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Abstract: Task-based conceptual features (TCFs) represent human knowledge 

concerning intentions and/or characteristics of design tasks to which a design pattern is 

applicable. They provide a bridge connecting the usage of a design pattern and the 

characteristics of a design problem. A method for recommending appropriate design 

patterns based on TCFs is presented. From grammatical relations between words 

generated from the textual description of an input design problem, problem keywords are 

extracted. The obtained problem keywords are matched with clue words of each TCF in 

order to construct a feature vector representing the input problem. Based on the similarity 

between the feature vector representing the problem and the TCF-based vector 

representing each design pattern, design patterns are ranked and recommended. The 

method is evaluated on a collection of 24 input design problems. The evaluation results 

show that when the first-level hypernyms and hyponyms obtained from the WordNet 

ontology are employed for word matching and an appropriate penalty score is assigned to 

them, design patterns recommended in the top three ranks include the correct design 

patterns for all 24 problems.  

Keywords:  design pattern, pattern recommendation, task-based conceptual feature  
_______________________________________________________________________________ 
 

INTRODUCTION 
 

Object-oriented design patterns are proven solutions to frequently occurring software design 

problems [1-5]. However, even for an experienced developer, selection of an appropriate design 

pattern is often difficult since it requires a large amount of knowledge concerning the usage, intent 

and applicability of many available design patterns. To facilitate design pattern selection, 

Hasheminejad and Jalili [6] presented a two-phase selection method. In their proposal each design 

pattern is represented by a vector of words appearing in the descriptions of the pattern taken from 
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standard design pattern textbooks. In the first phase a binary classification model is constructed for 

each category of patterns, e.g. creational, structural and behavioural patterns. The obtained 

classifiers are then used for predicting the category of a given input design problem, which is 

encoded as a vector of words occurring in the textual description of the problem. In the second 

phase the word vector representing the design problem is compared with the word vectors that 

represent design patterns in the predicted category by using cosine similarity. Design patterns are 

then recommended based on the obtained similarity scores. The use of word vectors for pattern 

representations, however, has two major drawbacks. First, occurrences of words are low-level 

features that may not clearly express the true characteristics of a design pattern. Second, the 

description of a pattern in a source textbook is often verbose and contains many words that are not 

relevant to the usage and applicability of the pattern. As a result, an obtained similarity score is 

often distorted by these irrelevant words.  

In this article the concept of task-based conceptual feature (TCF) is introduced as a high-

level feature for representing an intention and/or characteristic of a design task, and an automatic 

design pattern recommendation framework is proposed by exploiting two types of expert know-

ledge centring around TCFs. The knowledge of the first type associates a design pattern with a set 

of TCFs that characterise its usage. The knowledge of the second type provides a collection of clue 

words that partially characterises each TCF. With these two types of expert knowledge, TCFs 

provide a bridge connecting the usage of a design pattern and the characteristics of a given input 

design problem. From the pattern usage descriptions in the pattern usage hierarchy proposed in our 

previous work [7], 28 TCFs are extracted. We restrict our attention in this article to 13 Gang-of-

Four design patterns [1] in the usage category of ‘performing a domain-specific task other than 

object creation’, which is the largest and most complicated category in the usage hierarchy under 

consideration. 

This work consists of two main parts. The first part is concerned with the construction of 

TCFs and their clue words. TCFs are associated with a design pattern by means of a feature vector 

representing the pattern. The second part presents a method for automatically recommending appro-

priate design patterns based on TCFs. Using the WordNet ontology [8], clue words of TCFs are 

matched with keywords extracted from a given input design problem in order to construct a feature 

vector representing the problem. By computing their cosine similarity, the feature vector repre-

senting the problem is compared with that representing each design pattern. Appropriate design 

patterns are then ranked based on the resulting similarity scores. 
 

RELATED WORK 
 

In addition to the two-phase selection method proposed by Hasheminejad and Jalili [6], 

some studies on design pattern recommendation have been reported. Kampffmeyer and Zschaler [9] 

proposed a knowledge-based approach to the design pattern recommendation. A design pattern 

intent ontology was constructed to capture the relationship between design patterns and problem 

concepts that could be addressed by them. In their approach when a design problem was given, a 

software designer manually extracted the characteristics of the problem and employed the design 

pattern intent ontology to retrieve an appropriate design pattern. 

