

Maejo Int. J. Sci. Technol. 2016, 10(01), 113-126; doi: 10.14456/mijst.2016.11

Maejo International
Journal of Science and Technology

ISSN 1905-7873
Available online at www.mijst.mju.ac.th

Full Paper

Recommending design patterns using task-based conceptual
features

Nasith Laosen, Nuttapon Sanyawong and Ekawit Nantajeewarawat*

School of Information, Computer and Communication Technology, Sirindhorn International

Institute of Technology, Thammasat University, Thailand

* Corresponding author, e-mail: ekawit@siit.tu.ac.th

Received: 13 October 2015 / Accepted: 25 March 2016 / Published: 21 April 2016

Abstract: Task-based conceptual features (TCFs) represent human knowledge

concerning intentions and/or characteristics of design tasks to which a design pattern is

applicable. They provide a bridge connecting the usage of a design pattern and the

characteristics of a design problem. A method for recommending appropriate design

patterns based on TCFs is presented. From grammatical relations between words

generated from the textual description of an input design problem, problem keywords are

extracted. The obtained problem keywords are matched with clue words of each TCF in

order to construct a feature vector representing the input problem. Based on the similarity

between the feature vector representing the problem and the TCF-based vector

representing each design pattern, design patterns are ranked and recommended. The

method is evaluated on a collection of 24 input design problems. The evaluation results

show that when the first-level hypernyms and hyponyms obtained from the WordNet

ontology are employed for word matching and an appropriate penalty score is assigned to

them, design patterns recommended in the top three ranks include the correct design

patterns for all 24 problems.

Keywords: design pattern, pattern recommendation, task-based conceptual feature

INTRODUCTION

Object-oriented design patterns are proven solutions to frequently occurring software design

problems [1-5]. However, even for an experienced developer, selection of an appropriate design

pattern is often difficult since it requires a large amount of knowledge concerning the usage, intent

and applicability of many available design patterns. To facilitate design pattern selection,

Hasheminejad and Jalili [6] presented a two-phase selection method. In their proposal each design

pattern is represented by a vector of words appearing in the descriptions of the pattern taken from

Maejo Int. J. Sci. Technol. 2016, 10(01), 113-126; doi: 10.14456/mijst.2016.11

114

standard design pattern textbooks. In the first phase a binary classification model is constructed for

each category of patterns, e.g. creational, structural and behavioural patterns. The obtained

classifiers are then used for predicting the category of a given input design problem, which is

encoded as a vector of words occurring in the textual description of the problem. In the second

phase the word vector representing the design problem is compared with the word vectors that

represent design patterns in the predicted category by using cosine similarity. Design patterns are

then recommended based on the obtained similarity scores. The use of word vectors for pattern

representations, however, has two major drawbacks. First, occurrences of words are low-level

features that may not clearly express the true characteristics of a design pattern. Second, the

description of a pattern in a source textbook is often verbose and contains many words that are not

relevant to the usage and applicability of the pattern. As a result, an obtained similarity score is

often distorted by these irrelevant words.

In this article the concept of task-based conceptual feature (TCF) is introduced as a high-

level feature for representing an intention and/or characteristic of a design task, and an automatic

design pattern recommendation framework is proposed by exploiting two types of expert know-

ledge centring around TCFs. The knowledge of the first type associates a design pattern with a set

of TCFs that characterise its usage. The knowledge of the second type provides a collection of clue

words that partially characterises each TCF. With these two types of expert knowledge, TCFs

provide a bridge connecting the usage of a design pattern and the characteristics of a given input

design problem. From the pattern usage descriptions in the pattern usage hierarchy proposed in our

previous work [7], 28 TCFs are extracted. We restrict our attention in this article to 13 Gang-of-

Four design patterns [1] in the usage category of ‘performing a domain-specific task other than

object creation’, which is the largest and most complicated category in the usage hierarchy under

consideration.

This work consists of two main parts. The first part is concerned with the construction of

TCFs and their clue words. TCFs are associated with a design pattern by means of a feature vector

representing the pattern. The second part presents a method for automatically recommending appro-

priate design patterns based on TCFs. Using the WordNet ontology [8], clue words of TCFs are

matched with keywords extracted from a given input design problem in order to construct a feature

vector representing the problem. By computing their cosine similarity, the feature vector repre-

senting the problem is compared with that representing each design pattern. Appropriate design

patterns are then ranked based on the resulting similarity scores.

RELATED WORK

In addition to the two-phase selection method proposed by Hasheminejad and Jalili [6],

some studies on design pattern recommendation have been reported. Kampffmeyer and Zschaler [9]

proposed a knowledge-based approach to the design pattern recommendation. A design pattern

intent ontology was constructed to capture the relationship between design patterns and problem

concepts that could be addressed by them. In their approach when a design problem was given, a

software designer manually extracted the characteristics of the problem and employed the design

pattern intent ontology to retrieve an appropriate design pattern.

Kim and Khawand [10] employed the Role-based Metamodelling Language, which is a

UML-based pattern specification language, to formally specify the problem context in which a

design pattern could be applied. Static pattern specifications were used for capturing the structural

properties of design patterns, and interaction pattern specifications were used for capturing object

Maejo Int. J. Sci. Technol. 2016, 10(01), 113-126; doi: 10.14456/mijst.2016.11

115

interaction behaviours suggested by the patterns. Although the design pattern recommendation was

not directly discussed, their proposed formal specifications provided checkpoints for assessing the

conformance of a design problem to a design pattern.

