuracy (%) 75.29 74.57 75.43 75.71 76.57 75.51 
German 
data set 

Testing accuracy (%) 75.67 73.00 75.33 75.00 76.00 75 
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Figure 5.  Approximate TS fuzzy rules generated from Australian data-S1 
 

 

 

Figure 6.  Fuzzy rules after the fuzzy set selection step (Australian data-S1) 

 

Evaluation of the transparency of the antecedent fuzzy sets. The fuzzy IF-THEN rules 
depicted in Figure 5 are approximate fuzzy rules and they do not give an accurate description of 
the antecedent of the fuzzy rules and therefore this fuzzy system is not considered transparent 
despite its compactness, as it does not satisfy one of the comprehensibility measures which is the 
linguistic representation of the produced fuzzy rules. However, some useful information like the 
attributes that influence or contribute to the system decision can be extracted and some of the 
antecedent fuzzy sets can be easily understood using the graphical plot of fuzzy rules and even 
transformed into linguistic values. For example, the 11th attribute of the Australian data set is 
categorical and has two values; the first one is 0 and the second is 1. As Figure 5 shows, this 
attribute is only included in the first and second rules that represent the good and bad classes 
respectively. It can be seen that the value of the 11th attribute is 0 in the first rule while it takes 
the value 1 in the second rule and it can be concluded that the 11th attribute of the Australian data 
set has an effect in the discrimination between the good and bad customers. Furthermore, 
linguistic values can be assigned to both of the two fuzzy sets. Therefore, rather than saying IF 
Input 11 is Gaussian (0.3998 0.1251) in the first rule and IF Input 11 is Gaussian (0.4078 0.9664) 
in the second rule, we can say IF Input 11 belongs to category 1 (value 0) and IF Input 11 
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belongs to category 2 (value 1) in the first and the second rule respectively. Another issue for the 
continuous attribute is when there is too much overlapping between the antecedent fuzzy sets. 
This problem prevents the readability of the fuzzy sets and causes a lack of comprehensibility of 
the fuzzy system. To overcome this problem, a similarity-driven procedure [28] can be applied to 
merge similar antecedent fuzzy sets into a given attribute.  
Evaluation of the accuracy of the TS fuzzy system.  To evaluate the performance of our 
approach, the credit scoring model developed in this study is compared with the other benchmark 
methods [1, 29-30] applied on the same data sets. These methods are usually used to test the 
classification accuracy of the new algorithms applied for credit scoring models. More details 
about the main characteristics of these methods and their application in the credit scoring systems 
are described by Lahsasna et al [3]. As Table 6 shows, the first approach applied in this study (TS 
fuzzy system) compares favourably with the other methods such as genetic programming (GP), 
artificial neural networks (ANNs), radial basis function (RBF) and genetic algorithms-support 
vector machines ('GA+SVM') hybrid method while it is superior to some methods such as 
classification and regression tree (CART), rough sets, and the popular decision tree algorithm 
C4.5. Even though the machine learning methods are accurate classification methods, the lack of 
transparency of these methods is a major drawback especially when the end user needs to get 
some information about the credit system. Unlike these black-box methods like ANNs, SVM and 
genetic algorithm, TS-fuzzy-based method gives some useful information (such as defining the 
customer’s attributes) that influences the system decision and the approximate values of these 
attributes. 

 

Table 6.  Classification accuracy of 'GA+SVM', GP, CART, C4.5, rough sets, ANNs, RBF and 
TS-fuzzy-based system 
 

Author Method Classification accuracy 
for Australian data (%) 

Classification accuracy 
for German data (%) 

[29] GA+SVM 86.9 77.92 

[30] GP 88.27 77.34 

[30] CART 85.81 70.59 

[30] C4.5 87.06 73.17 

[30] Rough sets 83.72 74.57 

[30] ANNs 87.93 75.51 

[1] RBF 87.78 75.63 

This paper TS-fuzzy-based system 
(accuracy only) 

88.89 77.07 

 

In the case where the end user is only interested in prediction (i.e. getting the best 
classification accuracy), the use of TS-fuzzy-based system which results from step 2 (structure 
and parameter optimisation by genetic algorithm) is recommended as it is more accurate than the 
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TS-fuzzy-based system resulting from the final step where both the accuracy and the transparency 
have been considered.  Alternatively, other methods such as GP, ANNs, RBF and 'GA+SVM' can 
be used in such case.  
 