Kim and Khawand [10] employed the Role-based Metamodelling Language, which is a 

UML-based pattern specification language, to formally specify the problem context in which a 

design pattern could be applied. Static pattern specifications were used for capturing the structural 

properties of design patterns, and interaction pattern specifications were used for capturing object 
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interaction behaviours suggested by the patterns. Although the design pattern recommendation was 

not directly discussed, their proposed formal specifications provided checkpoints for assessing the 

conformance of a design problem to a design pattern. 

Bouassida et al. [11] proposed an interactive tool-set for recommending an appropriate 

design pattern. Semantic correspondences (e.g. equivalences, hyponyms and compositions) among 

element names in an input class diagram and the names of design patterns’ participants given in the 

Gang-of-Four book [1] were determined. Based on the obtained correspondences, hand-crafted 

recommendation rules were used for finding and instantiating a suitable design pattern. A user may 

interact with the recommendation rules to provide additional information required for determining 

an appropriate pattern. 

Sahly and Sallabi [12] presented a strategic method for recommending a suitable design 

pattern. By using a pre-defined questionnaire, users were classified into 3 levels, i.e. novices, 

advanced beginners and experts. A vector space model was applied to represent textual patterns’ 

intents and a problem description specified in terms of queries. Based on cosine similarity 

measurement and pre-defined similarity thresholds, candidate patterns were suggested. When a 

suitable pattern candidate was not found, a formal concept analysis and case-based reasoning 

techniques were applied to augment the currently given queries by making use of previously known 

queries. When a suitable pattern was still not found, the level of the user was considered. For an 

expert user, for example, the input problem description was posted to a group of experts for further 

discussion. 

Palma et al. [13] developed a design pattern recommendation system in which the 

knowledge about design patterns, e.g. intentions and applicabilities, was transformed into textual 

conditions for selecting an appropriate pattern. A user characterised his/her design problem by 

answering questions reformulated from such textual conditions. An answer was given in the forms 

of ‘yes’, ‘do not know’ or ‘no’, with a weight indicating the degree of user’s confidence. Based on 

the obtained answers, a pattern with the highest total weight was recommended. The proposed 

recommendation system was evaluated by 8 subjects and an accuracy of 50% was reported. 

Issaoui et al. [14] presented a semi-automatic approach to design pattern suggestion. By 

applying the WordNet ontology [8], class names and method names extracted from an input class 

diagram were semantically compared with the names of design patterns’ participants given in the 

Gang-of-Four book [1]. Candidate design patterns were determined based on the obtained similarity 

scores. Pre-defined questions specifying the intentions of each candidate pattern were then 

reformulated by replacing the pattern’s participant names with their corresponding extracted 

class/method names. A user was required to specify the characteristics of his/her design problem by 

answering the reformulated questions. Based on the obtained answers, an appropriate pattern was 

recommended.  

All the studies mentioned above focused their attention on the Gang-of-Four design patterns 

[1]. No empirical evaluation was presented by Kampffmeyer and Zschaler [9], Kim and Khawand 

[10], Bouassida et al. [11], Sahly and Sallabi [12] or Issaoui et al. [14]. 
 

TCFs AND THEIR CLUE WORDS 
 

To begin with, TCFs are introduced. They are associated with design patterns in terms of 

feature vectors representing design patterns called DPFVs. The construction of clue words of each 

TCF is described.  
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TCFs and Feature Vectors Representing Design Patterns 
 

A task-based conceptual feature (TCF) describes an intention and/or a characteristic of a 

design task. From pattern usage descriptions in the pattern usage hierarchy proposed in our previous 

work [7], 28 TCFs, referred to as F1-F28, are extracted. They are shown in Table 1. Table 2 

associates TCFs with design patterns. It provides expert knowledge describing each design pattern 

in terms of the characteristics of problems to which the pattern is applicable. For example, the first 

row in the right-hand side of Table 2 indicates that the Strategy pattern is used for solving a design 

problem that is characterised by the TCFs F12, F13 and F15. 

      Table 1.  Task-based conceptual features (TCFs) 

Feature Description 

F1 Working with grammar and text parsing 
F2 Separating basic tasks from specific tasks 
F3 Assigning specialised tasks to different task performers 
F4 Accessing external resources (hard-disk, Internet, etc.) 
F5 Reducing retrieval time from external resources / Data caching 
F6 Working with a sequence of tasks 
F7 Working with collaborative tasks  
F8 Working with multi-layer tasks 
F9 Handling task-chain alternatives 

