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Abstract: The feasibility of using efficient wavelengths in the near-infrared (NIR) 
spectrum for the rapid determination of the dry matter (DM) in kiwi fruit was 
investigated. Partial least squares (PLS), synergy interval PLS (siPLS) and genetic 
algorithm siPLS (GA-siPLS) were comparatively performed to calibrate regression 
models. The number of wavelengths and the number of PLS components were optimised 
as per the root mean square error of cross-validation (RMSECV) in the calibration set. 
The performance of the final model was evaluated by the root mean square error of 
prediction (RMSEP) and the correlation coefficient (r) in the prediction set. Results 
indicate that the performance of GA-siPLS model is the best one compared to PLS and 
siPLS models. The optimal model was achieved with r = 0.9020 and RMSEP = 0.5315 in 
the prediction set. This work shows that it is feasible to determine DM in kiwi fruit using 
NIR spectroscopy and that GA-siPLS algorithm is most suitable in solving the problem of 
selection of efficient wavelengths. 

Keywords: kiwi fruit, dry matter, NIR spectroscopy, partial least squares (PLS), synergy 
interval partial least squares (siPLS), genetic algorithm siPLS. 
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Introduction  
 

Kiwi fruit are harvested unripe though physiologically mature but must be left in natural 
storage to ripen before consumption [1]. Timing of the harvest has a decisive effect on the 
subsequent postharvest shelf life and fruit quality [2-3]. The dry matter (DM) in kiwi fruit has been 
proposed as a maturity indicator for the proper time of harvest and also as a predictor of the sensory 
quality of the fruit once it is ripe [4-6]. 

Near infrared (NIR) spectroscopy is a fast, accurate and non-destructive technique that can 
be deployed as a replacement of individuals’ labour skills and time-consuming methods. The NIR 
spectroscopy has been used to grade fruits [7-8], predict fruit maturity [9] and indicate optimal 
harvesting time [10]. Kiwi fruit are a commodity the sorting of which, based on pre-selected NIR 
spectral features, can be used to grade them at harvest on the basis of DM. Recent research has 
established that NIR spectroscopic analysis can be used to assess kiwifruit DM and/or soluble-solid 
content of the ripe fruit [1, 3, 6, 11-12]. 

In addition to these, NIR spectral data calibrations have been made with the classical 
multivariate calibration analysis, e.g. partial least squares (PLS) regression [13-14]. Many spectral 
pretreatment methods have been developed to reduce the effects of variations in the spectral data 
that are not related to the chemical variations in the samples [15-16]. These methods generally 
improve the calibrations. However, they did not take into account that there might be spectral 
regions that do not contain any information about the chemical variations in the samples [17]. In fact, 
one of the major tasks in multivariate data analysis is to select appropriate spectral regions in order 
to achieve the best performance. A number of researchers have constructed PLS models in different 
spectral regions to quantify ingredient content in kiwi fruit. However, these regions were selected 
manually [2-3]. Without prior detailed knowledge about NIR spectroscopy, spectral regions selected 
manually might as well weaken the performance of the calibration model. 

According to some other researchers, both theoretical and experimental evidence has been 
published to the effect that spectral region selection can significantly improve the performance of 
these calibration techniques [18-19]. It is important to select specific regions that contain much 
information based on which of the more stable models can be generated with superior interpretability 
and lower prediction error. Methods [e.g.19] have been recently described in the literature in 
implementing spectral region selection and PLS used for multivariate calibration in each subset. 

A graphically oriented local modelling procedure called interval partial least squares (iPLS) 
has been presented for use on NIR spectral data. It has been shown that selective optimum interval in 
the spectral data can yield precision prediction models [19-20]. A method called synergy interval 
partial least squares (siPLS) has also been proposed to be used to select several interval spectral data 
which can split the data set into a number of intervals (variable-wise) and to calculate all possible 
PLS model combinations of two, three or four intervals [17]. Genetic algorithm (GA) has already 
been used in variable selection problem and seems to be a solution to the multivariate selection of 
variables [21-22]. 

This study investigates and compares the results provided by PLS, siPLS and GA-siPLS 
procedures for NIR quantitative analysis of DM in kiwi fruit. Two specific objectives of this research 
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are: (1) to establish relationships between the NIR measurements and the DM of kiwi fruit based on 
the new method, and (2) to compare the prediction performance of calibration models at different 
wavelengths and then find out the optimal wavelengths and develop the best calibration models. 

