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Abstract:  We define Sylvester-Padovan-Jacobsthal-type sequences of the first and second 

kinds via the Sylvester matrices which are obtained from the characteristic polynomials of 

Padovan and Jacobsthal sequences, and then we give miscellaneous properties of these 

sequences. Also, we obtain cyclic groups and semigroups from the multiplicative order of 

the generator matrices of the Sylvester-Padovan-Jacobsthal-type sequences of the first-kind 

and second-kind modulo m . Then we derive relationships between the orders of the cyclic 

groups obtained and the periods of these sequences modulo m .  
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________________________________________________________________________________ 
 

INTRODUCTION 
 
        Number-theoretic properties such as those obtained from homogeneous linear recurrence 

relations relevant to this article have been studied by many authors [1-6]. The study of recurrence 

sequences in groups began with the earlier work of Wall [7], who investigated the ordinary 

Fibonacci sequences in cyclic groups. The concept involved was extended to some special linear 

recurrence sequences by some authors [8-12]. Recently, several authors have obtained the cyclic 

groups via some special matrices [1, 12-16]. In the present article we define Sylvester-Padovan-

Jacobsthal-type sequences of the first and second kinds via Sylvester matrices which are obtained 

from the characteristic polynomials of Padovan and Jacobsthal sequences. Then we derive the 

generating functions, the generating matrices, the Binet formulas, the perrmanental and 

determinantal representations, and the sums of these sequences. Also, we study the Sylvester-

Padovan-Jacobsthal-type sequences of the first-kind and second-kind modulo .m  Furthermore, we 

consider the cyclic groups and the semigroups which are generated by the generating matrices of 

the recurrence sequences defined, and then we obtain relationships between the orders of the cyclic 

groups obtained and the periods of these sequences modulo m . 
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METHODS 
 
 Let f  and g  be polynomials of degree (k)th and (m)th respectively and let these polynomials be 

given by 

 01
1

1= axaxaxaf k
k

k
k  

   

and 

 .= 01
1

1 bxbxbxbg m
m

m
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        The Sylvester matrix  
   mkmkijgf SS


=,  associated with the polynomials f  and g  is defined 

as: 
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        The Padovan sequence is the sequence of integers defined by the initial values 

      1=2=1=0 ppp  and recurrence relation 
 

      .32=  nPnPnP  
 
It is easy to see that the characteristic polynomial of the Padovan sequence is 

   .1= 3  xxxf  
 
        It is known that the Jacobsthal sequence  nJ  is defined recursively by the equation 

 21 2=   nnn JJJ  

for 0n , where 0=0J  and 1=1J . The characteristic polynomial of the Jacobsthal sequence is 

   2.= 2  xxxf  

        Suppose that the  kn  th term of a sequence is defined recursively by a linear combination of 

the preceding k  terms: 
 11110=   knknnkn acacaca   

 
where 110 ,,, kccc   are real constants. Kalman [17] derived a number of closed-form formulas for 

the generalised sequence by the companion matrix method as follows. Let the matrix A  be defined 
by 
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for 0n  . 
       
RESULTS AND DISCUSSION   
     
Sylvester-Padovan-Jacobsthal-Type Numbers 

        The Sylvester matrix  
55,=

jiPJ sS  for the characteristic polynomials of the Padovan sequence 

and the Jacobsthal sequence is 
 

 

1 0 1 1 0

0 1 0 1 1

1 1 2 0 0

0 1 1 2 0

0 0 1 1 2 .
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        Now we consider sequences which are defined by using the diagonal elements of the matrix 

PJS  and are called the Sylvester-Padovan-Jacobsthal-type sequences of the first and second kinds. 

The Sylvester-Padovan-Jacobsthal-type sequence of the first kind is defined by integer constants 

0=== 1
4

1
1 xx   and 1=1

5x  and the recurrence relation  
 

 11
1

1
2

1
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1
4

1
5 222= kkkkkk xxxxxx    (1) 

 
for 1k . The Sylvester-Padovan-Jacobsthal-type sequence of the second kind is defined by integer 

constants 0=== 2
4

2
1 xx   and 1=2

5x  and the recurrence relation  
 

 22
1

2
2

2
3

2
4

2
5 222= kkkkkk xxxxxx    (2) 

for 1k . 

        We obtain that the generating functions of the Sylvester-Padovan-Jacobsthal-type sequences of 

the first and second kinds are, respectively, 

    
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By (1) and (2), we can write the following companion matrices: 

    1 1

,
5 5
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The matrices  1M  and  2M  are said to be the Sylvester-Padovan-Jacobsthal-type matrices of the 

first and second kinds respectively. By induction on n , we derive    
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for 4n . Also, we easily derive that     1det = 2
n n

M   and   2det = 1
n

M . 