F10 Changing an algorithm flow 
F11 Constantly calling tasks in a pre-defined sequence 
F12 Selecting an algorithm depending on an environment 
F13 Working with many alternative algorithms 
F14 Choosing an appropriate algorithm on object creation 
F15 Determining an algorithm at run-time 
F16 Performing operations that depend on states of objects 
F17 Changing algorithms based on the current computation state 
F18 Storing object data 
F19 Object data restoration 
F20 Storing an object operation 
F21 Keeping a list of already-done operations 
F22 Working with an undo function 
F23 Dissemination of information 
F24 Working with communication among objects 
F25 Notification of information change 
F26 One-to-many object communication 
F27 Centralised object communication 
F28 Working with a list of operations for information exchange 

 

      Table 2.  Associating TCFs with design patterns 

Design pattern TCF  Design pattern TCF 

Interpreter F1  Strategy F12, F13, F15 
Template method F2, F3  State F12, F13, F16, F17 
Proxy F4, F5  Memento F18, F19 
Decorator F6, F7, F8, F9  Command F20, F21, F22 
Chain of responsibility  F6, F7, F9, F10  Observer F23, F24, F25, F26 
Façade  F6, F11  Mediator F24, F27, F28 
Bridge F12, F13, F14    

 

Based on Table 2, a feature vector representing a design pattern (DPFV) is constructed. A 

DPFV for a design pattern DP is a sequence [v1, v2, …, v28], where, for each i  {1, 2, …, 28},  

vi  ‘1’ if the TCF Fi is associated with DP, and vi  ‘0’ otherwise. For example, in the DPFV for 
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the Strategy pattern, only the elements v12, v13 and v15 are ‘1’ and all other elements of the vector are 

‘0’. DPFVs are normalised as follows: the normalised vector of a DPFV [v1, v2, …, v28] is the 

sequence [nv1, nv2, …, nv28], where, for each i  {1, 2, …, 28}, nvi  vi  (v1  v2  …  v28). 
 

Constructing Clue Words of TCFs 
 

A clue word of a TCF is a word or a phrase that partially characterises the TCF. Four 

linguistic types of clue words are considered, i.e. nouns, adjective-noun pairs, verbs and verb-noun 

pairs. Noun and adjective-noun-pair clue words represent entities that are involved with a TCF, 

while verb and verb-noun-pair clue words represent intentions to perform some activities or tasks 

related to a TCF. 

Clue words are associated with a TCF by words/phrases from candidate words/phrases 

collected from sentences in predetermined sections of three object-oriented design pattern textbooks 

[1-3]. Three sections of the first book [1], i.e. ‘Intent’, ‘Motivation’ and ‘Applicability’, two 

sections of the second book [2], i.e. ‘Role’ and ‘Use’, and one section of the third book [3], i.e. 

‘Description’, are used as the sources of candidate words/phrases. The collected candidate 

words/phrases are preprocessed by (1) removing stop words and (2) determining the base forms of 

the remaining words by using the WordNet stemmer [8]. For example, by these preprocessing steps, 

a candidate phrase ‘parsing a string’ is changed into ‘parse string’; the indefinite article ‘a’ is 

removed and ‘parsing’ is replaced with its base form (‘parse’). 

Clue words are selected from candidate words and word pairs by a human expert. Candidate 

nouns and adjective-noun pairs that represent important entities related to a TCF and candidate 

verbs and verb-noun pairs that represent certain specific intentions of a TCF are selected as clue 

words. For example, ‘parse’ and ‘undo’ are verb clue words of TCFs F1 and F22 respectively, and 

‘select algorithm’ is a verb-noun-pair clue word of TCF F12.  

Scheme 1 shows the obtained clue words of TCF F1. Table 3 and Table 4 show the number 

of the obtained clue words of TCFs F1-F14 and F15-F28 respectively, classified by clue-word type.  

 
grammar (noun) 
language (noun) 

syntax (noun) 

text (noun) 

string (noun) 

syntax tree (noun) 
language expression (noun) 

expression (noun) 
parse (verb) 

interpret sentence (verb, noun) 
interpret string (verb, noun) 

interpret text (verb, noun) 
interpret language (verb, noun) 

parse tree (verb, noun) 

parse string (verb, noun) 

parse text (verb, noun) 

express language (verb, noun) 

 
Scheme 1.  Clue words of TCF F1 

     Table 3.  Number of clue words of TCFs F1-F14 

Clue-word type F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 

Noun 8 8 8 2 7 6 5 8 8 8 5 4 2 4 
Adjective-noun 0 56 31 3 3 8 10 8 3 2 0 2 6 0 
Verb 1 0 0 0 1 0 0 0 0 0 0 0 0 0 
Verb-noun 8 15 10 12 5 0 0 12 1 3 8 8 0 6 