 
Materials and Methods 
 
Sample preparation 

One hundred and twelve “Zhonghua” kiwi fruit samples, purchased from a farm in Zhouzhi, 
Shanxi Province, China, were used in this study. All sizes of the fruit from peewee to jumbo were 
used. However, the fruit with irregular shape were not incorporated in the data analysis. The fruit 
were sent to our laboratory in October 2008, then were stored for one month. Experiments were 
done under controlled condition (20oC). Before being examined by NIR technique, the fruit were 
acclimatised to equilibrium for 12 h in the controlled condition. 

 
Collection of spectra  

The NIR spectra were measured in the reflectance mode using the FT-NIR 
spectrophotometer (AntarisTM Analyser, Thermo Electron Co., USA) with an integrating sphere. 
Each spectrum was obtained from an average of 32 scans. The range of spectrum was 10,000-4,000 
cm-1 and the data were collected in 1.928 cm-1 intervals, which resulted in 3,112 variables. Each kiwi 
fruit was measured three times around equatorial locations. The average of the three spectra, which 
were measured at the equator of each kiwifruit, was used in the sequence analysis. 

 
Measurement of kiwi fruit reference DM 

The fruit DM was determined by cutting two equatorial slices of approximately 3-mm 
thickness each, and drying them at 65oC to constant weight (approximately 24 h). The fruit DM was 
calculated from the final dry weight and the initial wet weight of the slices, recorded as a percentage 
of fresh weight. 

 
Software 

All algorithms were implemented in Matlab V7.0 (Mathworks, USA) under Windows XP. 
Result Software (Antaris System, Thermo Electron Co., USA) was used in NIR spectral data 
acquisition. The iPLS, siPLS and GAPLS algorithms used in this work were downloaded from 
http://www. models.kvl.dk/. 
 

Results and Discussion   
 
 Spectral pre-processing 

Figure 1(a) presents the raw spectral profile of the kiwi fruit, the raw spectral data being 
conducted on spectral pre-processing. Each mean spectrum was recorded as log(1/R), where R is the  
reflectance. In this research, the spectral data were analysed with multiplicative scatter correction 
(MSC) pre-processing technique because MSC is an important procedure for the correction of 
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scattered light, and the technique is often used to correct for additive and multiplicative effects in the 
spectra [23]. The spectra after MSC pre-processing are presented in Figure 1(b). 

 

 
(a) 

 

 
                                                                               (b) 

 
Figure 1.  Spectra of kiwi fruit obtained from (a) raw data and (b) MSC pre-processed data 

 
Calibration of models  

All 112 samples were divided into two subsets. The first one was the calibration set, which 
was used to build the models, whereas the other was the prediction set, which was used to test the 
robustness of the established models. To avoid bias in the subset division, it was made by sorting all 
samples according to their respective y-value (viz. the reference measurement value of dry matter). 
In order to achieve a 2/1 division of calibration/prediction spectra, one spectrum of every three 
samples was assigned to the prediction set so that finally the calibration set contained 74 spectra and 
the remaining 38 spectra constituted the prediction set. Seen from Table 1 is the range of y-value in 
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the calibration set that covers the range in the prediction set. Therefore, the distribution of the 
samples was appropriate in both the calibration and prediction sets. 

 
Table 1.  Reference measurements of DM and sample numbers in calibration and prediction sets 
 

Set Unit 
Number of 

samples 
Mean 
value 

Range 
Standard 
deviation 

CV /% 

Calibration set % (g/g) 74 16.1736 13.526-18.757 1.2554 7.7622 
Prediction set % (g/g) 38 16.2237 13.758-18.584 1.2202 7.5210 

Note:  CV = coefficient of variation 
 

The performance of the final PLS model was evaluated in terms of the root mean square error 
of cross-validation (RMSECV), the root mean square error of prediction (RMSEP), and the 
correlation coefficient (r). For RMSECV, a leave-one-sample-out cross-validation was performed: 
the spectrum of one sample of the training set was deleted from this set and a PLS model was built 
with the remaining spectra of the calibration set. The left-out sample was predicted with this model 
and the procedure was repeated by leaving out each of the samples of the calibration set. The 
RMSECV was calculated by Eq. 1 [24]: 
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where iŷ  is the predicted value of the i th observation, iy the measured value of i th observation and 

cI  the number of observation in the calibration set. The number of PLS factors included in the model 

was chosen according to the lowest RMSECV. This procedure was repeated for each of the pre-
processed spectra.  