The second approach: Mamdani-fuzzy-based system 
 

The results obtained at the end of this step are summarised in Table 7, which shows the 
degree of performance and the level of compactness of each fuzzy system using the rate of 
correctly classified testing patterns and the number of antecedents per rule respectively. The 
number of antecedent fuzzy sets per rule has been reduced from 20 and 14 to 6.7 and 3.8 fuzzy 
sets per rule for the German and Australian data sets respectively. So this method gives relatively 
good results in enhancing the compactness of the initial fuzzy system resulting from the clustering 
step.  
 
   Table 7.  Accuracy and transparency results for Mamdani-based fuzzy system 

  S1 S2 S3 S4 S5 Average 

Training accuracy (%) 78.28 78.57 76.57 77.14 78.86 77.88 
Testing accuracy (%) 74.33 71 73.33 72.33 72 72.60 

Total no.of fuzzy sets in 
fuzzy system 160 160 160 160 160 160 

Total no.of selected 
fuzzy sets in fuzzy 

system 
56 61 53 49 50 53.8 

German 
data set 

Average no.of selected 
fuzzy sets per rule  7 7.6 6.6 6.1 6.25 6.71 

Training accuracy (%) 86.75 87.78 90.26 86.75 88 87.91 
Testing accuracy (%) 88.88 86 86 86 84.05 86.19 

Total no.of fuzzy sets in 
fuzzy system 98 98 98 98 98 98 

Total no.of selected 
fuzzy sets in fuzzy 

system 
19 26 25 36 29 27 

Australian 
data set 

Average no.of selected 
fuzzy sets per rule  2.71 3.71 3.57 5.14 3.6 3.8 

 

Evaluating the antecedent fuzzy sets comprehensibility. The antecedent fuzzy sets of this 
system become well defined and distinguishable. In Figure 3, the antecedent fuzzy sets of the 
attribute credit amount are plotted. This attribute may be assigned five well defined linguistic 
values: very low, low, average, high and very high, and every linguistic fuzzy set has a specific 
range of values. The fuzzy rules are humanly understandable because of the natural language 
used. Hence, the descriptive Mamdani fuzzy rules generated have the capacity to represent the 
knowledge characterising the relations between the customer features and his creditworthiness in 
a series of linguistic fuzzy rules, thus rendering the decision process of the system understandable 
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and helping the manager in the financial institution to make useful financial analysis and then make 
the right decisions.  
Comparison between TS and Mamdani fuzzy systems. Table 8 shows accuracy and 
transparency results for German and Australian data sets using TS and Mamdani fuzzy systems. 
Transparency results are shown using transparency 1, which indicates the number of rules, and 
transparency 2, which defines the number of fuzzy sets per rule. In addition, Figure 7 shows 
Mamdani fuzzy rules generated from Australian data set while Figure 8 shows the fuzzy rules 
extracted from German data set. The fuzzy system uses IF-THEN rules with linguistic values. By 
comparing this rule set with the rules extracted from TS fuzzy approach using the performance 
and comprehensibility criteria, the following results are noted. 
Performance : TS fuzzy system performance is 88.60% and 75% for the Australian and German 
data sets respectively while for Mamdani fuzzy system it is 86.19% and 72.60% for the same data 
sets. These results indicate that TS fuzzy system is more powerful than Mamdani fuzzy system 
and thus the former is the better choice for predicting the customer’s creditworthiness. 
Comprehensibility : Compared to Mamdani fuzzy system TS fuzzy system is more compact as it 
uses only 3 rules for both data sets while the former uses 7 rules for Australian data and 8 rules 
for German data. Furthermore, TS fuzzy system generally uses slightly smaller number of 
antecedent fuzzy sets per rule than Mamdani system for both data sets. Despite these strong 
points of the TS fuzzy system, however, the Mamdani fuzzy system has a major advantage in the 
capacity to represent the fuzzy rules in an intuitive way using linguistic fuzzy rules. This capacity 
represents the true level of comprehensibility. The approximate fuzzy rules of the TS fuzzy system 
do not give a clear idea about the underlying relation between the customer features and their 
creditworthiness or generally between the input and the output of the data. 
 