     Table 4.  Number of clue words of TCFs F15-F28 

Clue-word type F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 

Noun 5 2 7 4 4 2 7 4 1 4 2 3 5 4 
Adjective-noun 2 4 2 0 0 0 1 0 0 0 0 0 1 0 
Verb 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
Verb-noun 16 1 5 4 6 6 10 4 7 2 9 2 2 2 
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METHOD FOR AUTOMATIC RECOMMENDATION OF DESIGN PATTERNS 
 

A method for automatically recommending appropriate design patterns for a given design 

problem based on TCFs and their clue words is next described. As outlined in Scheme 2, the 

method consists of five steps: (1) generating typed dependencies (TDs) from the textual description 

of an input design problem, (2) extracting problem keywords from the obtained TDs, (3) matching 

problem keywords with clue words of each TCF in order to construct a feature vector representing 

the input problem called PBFV, (4) normalising the vector PBFV, and (5) computing cosine 

similarity scores between the normalised PBFV and normalised DPFVs for the 13 patterns under 

consideration. Design patterns are ranked according to the resulting similarity scores. 

 

A problem 
description

Generating typed 
dependencies 

Problem 
keywords

Constructing a PBFV
based on keyword matching

Ranking of design 
patterns

WordNet

Extracting 
keywords

(1)

Feature vector
normalisation 

(2) (3)

Computing 
cosine similarity

Normalised 
PBFV

...F1 F2 F28

TCFs and their clue words

...P1 P2 P13

Normalised DPFVs

(4) (5)

PBFV

 

Scheme 2.  Overview of proposed recommendation method 
 

Generating TDs 
 

TDs between words in a given textual problem description are generated by using the 

Stanford dependency parser [15]. A TD represents the grammatical relationship between a pair of 

words in a sentence. From 49 grammatical relationship types generated by the dependency parser, 

only 9 types that potentially provide the entities and intentions associated with a problem 

description are selected. The 9 selected types are adjectival modifier (amod), passive auxiliary 

(auxpass), direct object (dobj), indirect object (iobj), noun-compound modifier (nn), nominal 

subject (nsubj), passive-nominal subject (nsubjpass), object of a preposition (pobj) and open-clausal 

complement (xcomp). 

Scheme 3 exemplifies the TDs generated from the sentence: ‘We want to parse a Roman 

numeral string and convert it into an Arabic number’. The TD dobj(parse-4, string-8), for example, 

indicates that the noun ‘string’ acts as the direct object of the verb ‘parse’, and they occur as the 8th 

and 4th words respectively in the source sentence. 

 

nsubj(want-2, We-1) 
root(ROOT-0, want-2) 
aux(parse-4, to-3) 
xcomp(want-2, parse-4) 

det(string-8, a-5) 
nn(string-8, Roman-6) 
nn(string-8, numeral-7) 
dobj(parse-4, string-8) 

cc(parse-4, and-9) 
conj(parse-4, convert-10) 
dobj(convert-10, it-11) 
prep(convert-10, into-12) 

det(number-15, an-13) 
amod(number-15, Arabic-14) 
pobj(into-12, number-15) 

 
Scheme 3.  TDs generated from the sentence ‘We want to parse a Roman numeral string and 
convert it into an Arabic number’ using Stanford dependency parser 
 

Extracting Problem Keywords 
 

From the TDs generated from the description of a given problem, problem keywords are 

constructed as follows (KWN, KWAN, KWV and KWVN being a set of noun keywords, a set of 
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adjective-noun-pair keywords, a set of verb keywords and a set of verb-noun-pair keywords 

respectively): 

1. Initially, let each of KWN, KWAN, KWV and KWVN be empty. 

2. Change each word occurring in each TD into its base form by using the WordNet stemmer. 

3. For any m noun-compound TDs nn(x1, y1), nn(x2, y2), …, nn(xm, ym), if x1, x2, …, xm are the 

same word occurrence and y1, y2, …, ym are adjacent word occurrences, then add to KWN the 

result of concatenating y1, y2, …, ym, x1 with a space being inserted after each of yi. 

4. For each TD, e.g. , examine its form and construct keyword(s) as follows: 

a) If  has the form nn(x, y) and has not been used for keyword construction in Step 3, then 

add to KWN the result of concatenating y, a space and x. 

b) If  has one of the forms dobj(x, y), iobj(x, y), nsubj(x, y), nsubjpass(x, y) or pobj(x, y), 

then add y to KWN. 

c) If  has the form amod(x, y), then add x to KWN and add to KWAN the result of 

concatenating y, a space and x. 

d) If  has the form auxpass(x, y), then add x to KWV. 

e) If  has the form xcomp(x, y), then add y to KWV. 

f) If  has one of the forms dobj(x, y), iobj(x, y) or nsubjpass(x, y), then add x to KWV and 

add to KWVN the result of concatenating x, a space and y. 