For the prediction set, the RMSEP was calculated by Eq. 2 [24]: 
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where iy~  is the predicted value for sample i  of the prediction set, iy  is the measured value for 
sample i  of the prediction set, and pI is the number of observation in the prediction set. The 

correlation coefficients (r) between the predicted and measured values were calculated by Eq. 3 [24] 
for both the calibration and prediction sets: 
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where iŷ  and iy  are the predicted and measured values respectively of sample i  in calibration or 
prediction set, iy  is the mean of the reference measurement results for all samples in the calibration 
or prediction set, and n  is the number of observation in the calibration or prediction set. 

To verify the superior capability of the PLS calibration models based on the selected region 
by different methods, each calibration model mentioned above was used to predict the calibration 
data set and the prediction data set. The RMSECV, RMSEP and correlation coefficients of each 
model for the calibration data set ( cr ) and validation data set ( pr ) were taken into account. 

 
Results of PLS model  

In the application of PLS algorithm, it is generally known that the number of PLS 
components is a critical parameter in calibrating the model. The optimum number of PLS 
components is determined by the lowest RMSECV, which is 0.5513 when 12 PLS components are 
included in the calibration model. Therefore the optimal number of PLS components is 12.  

In the optimal model, RMSECV is 0.5513 and correlation coefficient (r) is 0.8913 in 
calibration set. When the performance of PLS model is evaluated by the samples in the prediction 
set, RMSEP is 0.5926 and correlation coefficient (r) is 0.8806. Figure 2 represents the scatter plot 
showing a correlation between reference and NIR-predicted DM in the prediction set by PLS model.  
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Figure 2.  Reference versus NIR-predicted DM by PLS in prediction set 

 

Results of siPLS model  
The synergy interval PLS (siPLS) algorithm used here has been developed by Nørgaard et al. 

[19]. First, the data set is split into a number of intervals (variable-wise). Next, PLS regression 
models are established for all possible combinations of two, three or four intervals. Thereafter, 
RMSECV is calculated for every combination of intervals. The combination of intervals with the 
lowest RMSECV is then chosen. 
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The number of intervals is also optimised according to RMSECV in siPLS model calibration. 
Table 2 shows the results of siPLS model calibration when splitting the spectra into different 
numbers of intervals. The optimal siPLS model is obtained with 15 intervals and 10 PLS 
components, the lowest RMSECV being 0.5139. The optimal combination of intervals selected is 3, 
4, 8 and 12. It corresponds to 4,802.04-5,201.14, 5,203.07-5,602.16, 6,807.16-7,204.33 and 
8,403.55-8,800.71 cm-1 in the spectral regions as shown in Figure 3. 

For the optimal model, RMSECV is 0.5139, and correlation coefficient (r) is 0.9062 in the 
calibration set. When the performance of siPLS model is evaluated by the samples in the prediction 
set, RMSEP is 0.5710 and correlation coefficient (r) is 0.8903. Figure 4 represents the scatter plot 
showing a correlation between reference and NIR-predicted DM in the prediction set by siPLS 
model.  
 

Table 2.  Results of siPLS model calibration for different spectral regions 

 
 
 

 
 

Figure 3.  Optimal spectral regions selected by siPLS with wavenumbers of 4,802.04-5,201.14, 
5,203.07-5,602.16, 6,807.16-7,204.33 and 8,403.55-8,800.71 cm-1 

 

Calibration set Prediction set Number of 
intervals 

No.of PLS 
components 

Selected 
intervals r RMSECV r RMSEP 

13 9 [3 7 10 12] 0.9115 0.4992 0.8829 0.5822 
14 9 [3 7 11 13] 0.9247 0.4625 0.8862 0.5800 
15 10 [3 4 8 12] 0.9062 0.5139 0.8903 0.5710 
16 7 [1 9 13] 0.9014 0.5254 0.8348 0.6693 
17 13 [2 4 7 13] 0.9056 0.5142 0.8592 0.6213 
18 6 [3 9 14] 0.8896 0.5538 0.8352 0.6817 
19 8 [3 4 7 15] 0.9283 0.4499 0.8695 0.6086 
20 6 [1 11 16] 0.9032 0.5196 0.8548 0.6370 
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Figure 4.  Reference versus NIR-predicted DM by siPLS in prediction set 
 