It is clear that each of the eigenvalues of the matrices  1M  and  2M  is distinct. Let 
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 2M  respectively and let  V
  be 55  Vandermonde matrices as follows: 
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where 1,2= .  Let 
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and let    ,V i j  be a 55  matrix obtained from  V
  by replacing the j th column of  V

  by 

   ,W i j  for 1,2= . 
 
Theorem 1.  For 4n  and 1,2= , 
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for 4n  and 1,2.=  Therefore, for each ,5,1,2,=, ji  we obtain 
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       Then we can give the Binet formulas for the Sylvester-Padovan-Jacobsthal-type sequences of 

the first and second kinds by the following corollary. 
 
Corollary 1.  Let 1

nx  and 2
nx  be the n th Sylvester-Padovan-Jacobsthal-type numbers of the first and 

second kinds respectively. Then 

 
   
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        Now we consider the permanental representations of the Sylvester-Padovan-Jacobsthal-type 

sequences of the first and second kinds.           
 

Definition 1. Let ,= i jM m    be a vu  real matrix and let 1 2, , , ur r r   and 1 2, , , vc c c  be the 

row and column vectors of M  respectively. If r  contains exactly two non-zero entries, then M  is 

contractible on row  . Similarly, M is contractible on column   provided that c contains exactly 

two non-zero entries.                                                                                                                           �                            
 
        Suppose that uxxx ,,, 21   are row vectors of the matrix .M  If M  is contractible in the thk  

column such that , ,0,  0i k j km m   and ,ji   then the    11  vu  matrix kijM :  is obtained from 

M  by replacing the thi  row with ikjjki xmxm ,,   and deleting the thj  row. The thk  column is called 

the contraction in the thk  column relative to the thi  row and the thj  row. Brualdi and Gibson [18] 

obtained that    NperMper =  if M  is a real matrix of order 1>  and N  is a contraction of .M  
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and  0  otherwise.  

Clearly, 
 

    1

1 1 2 2 2 0 0 0 0

1 1 1 2 2 2 0 0 0

0 1 1 1 2 2 2 0 0

0 0 1 1 1 2 2 2 0
=

0 0 0 1 1 1 2 2 2

0 0 0 0 0 1 1 1 2

0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 1

S u

   
    
   
 
 
   
 

   
 
 

 
 
 
  







         





       







 

 
and 
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    2

2 2 2 1 1 0 0 0 0

1 2 2 2 1 1 0 0 0

0 1 2 2 2 1 1 0 0

0 0 1 2 2 2 1 1 0
=

0 0 0 1 2 2 2 1 1

0 0 0 0 1 2 2 2 1

0 0 0 0 0 1 2 2 2

0 0 0 0 0 0 0 1 2 .

S u

   
    
   
 
 
   
 

   
   
 

   
 
 
  







         









       



 

 

Then we have the following Theorem. 
 

Theorem 2.  (i) For 1u  , 

    1 1
5= uperS u x   

where    1 1 = 1perS . 

(ii) For 1u  , 

    2 2
5= uperS u x   

where    2 1 = 2perS  .  
 
Proof.  (i) First we start with considering the case 5<u . The matrices    1 2S ,    1 3S  and    1 4S  

are reduced to the following forms:  

    1 1 1
2 = ,

1 1
S

 
 
 

 

 

    1

1 1 2

3 = 1 1 1

0 1 1

S

 
 
 
  

 

and 

    1

1 1 2 2

1 1 1 2
4 =

0 1 1 1

0 0 1 1 .

S

  
  
 
 
 

 

 
        It is easy to see that    1 2 = 2perS ,    1 3 = 1perS  and    1 4 = 1perS  . From definition of 

the Sylvester-Padovan-Jacobsthal-type number of the first kind, it is clear that 2=1
7x , 1=1

8x  and 

1=1
9 x . So we have the conclusion for 5<u . Let the equation hold for 5u  ; then we show that 

the equation holds for 1.u  If we expand    1perS u  by the Laplace expansion of permanent 

according to the first row, then we obtain 
 

                        1 1 1 1 1 1
1 = 1 2 2 2 3 2 4 .perS u perS u perS u perS u perS u perS u          
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Since    1 1
5= uperS u x  ,    1 1

41 = uperS u x  ,    1 1
32 = uperS u x  ,    1 1

23 = uperS u x   and 

   1 1
14 = ,uperS u x   we easily obtain that    1 1

61 = uperS u x  . So the proof is complete. 

(ii) The proof is similar to the above and is omitted.                                                                          �  
 

Let 5>u  and let      1 1 ,

,= u

i jP u p 
   and      2 2 ,

,= u

i jP u p 
   be the uu  matrices, defined 

respectively by 

  1 ,

,

if   =  and =   for 1 ,

=  and  = 1      for 1 2
1

and

= 1 and =      for 1 3,

= if   =  and = 2  for 1 4,

=  and = 3      for 1 4
2

and

=  and = 4     for 1 4,

0    

u

i j

i k j k k u

i k j k k u

i k j k k u

p i k j k k u

i k j k k u

i k j k k u

 

   

   

   

   


   

 otherwise.



