5. Remove each keyword that contains a pronoun and/or a stop word. 

6. Remove duplicate keywords. 

From the TDs in Scheme 3, for example, the above steps generate 3 noun keywords, i.e. 

‘string’, ‘number’ and ‘Roman numeral string’; one adjective-noun-pair keyword, i.e. ‘Arabic 

number’;  2 verb keywords, i.e. ‘convert’ and ‘parse’; and one verb-noun-pair keyword, i.e. ‘parse 

string’. 
 

Construction of Feature-Vectors-Represented Problems 
 

A feature vector representing a problem (PBFV) is created based on matching keywords 

extracted from the description of the problem with clue words of TCFs. A PBFV for a problem PB 

is a sequence [w1, w2, …, w28], where, for each i  {1, 2, …, 28}, wi is computed by the 

ComputeFeatureScore procedure given in Scheme 4, with parameter KW being a set of all 

keywords of PB and parameter CW being a set of all clue words of TCF Fi. Words that are 

syntactically different may represent the same concept. In order to deal with the diversity of words, 

the WordNet ontology [8] is used for finding synonyms, hypernyms (broader terms) and hyponyms 

(narrower terms) of each component of a clue word.  

The ComputeFeatureScore procedure uses parameter NL to limit the number of levels of 

hypernyms/hyponyms to be considered. As a level increases, the meanings of terms in that level are 

typically more different from an original word. In order to reflect the actual degree of relationship 

between keywords and clue words, a penalty score PS is taken as another parameter, and a linearly 

increasing value of PS is assigned to every level of hypernyms/hyponyms. In our experiment four 

values of NL were considered, i.e. 0, 1, 2 and 3. When NL  0, neither hypernyms nor hyponyms 

were used and PS was set to zero. For each non-zero value of NL, varying values of PS such that  

1 – (PS × NL) > 0 were used. For example, when NL  2, each value in the set {0, 0.1, 0.2, 0.3, 0.4} 

was used for PS.  
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Scheme 4.  ComputeFeatureScore procedure 
 

The ComputeFeatureScore procedure uses the PhraseMatch and WordMatch procedures for 

matching keywords with clue words. When matching is successful, an integer greater than zero is 

produced as a matching score. The ComputeFeatureScore procedure ensures that every keyword in 

KW is matched successfully with at most one clue word in CW. Moreover, the noun component of 

an adjective-noun pair that has already been matched successfully will not be taken for further 

matching. Similarly, the verb component of a successfully matched verb-noun pair will not be 

matched again with any verb clue word. 

The PhraseMatch procedure is given in Scheme 5. It is used for matching an adjective-

noun-pair or verb-noun-pair keyword KP with a clue word CP of the same type. The output 

matching score is obtained by accumulating the scores resulting from matching their corresponding 

word components, which are calculated using the WordMatch procedure (Scheme 6). Among the 

four types of keywords, the verb-noun-pair keyword is most informative for expressing the 

intention of a given problem, and one extra point is added to the accumulated matching score for 

this keyword type. 

 

procedure: ComputeFeatureScore(KW, CW, NL, PS) 
input:   KW: set of keywords of given problem  NL: maximum number of hypernym/hyponym levels 
    CW: set of clue words of TCF    PS: penalty score 
output:  FS: feature score 
begin  
 FS : 0 
 for each keyword KW  KW  
  KW.isScored : false 
 for each pair (KP, CP)  KW × CW  
  if ((KP.isScored  false) and (KP.type  {‘adjective-noun’, ‘verb-noun’}) and (KP.type  CP.type)) then 
   begin 
    S : PhraseMatch(KP, CP, NL, PS)  
    if (S ≠ 0) then 

     begin 
      FS : FS  S 
      KP.isScored : true 
      if ((KP.type  ‘adjective-noun’) and (KP.nounWord  KW)) then  
       remove KP.nounWord from KW 
      if ((KP.type  ‘verb-noun’) and (KP.verbWord  KW)) then  
       remove KP.verbWord from KW 
     end 
   end 
 for each pair (K, C)  KW × CW  
  if ((K.isScored  false) and (K.type  {‘noun’, ‘verb’}) and (K.type  C.type)) then 
   begin 
    S : WordMatch(K, C, NL, PS) 
    if (S ≠ 0) then 
     begin 
      FS : FS  S 
      K.isScored : true 
     end 
   end 
 return FS 
end 
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Scheme 5.  PhraseMatch procedure 
 

 

 

Scheme 6.  WordMatch procedure  

 

For matching a single word component K of a keyword with a single word component C of a 

clue word, the WordMatch procedure in Scheme 6 is used, where Synonyms(C), Hypernyms(C, i) 

and Hyponyms(C, i) are the sets of synonyms, ith-level broader terms and ith-level narrower terms 

respectively of C, which are obtained from WordNet ontology using MIT Java WordNet Interface 

API [16]. When K is matched with a term in Synonyms(C), the matching score of 1 is produced. 