Results of GA-siPLS model 

GA is an optimisation method based on the principles of genetics and natural selection. This 
algorithm is inspired by the theory of evolution. In a living environment, the 'best' individuals have a 
greater chance to survive and a greater probability to spread their genomes by reproduction. The 
mating of two 'good' individuals causes the mixing of their genomes, which may result in a 'better' 
offspring. The terms 'good', 'better' and 'best' are related to the fitness of the individuals to their 
environment [21-22]. 

The number of wavelengths is also similarly optimised by RMSECV using GA in the optimal 
combination of intervals (4,802.04-5,201.14, 5,203.07-5,602.16, 6,807.16-7,204.33 and 8,403.55-
8,800.71 cm-1) selected by siPLS model. The optimal parameters are set as follows: number of 
generations = 100, population size = 30, mutation probability = 0.1, and recombination probability = 
0.8. Figure 5 shows the selected frequency versus DM variable in the first spectral region (4,802.04-
5,201.14 cm-1) of the optimal combination of intervals. Wavelength variables are individually added 
to PLS model in accordance with the selected frequency. The best number of wavelength variables is 
then identified according to the RMSECV of the model. The optimal GA-siPLS model is obtained 
with 229 wavelengths and 9 PLS components when the lowest RMSECV is 0.4724. 

In the optimal model, RMSECV is 0.4724 and correlation coefficient (r) is 0.9209 in the 
calibration set. When the performance of GA-siPLS model is evaluated by the samples in the 
prediction set, RMSEP is 0.5315 and correlation coefficient (r) is 0.9020 in the prediction set. Figure 
6 represents the scatter plot showing a correlation between reference and NIR-predicted DM in the 
prediction set by GA-siPLS model. 
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Figure 5.  Selected frequency versus DM variable 
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Figure 6.  Reference versus NIR-predicted DM by GA-siPLS in prediction set 
 

 
Table 3 shows results from different PLS models. Comparing among these models, one can 

see that GA-siPLS seems to be the best one followed by siPLS. Such phenomena can be explained by 
the following: (1) PLS is performed on full spectral range (4,000.00-10,000 cm-1) to calibrate the 
global model. Thus, some noisy spectral information has inevitably weakened the performance of the 
model; (2) siPLS overcomes the disadvantages of PLS since siPLS combines with two, three or four 
intervals to calibrate the PLS model so as to remove some noisy regions and obtain useful 
information in the calibrated model; and (3) in contrast with siPLS, GA-siPLS selects interesting 
variable wavelengths and removes noisier spectral information based on siPLS.  
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Table 3.  Results from different PLS models 
 

Calibration set Prediction set 
Model 

Number of 
variables 

PLS 
components r RMSECV r RMSEP 

PLS 3112 12 0.8913 0.5513 0.8806 0.5926 
siPLS 830 10 0.9062 0.5139 0.8903 0.5710 

GA-siPLS 229 9 0.9209 0.4724 0.9020 0.5315 
 
 
Conclusions  
 

In the present study, it has been demonstrated that NIR spectroscopy is a suitable tool for 
quantification of dry matter in kiwi fruit with small prediction errors over the entire range studied. 
Three models were studied. The PLS model was performed on full spectral region (4,000.00-10,000 
cm-1, 3112 variables) to calibrate the model. It requires a large number of variables and some noisy 
spectral information has inevitably reduced the prediction accuracy of the model. The siPLS model 
was performed on four intervals of the spectral region (4,802.04-5,201.14, 5,203.07-5,602.16, 
6,807.16-7,204.33 and 8,403.55-8,800.71 cm-1, 830 variables) to calibrate the model. Some noisy 
regions were removed so as to reduce variables and improve prediction accuracy. The GA-siPLS 
model was performed on the most informative wavelengths (4,802.04-5,201.14 cm-1, 229 variables) 
to calibrate the model. Compared with PLS and siPLS models, the GA-siPLS model requires fewer 
variables and improves prediction accuracy by removal of more spectral noises. 
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