 

 
and 

 

  2 ,

,

if =  and = 3    for 1 3,

=  and = 4    for 1 4,

= 1 and =     for 1 3,
1

= 1 and = 1,  =

and

=  and = ,

=

if =  and =    for 1 2,

=  and = 1   for 1 2
2

and

=  and

u

i j

i k j k k u

i k j k k u

i k j k k u

i u j u j u

i u j u

p

i k j k k u

i k j k k u

i k

   

   

   

 

  

   


 = 2    for 1 2,

0      otherwise.

j k k u

















    




 

 

Assume that the uu  matrices      ,
,=

u

i jZ u z
  

   are defined by 
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 

       

2 th

1 1 0 0

1

= 0 1

0

u

Z u P u
 





 
 
 
 
 
 
 
 

 



 

 
where 6>u  and 1,2= . Then we can give more general results by using permanental 

representations other than the above. 
 

Theorem 3.  (i) For 5>u  and 1,2= , 

     3= .uperP u x 
  

 

(ii) For 6>u  and 1,2= , 

    
2

=1

= .
u

k
k

perZ u x 


  

  

Proof.  (i) Let us consider the matrix    2P u  and let the equation hold for 5>u . Then we show 

that the equation holds for 1.u  If we expand  2perP  by the Laplace expansion of permanent 

according to the first row, then we obtain 
 

                       2 2 2 2 2 2
1 = 2 2 1 2 2 3 4perP u perP u perP u perP u perP u perP u           

Also, since 
                   2 2 2 2 22 2 2 2 2

3 2 1 1= , 1 = , 2 = , 3 = , 4 = ,u u u u uperP u x perP u x perP u x perP u x perP u x        

it is clear that 

    2 2
41 = .uperP u x   

So we have the conclusion. The proof for the matrix    1P u is similar. 

(ii) If we extend    perZ u  with respect to the first row, we write 

            = 1 1perZ u perZ u perP u      

for 1,2= . By induction on u , taking into consideration the results of Theorem 2 and part (i) in 

Theorem 3, the conclusion is easily seen.                                                                                           �  
 
Let the notation KM   denote the Hadamard product of M  and K . A matrix M  is called 

convertible if there is a uu  (1, -1)-matrix K  such that  detperM M K  . Let 5>u  and let T  

be the uu  matrix defined by 
 



245 
Maejo Int. J. Sci. Technol. 2017, 11(03), 236-248 
 

 

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1
=

1 1 1 1 1

1 1 1 1 1 .

T

 
  
 
 
 
 
 

 







     





 

 

It is easy to see that         detperS u S u T   ,         detperP u P u T    and 

        detperZ u Z u T    for 5>u  and 1,2= . Then we have the following useful results. 
 
Corollary 2.  For 5>u  and 1,2= , 

      5det = ,uS u T x 
  

      3det = uP u T x 
  

and 

                                         
        

    
2

=1

det = .
u

k
k

Z u T x 


                                                        �  

  
        Now we consider the sums of the Sylvester-Padovan-Jacobsthal-type sequences of the first and 

second kinds.  Let  

 
k

n

k
n xG 

1=

=  

 
for 1n  and 1,2= . Suppose that  

6A
  and  ,

6

n
A

  are the 66  matrices such that 
 

  
 6

1 0 0 0 0 0

1

0
=

0

0

0

A
M





 
 
 
 
 
 
 
 
    

and 
 

  
  

4

3
,

6

2

1

1 0 0 0 0 0

=

.

n

n
n

n

n

n

n

G

G
A

G M

G

G













 
 
 
 
 
 
 
 
 
 

 

 

Then it can be shown by induction that     ,
6 6=

n
n

A A
  .        
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Cyclic Groups and Semigroups via Matrices  1M  and  2M  

For a given matrix  ijdD =  with ijd ’s being integers,  modmD  means that each element 

of D  is a reduced modulo m , i.e.     = ijD modm d modm . Let us consider the set 

  0= imodmDD i

m
. If   1=det,gcd Dm , then 

m
D  is a cyclic group; if   1det,gcd Dm , 

then the set 
m

D  is a semigroup. Since  1
det = 2M  , it is clear that the set  1

m
M  is a cyclic 

group when m  is a positive odd integer; otherwise  1

m
M  is a semigroup. Since  2

det = 1M , it is 

clear that the set  2

m
M  is a cyclic group for every positive integer m . 