When K is matched with a term in Hypernyms(C, i) or Hyponyms(C, i), where i ≤ NL, the resulting 

matching score is 1 – (PS × i). 

To illustrate phrase matching and word matching, suppose that: 

 KW contains a verb-noun-pair keyword ‘decide algorithm’, referred to as KP, and this 

keyword is obtained from the direct-object TD dobj(‘decide’, ‘algorithm’). 

 CW contains a verb-noun-pair clue word ‘select algorithm’, referred to as CP. 

 The parameters NL and PS are set to 2 and 0.4 respectively. 

procedure: WordMatch(K, C, NL, PS) 
input:   K: component of problem keyword  NL: maximum number of hypernym/hyponym levels  
    C: component of clue word    PS: penalty score 
output:  MS: matching score 
begin 
 MS : 0 
 if (K  Synonyms(C)) then MS : 1 
 else begin 
  i : 1 
  while ((i ≤ NL) and (MS  0)) 
   begin 
    if (K  Hypernyms(C, i)) or (K  Hyponyms(C, i)) then MS : 1 – (PS × i) 
    i : i  1 
   end 
 end 
 return MS 
end  

procedure:  PhraseMatch(KP, CP, NL, PS) 
input:   KP: problem keyword     NL: maximum number of hypernym/hyponym levels  
    CP: clue word       PS: penalty score 
output:  MS: matching score 
begin 
 MS : 0 
 if (KP.type  CP.type) then 
  begin   
   S1 : WordMatch(KP.firstWord, CP.firstWord, NL, PS) 
   S2 : WordMatch(KP.secondWord, CP.secondWord, NL, PS) 
   if ((S1 ≠ 0) and (S2 ≠ 0)) then  
    begin  
     MS : S1  S2 
     if (KP.type  ‘verb-noun’) then MS : MS  1  
    end 
  end 
 return MS 
end  
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From the WordNet ontology, Hypernyms(‘select’, 1) contains the word ‘decide’ and 

Synonyms(‘algorithm’) contains the word ‘algorithm’ itself. The output score resulting from 

matching KP with CP using PhraseMatch is calculated as follows: (1) by calling 

WordMatch(‘decide’, ‘select’, 2, 0.4), the score 1 – (0.4 × 1)  0.6 is obtained, (2) by calling 

WordMatch(‘algorithm’, ‘algorithm’, 2, 0.4), the score 1 is obtained, and (3) since KP is a verb-

noun-pair keyword, the final matching score computed by PhraseMatch(KP, CP, 2, 0.4) is  

(0.6  1)  1  2.6. Note that since KP is constructed from a TD of type dobj, its verb component, 

i.e. ‘decide’, is also stored as a verb keyword in KW by our keyword extraction process (cf. Step 4f 

of the procedure for extracting problem keywords). After KP is successfully matched, the 

ComputeFeatureScore procedure also removes the verb keyword ‘decide’ from KW. 
 

Normalising Feature Vectors and Computing Cosine Similarity 
 

In order to determine its similarity to a DPFV for each design pattern without biased values, 

the obtained PBFV is also normalised. The normalised vector of a PBFV [w1, w2, …, w28] is the 

vector [nw1, nw2, …, nw28], where, for each i  {1, 2, …, 28}, nwi  wi  (w1  w2  …  w28). The 

cosine similarity score between the PBFV representing an input problem and the DPFV for each 

design pattern is computed by  
 

 













 



n

i
i

n

i
i

n

i
ii NDPFVNPBFVNDPFVNPBFV

1

2

1

2

1

)()()( ,  

 
where NPBFV is the normalised vector of PBFV, NDPFV is the normalised vector of DPFV, and n 

is the total number of TCFs. The design patterns are then ranked and recommended according to the 

resulting similarity scores. 
 