Table 8.  Accuracy and transparency results for TS- and Mamdani-based fuzzy systems 

Data TS-fuzzy-based system Mamdani-fuzzy-based system 

 Accuracy Transparency 

1 

Transparency 

2 

Accuracy Transparency 

1 

Transparency 

2 

German  75% 3 rules 4.9 sets/rule 72.60% 8 rules 3.8 sets/rule 
Australian  88.60% 3 rules 3 sets/rule 86.19% 7 rules 6.71 sets/rule 

 
 
Despite the enhancement of the comprehensibility of approximate of TS fuzzy sets using 

similarity-driven method, the problem is not definitely resolved especially when there is a high 
number of fuzzy sets in the same attribute. The Mamdani fuzzy system is therefore the best choice 
for data analysis and knowledge discovery from the data set. Thus, the choice of the system type 
is based on the needs of the user as to whether a high accuracy prediction or a high 
comprehensibility system is needed. For generating a completely transparent credit scoring model, 
Mamdani fuzzy system should be chosen. This makes the credit scoring model easier to 
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Figure 7.  Descriptive Mamdani fuzzy  rules  generated from  Australian data-S1 
 

 

 

Figure 8.  Descriptive Mamdani fuzzy  rules  generated from  German  data-S1 
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understand, for example the reason behind some decisions such as rejecting a credit application. In 
such a case, it is reasonable to trade some accuracy for extra transparency and better readability of 
the credit scoring model. The multi-objective genetic algorithm applied in this study can achieve a 
maximum trade-off between the accuracy and transparency. Hence, an adequate credit scoring 
system can be chosen based on the needs of the user, for example in the case where the end user 
wants only to conduct a data analysis to find out about the main customer attributes that influence 
the discrimination between the good and bad customers. In this case, the transparency which is 
measured by the number of selected inputs is more important than the classification accuracy and 
the recommended choice for him/her is to select an accuracy-transparency level where the 
accuracy value is acceptable while the transparency value is as high as possible (i.e. select the 
minimum number of inputs). The acceptable level of accuracy is the minimum level required to 
have a reliable data analysis while a very high level of transparency allows for better 
understanding of the key factors that influence the classification process. In another case in which 
the end user is only interested in the outcome without paying attention to the interpretation of the 
results, the fuzzy credit system with the highest classification accuracy value is chosen, 
irrespective of the number of selected inputs. The first approach (TS fuzzy system) is suitable for 
getting the above-mentioned choices. To further the investigation and the analysis on the relation 
between the attributes and the outcome, the end user needs to see the variation in the outcome 
when the values of certain attributes change. In such a case, the values of the fuzzy sets have to be 
well-defined and distinguishable so that each of the fuzzy sets can be defined using a linguistic 
value. The linguistic values such as low, average and high are natural and humanly understandable 
values and can be used as labels for the fuzzy sets to construct the fuzzy system. The second 
approach (Mamdani fuzzy system) is suitable for this kind of data analysis where the end user is 
interested in knowing not only the important attributes that contribute to the outcome but also the 
details on the relation between the attributes and the outcome.   
   

 

Conclusions 

In this paper, the transparency and accuracy of credit scoring model have been 
investigated using two different fuzzy model types, namely Takagi-Sugeno (TS) and Mamdani. 
The following conclusions have been drawn from this study. 

TS fuzzy system is highly accurate and computationally efficient although lacking in 
transparency while Mamdani fuzzy system is highly transparent, intuitive, well suited to human 
input and relatively accurate. Therefore, TS fuzzy system is apparently better in predicting the 
customer’s creditworthiness while the latter is better in data analysis and knowledge discovery. 
The transparency of the fuzzy systems resulting from clustering techniques is often lost during the 
learning of parameters and can be evaluated in two levels. The first and most important level of 
transparency is the capacity to represent the knowledge characterising the relations between the 
customers’ features and creditworthiness in a natural manner, e.g. as a series of linguistic fuzzy 
rules. The second level is the degree of complexity of the fuzzy system which can be measured by 
the number of fuzzy rules in the fuzzy system, the number of input variables for each rule, and the 
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number of fuzzy sets per variable. This study illustrates a classical trade-off between accuracy and 
transparency, and the power of multi-objective learning to find an adequate trade-off between 
them so the user can choose between different levels of accuracy-transparency based on the end 
user’s needs. This technique can also remove unnecessary complexity that may result from 
extracting the rules from the data set without affecting the performance of the fuzzy system. 
Therefore, it can be used in the pre-processing stage of a high dimensional pattern modelling as a 
feature selection method to reduce the number of inputs in the model. In this case the user can, 
based on his need, choose between different levels of number of inputs/accuracy of the model. 
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Appendix  
 