 

Theorem 4.  Let r  be a prime and let tr
G  be any of the cyclic groups  1

tr
M  and  2

.
tr

M If 

u  is the largest positive integer such that urr
GG = , then 

r

uv
vr

GrG = . In particular, if 

2rr
GG  , then 

r

v
vr

GrG 1= . 
 

Proof.  Let us consider the cyclic group  1

tr
M . Then   1=2,gcd r ; that is, r  is an odd prime. 

Suppose that b  is a positive integer and  1

tr
M  is denoted by  trP . If 

      
1

1 1mod
bP r

bM I r


 , then       
1

1 mod
bP r

bM I r


 , where I  is a 55  identity matrix. 

Thus, we obtain that  brP  divides  1brP . On the other hand, writing        1 =
bP r

b b
ijM I m r  , 

by the binomial theorem we have  
 

              1 1

=0

= = mod .
b rrP r r i

b bb b b
ij ij

i

r
M I m r m r I r

i


 

    
 

  

 
So we have  that  1brP  divides   rrP b  . Thus,    1 =b bP r P r  or     rrPrP bb  =1 . It is 

clear that     rrPrP bb  =1  holds if and only if there exists an integer  b
ijm  which is not divisible by 

r . Since u  is the largest positive integer such that    = uP r P r , we have    1 uu rPrP . Then, 

there exists an integer  1u
ijm  which is not divisible by r . So we have that    21   uu rPrP . To  

complete the proof we may use an inductive method on u  .                                                              �  
                                                                                                            
It is well known that a sequence is periodic if, after a certain point, it consists only of 

repetitions of a fixed subsequence. The number of elements in the shortest repeating subsequence is 

called the period of the sequence. In particular, if the first k  elements in the sequence form a 

repeating subsequence, then the sequence is simply periodic and its period is .k  

Reducing the Sylvester-Padovan-Jacobsthal-type sequences of the first and second kinds by 

a modulus m , we get the repeating sequences respectively denoted by 
 
     ,,,,= 1,1,

2
1,
1

1, m
i

mmm
k xxxx  

and 

     ,,,,= 2,2,
2

2,
1

2, m
i

mmm
k xxxx , 

 
where  1, 1=m

i ix x modm  and  2, 2=m
i ix x modm . They have the same recurrence relations as in (1) 

and (2) respectively. 
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Theorem 5.  For 1,2= , the sequences  m
kx ,  are periodic. In particular, the sequence  2,m

kx  is 

simply periodic.                                      
Proof.  Let

 
  1 2 3 4 5= , , , , | ' s, being integers such that  0 1i iQ q q q q q q q m   . Since there are 

5m  distinct 5 -tuples of elements of mZ , at least one of the 5 -tuples appears twice in the sequences 

 m
kx , . Thus, the subsequence following this 5 -tuple repeats; hence the sequences  1,m

kx  and 

 2,m
kx  are periodic.  Let 

  
 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

1 1 2 2 3 3 4 4 5 5,   ,   ,   ,   m m m m m m m m m m
i j i j i j i j i jx x x x x x x x x x               

 
such that ji > ; then  5modji  . From the definition, we can easily obtain 

 2, 2, 2, 2, 2, 2,
1 1 1 1, , , ,m m m m m m

i j i j i jx x x x x x       

which implies that the sequence  2,m
kx  is simply periodic.                                                               �  

            We next denote the period of the sequences  m
kx ,  by m

kPx , . 

Theorem 6.  If m  has the prime factorisation  
=1

= ,
u

ri
i

i

m p   1 ,u   then m
kPx ,  is equal to the 

least common multiple of 
  irip

kPx
,

.  
 

Proof.  It is clear that the sequences 
 







 irip

kx
,

 repeats only after blocks of length 
 ,

,
ripi

kl Px


 where 

l  is a natural number.  Since m
kPx ,  is a period of the sequences  ,,m

kx  the sequences 
 







 irip

kx
,

 

repeats after m
kPx ,  terms for all values i . Therefore, m

kPx ,  is of the form 
  irip

kPxl
,

  for all values 

of i , and since any such number gives a period of m
kPx , , we can conclude that 

                                      

   
.,,=

,11,,





 urup

k

rp

k
m

k PxPxlcmPx
 

                                                
�

 
 

 CONCLUSIONS 
   
          We have defined Sylvester-Padovan-Jacobsthal-type sequences of the first and second kinds. 

Firstly, we gave the generating functions, the generating matrices, the Binet formulas, the 

perrmanental and determinantal representations, and the sums of the Sylvester-Padovan-Jacobsthal-

type numbers of the first and second kinds. Furthermore, we studied the Sylvester-Padovan-

Jacobsthal-type sequences of the first-kind and second-kind modulo m  and obtained the cyclic 

groups and semigroups from generating matrices of the sequences of the first and second kinds. 

Finally, we produced relationships between the orders of the cyclic groups obtained and the periods 

of these sequences modulo m . 
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