EXPERIMENTAL RESULTS 
 

In order to evaluate the proposed method, we collected 24 design problems, referred to as 

Q1-Q24, from three design pattern books authored by Kuchana [3], Cooper [4] and Lasater [5], and 

from the Internet. Scheme 7 shows an example of design problems taken from the third book [5], 

according to which the Strategy pattern should be applied to this problem. An experiment was 

conducted using 20 combinations of the NL and PS parameters (the maximum number of levels of 

hypernyms/hyponyms and the penalty score), i.e. 1, 10, 5 and 4 combinations with NL being 0, 1, 2 

and 3 respectively (cf. the description of ComputeFeatureScore procedure). 

 

 

Scheme 7.  Example of design problems 
 

 

 

We have a set of classes, each of which has arithmetic code that returns a value based on the type of 
arithmetic we wish to perform. Each class is slightly different, but all take a common input of a value 
and a variance. We have a class for addition. We have a class that performs subtraction on the value 
and variance. We allow a user to decide an algorithm to use at any given time. Right now we have if-
then-else code to do this, but it is not very efficient. If we want to add a class to perform multiplication 
and a class to perform division, we would have to modify the if-then-else code for each algorithm. We 
need a better and more flexible way to add classes and manage the algorithmic grouping. We need to 
use a common interface that ties all these classes together as well. 
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From the experimental results, the combination in which NL  1 and PS  0.8 yielded the 

most accurate recommendations. Table 5 shows the recommended patterns in the top three ranks 

obtained by applying this combination to the problems Q1-Q24. The correct recommended patterns 

are emphasised using bold alphabets. The column ‘Actual answer’ gives the correct pattern for the 

problem under consideration, and the columns ‘1st Rank’, ‘2nd Rank’ and ‘3rd Rank’ show the 

patterns with highest, second highest and third highest similarity scores respectively, obtained by 

the proposed method. For example, the second row of Table 5 indicates that the State pattern has 

the highest similarity score (0.78), and the Bridge and Strategy patterns have the second highest 

similarity score (0.15). Since there are two recommended patterns in the 2nd rank, the 3rd rank is 

empty. From the 24 problems used in the evaluation, 14 actual answers were obtained as 

recommended patterns in the 1st rank, 8 actual answers as recommended patterns in the 2nd rank, 

and 2 actual answers as recommended patterns in the 3rd rank. 
 

Table 5. Recommended patterns in the top three ranks when NL  1 and PS  0.8 for 24 design 
problems (Q1-Q24) 

Question 
Actual 
answer 

Recommended pattern 

1st Rank 2nd Rank 3rd Rank 

Q1 Strategy Template M. (0.48) Strategy (0.43) Decorator (0.40) 

Q2 State State (0.78) Bridge, Strategy (0.15)  

Q3 Decorator Observer (0.54) Mediator (0.53) Decorator (0.46) 

Q4 CoR Observer (0.58) CoR (0.53) Decorator (0.46) 

Q5 Command Command (0.64) Decorator (0.48) CoR (0.39) 

Q6 Observer Observer (0.95) Mediator (0.29) State (0.19) 

Q7 Proxy Proxy (0.73) Memento (0.33) Mediator (0.33) 

Q8 Template M. Template M. (0.62) Decorator, CoR (0.32)  

Q9 Façade Façade (0.59) Memento (0.41) Decorator, CoR (0.35) 

Q10 Bridge Bridge, Strategy (0.54)  Template M. (0.42) 

Q11 Mediator Observer (0.85) Mediator (0.54) Proxy, Memento (0.18) 

Q12 Memento Memento (0.52) Command (0.50) Proxy (0.25) 

Q13 Interpreter Interpreter (0.97) Decorator, CoR (0.15)  

Q14 Interpreter Mediator (0.67) Interpreter (0.58) Observer (0.41) 

Q15 Template M. Template M. (0.89) Façade (0.23) Strategy (0.18) 

Q16 Decorator Decorator (0.42) Command (0.38) Proxy (0.20) 

Q17 CoR Decorator (0.59) CoR (0.51) Command (0.36) 

Q18 Façade  Decorator (0.65) CoR (0.58) Façade (0.44) 

Q19 Strategy Decorator (0.54) Strategy, Bridge (0.49)  

Q20 State State (0.50) Mediator (0.31) Façade (0.21) 

Q21 Memento Memento (0.69) Proxy (0.27) Observer (0.15) 

Q22 Command Command (0.77) Mediator (0.19) Decorator, CoR, State, Observer (0.13) 

Q23 Observer State (0.41) Observer (0.33) Proxy (0.29) 

Q24 Mediator Observer (0.69) Mediator (0.59) Strategy (0.22) 
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Table 6 shows the accuracy of all combinations of NL and PS. For example, the row in 

which NL  1 and PS  0.8 shows that: 

 The actual answers of 58.33% (14/24) of the problems are recommended in the 1st rank. 