Table 9.  Attributes for German credit data set 
 
No. Attribute Type Value 

1 Status of existing 
checking account 

Categorical 0  :      ... <    0 DM ; 1 : 0 <= ... <  200 DM 
2 :      ... >= 200 DM /salary assignments for at least 1 
year 
3 : no checking account 

2 Duration in 
month 

Continuous [4 72] 

3 Credit history Categorical  0 : no credits taken/all credits paid back duly; 1 : all 
credits at this bank paid back duly; 2 : existing credits 
paid back duly till now; 3 : delay in paying off in the 
past; 4 : critical account/ other credits existing (not at 
this bank) 

4 Purpose Categorical  0: car (new); 1 : car (used); 2 : furniture/equipment; 3 
: radio/television; 4 : domestic appliances; 5 : repairs; 6 
: education; 7 : (vacation - does not exist?); 8 : 
retraining; 
 9 : business; 10 : others 

5 Credit amount Continuous [250 18424] 
6  Savings 

account/bonds 
Categorical 0: ... <  100 DM; 1 : 100 <= ... <  500 DM; 2: 500 <= 

... < 1000 DM; 3: .. >= 1000 DM; 4:unknown/ no 
savings account 

7 Present 
employment since 

Categorical  0 :  unemployed;  1 : ... < 1 years;  2 : 1  <= ... < 4 
years ;     3 : 4  <= ... < 7 years; 4 :      .. >= 7 years 

8 Installment rate Continuous [1 4] 
9 Personal status 

and sex 
Categorical 0 : male   : divorced/separated; 1 : female divorced/ 

separated /married; 2 : male: single; 3 : male   : 
married/widowed; 
4 : female : single 

10 Other debtors / 
guarantors 

Categorical 0 : none; 1 : co-applicant; 3 : guarantor 

11 Present residence 
since 

Continuous [1 4] 

12 Property Categorical 0 : real estate; 1:if not 0 : building society savings 
agreement/ life insurance; 2: if not 0/1 : car or other, 
not in attribute 6; 
3 : unknown / no property 

13 Age in years Continuous [19 75] 
14 Other installment 

plans 
Categorical 0 : bank; 1 : stores; 2 : none 

15 Housing Categorical 0 : rent; 1 : own; 2 : for free 
16 Number of 

existing credits at 
this bank 

Continuous [1 4] 

17 Job Categorical 0 : unemployed/ unskilled  - non-resident; 1 : unskilled 
– resident;  2 : skilled employee / official; 3 : 
management/ self-employed/ highly qualified 
employee/ officer 

18 Number of 
depends 

Continuous [1 2] 

19  Telephone Categorical 0 : none; 1 : yes, registered under the customers name 
20 Foreign worker Categorical 0 : yes; 1 : no 
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Table 10.  Attributes for Australian credit data set 
 
No. Attribute Type Value 

1 A1 Categorical 0,1 
2 A2 Continuous [13.75 80.25] 
3 A3 Continuous [0 25.125] 
4 A4 Categorical 1,2,3 
5 A5 Categorical 1, 2,3,4,5,6 ,7,8,9,10,11, 12, 

13,14 
6 A6 Categorical 1, 2,3, 4,5,6,7,8,9 
7 A7 Continuous [0 20] 
8 A8 Categorical 1,0 
9 A9 Categorical 1,0 
10 A10 Continuous [0 23] 
11 A11 Categorical 1,0 
12 A12 Categorical 1,2,3 
13 A13 Continuous [0 2000] 
14 A14 Continuous [1 100001] 

 

 