 The actual answers of 91.67% (22/24) of the problems belong to the top two ranks (1st 

rank or 2nd rank). 

 The actual answers of 100.00% (24/24) of the problems belong to the top three ranks (1st 

rank, 2nd rank or 3rd rank). 

Table 6.  Overall experimental results 

Parameter  Percentage of correct answers 

NL PS  Top (1st) rank 2nd rank 3rd rank 4th rank 5th rank 

0 0  58.33% (14/24) 79.17% (19/24) 91.67% (22/24) 91.67% (22/24) 91.67% (22/24) 

1 0  54.17% (13/24) 75.00% (18/24) 87.50% (21/24) 100.00% (24/24) 100.00% (24/24) 

1 0.1  54.17% (13/24) 75.00% (18/24) 87.50% (21/24) 100.00% (24/24) 100.00% (24/24) 

1 0.2  54.17% (13/24) 75.00% (18/24) 91.67% (22/24) 100.00% (24/24) 100.00% (24/24) 

1 0.3  58.33% (14/24) 79.17% (19/24) 91.67% (22/24) 100.00% (24/24) 100.00% (24/24) 

1 0.4  58.33% (14/24) 83.33% (20/24) 95.83% (23/24) 100.00% (24/24) 100.00%(24/24) 

1 0.5  58.33% (14/24) 87.50% (21/24) 100.00% (24/24) 100.00% (24/24) 100.00% (24/24) 

1 0.6  58.33% (14/24) 87.50% (21/24) 100.00% (24/24) 100.00% (24/24) 100.00% (24/24) 

1 0.7  54.17% (13/24) 91.67% (22/24) 100.00% (24/24) 100.00% (24/24) 100.00% (24/24) 

1 0.8  58.33% (14/24) 91.67% (22/24) 100.00% (24/24) 100.00% (24/24) 100.00% (24/24) 

1 0.9  58.33% (14/24) 87.50% (21/24) 100.00% (24/24) 100.00% (24/24) 100.00% (24/24) 

2 0  50.00% (12/24) 62.50% (15/24) 70.83% (17/24) 79.17% (19/24) 91.67% (22/24) 

2 0.1  50.00% (12/24) 62.50% (15/24) 70.83% (17/24) 83.33% (20/24) 91.67% (22/24) 

2 0.2  50.00% (12/24) 66.67% (16/24) 75.00% (18/24) 91.67% (22/24) 91.67% (22/24) 

2 0.3  50.00% (12/24) 66.67% (16/24) 91.67% (22/24) 95.83% (23/24) 95.83% (23/24) 

2 0.4  54.17% (13/24) 79.17% (19/24) 91.67% (22/24) 95.83% (23/24) 95.83% (23/24) 

3 0  33.33% (8/24) 54.17% (13/24) 70.83% (17/24) 79.17% (19/24) 79.17% (19/24) 

3 0.1  45.83% (11/24) 58.33% (14/24) 70.83% (17/24) 83.33% (20/24) 83.33% (20/24) 

3 0.2  45.83% (11/24) 66.67% (16/24) 70.83% (17/24) 83.33% (20/24) 83.33% (20/24) 

3 0.3  50.00% (12/24) 62.50% (15/24) 87.50% (21/24) 91.67% (22/24) 95.83% (23/24) 

Average  52.71% 74.58% 87.29% 93.75% 95.00% 

 

Table 6 also reveals that only the combinations in which NL  1 yield all actual answers 

within the top five recommended patterns. More specifically, the combinations in which NL  1 and 

0 ≤ PS ≤ 0.4 give all actual answers within the top four recommended patterns, and the 

combinations in which NL  1 and 0.5 ≤ PS ≤ 0.9 give all actual answers within the top three 

recommended patterns. 
 

CONCLUSIONS 
 

Task-based conceptual features (TCFs) have been introduced as intermediate artifacts for 

representing expert knowledge concerning the usage of each design pattern. By matching clue 
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words of TCFs with problem keywords extracted from the typed dependencies generated from the 

description of an input design problem, the similarity between the input problem and each design 

pattern is estimated. Appropriate design patterns are ranked according the obtained similarity 

scores. An evaluation using 24 design problems has shown that when the first-level hypernyms and 

hyponyms are used for keyword matching and a penalty score is between 0.5-0.9, the correct design 

pattern for each problem is one of the patterns recommended in the top three ranks.  
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