Bouassida et al. [11] proposed an interactive tool-set for recommending an appropriate

design pattern. Semantic correspondences (e.g. equivalences, hyponyms and compositions) among

element names in an input class diagram and the names of design patterns’ participants given in the

Gang-of-Four book [1] were determined. Based on the obtained correspondences, hand-crafted

recommendation rules were used for finding and instantiating a suitable design pattern. A user may

interact with the recommendation rules to provide additional information required for determining

an appropriate pattern.

Sahly and Sallabi [12] presented a strategic method for recommending a suitable design

pattern. By using a pre-defined questionnaire, users were classified into 3 levels, i.e. novices,

advanced beginners and experts. A vector space model was applied to represent textual patterns’

intents and a problem description specified in terms of queries. Based on cosine similarity

measurement and pre-defined similarity thresholds, candidate patterns were suggested. When a

suitable pattern candidate was not found, a formal concept analysis and case-based reasoning

techniques were applied to augment the currently given queries by making use of previously known

queries. When a suitable pattern was still not found, the level of the user was considered. For an

expert user, for example, the input problem description was posted to a group of experts for further

discussion.

Palma et al. [13] developed a design pattern recommendation system in which the

knowledge about design patterns, e.g. intentions and applicabilities, was transformed into textual

conditions for selecting an appropriate pattern. A user characterised his/her design problem by

answering questions reformulated from such textual conditions. An answer was given in the forms

of ‘yes’, ‘do not know’ or ‘no’, with a weight indicating the degree of user’s confidence. Based on

the obtained answers, a pattern with the highest total weight was recommended. The proposed

recommendation system was evaluated by 8 subjects and an accuracy of 50% was reported.

Issaoui et al. [14] presented a semi-automatic approach to design pattern suggestion. By

applying the WordNet ontology [8], class names and method names extracted from an input class

diagram were semantically compared with the names of design patterns’ participants given in the

Gang-of-Four book [1]. Candidate design patterns were determined based on the obtained similarity

scores. Pre-defined questions specifying the intentions of each candidate pattern were then

reformulated by replacing the pattern’s participant names with their corresponding extracted

class/method names. A user was required to specify the characteristics of his/her design problem by

answering the reformulated questions. Based on the obtained answers, an appropriate pattern was

recommended.

All the studies mentioned above focused their attention on the Gang-of-Four design patterns

[1]. No empirical evaluation was presented by Kampffmeyer and Zschaler [9], Kim and Khawand

[10], Bouassida et al. [11], Sahly and Sallabi [12] or Issaoui et al. [14].

TCFs AND THEIR CLUE WORDS

To begin with, TCFs are introduced. They are associated with design patterns in terms of

feature vectors representing design patterns called DPFVs. The construction of clue words of each

TCF is described.

Maejo Int. J. Sci. Technol. 2016, 10(01), 113-126; doi: 10.14456/mijst.2016.11

116

TCFs and Feature Vectors Representing Design Patterns

A task-based conceptual feature (TCF) describes an intention and/or a characteristic of a

design task. From pattern usage descriptions in the pattern usage hierarchy proposed in our previous

work [7], 28 TCFs, referred to as F1-F28, are extracted. They are shown in Table 1. Table 2

associates TCFs with design patterns. It provides expert knowledge describing each design pattern

in terms of the characteristics of problems to which the pattern is applicable. For example, the first

row in the right-hand side of Table 2 indicates that the Strategy pattern is used for solving a design

problem that is characterised by the TCFs F12, F13 and F15.

 Table 1. Task-based conceptual features (TCFs)

Feature Description

F1 Working with grammar and text parsing
F2 Separating basic tasks from specific tasks
F3 Assigning specialised tasks to different task performers
F4 Accessing external resources (hard-disk, Internet, etc.)
F5 Reducing retrieval time from external resources / Data caching
F6 Working with a sequence of tasks
F7 Working with collaborative tasks
F8 Working with multi-layer tasks
F9 Handling task-chain alternatives

F10 Changing an algorithm flow
F11 Constantly calling tasks in a pre-defined sequence
F12 Selecting an algorithm depending on an environment
F13 Working with many alternative algorithms
F14 Choosing an appropriate algorithm on object creation
F15 Determining an algorithm at run-time
F16 Performing operations that depend on states of objects
F17 Changing algorithms based on the current computation state
F18 Storing object data
F19 Object data restoration
F20 Storing an object operation
F21 Keeping a list of already-done operations
F22 Working with an undo function
F23 Dissemination of information
F24 Working with communication among objects
F25 Notification of information change
F26 One-to-many object communication
F27 Centralised object communication
F28 Working with a list of operations for information exchange

 Table 2. Associating TCFs with design patterns

Design pattern TCF Design pattern TCF

Interpreter F1 Strategy F12, F13, F15
Template method F2, F3 State F12, F13, F16, F17
Proxy F4, F5 Memento F18, F19
Decorator F6, F7, F8, F9 Command F20, F21, F22
Chain of responsibility F6, F7, F9, F10 Observer F23, F24, F25, F26
Façade F6, F11 Mediator F24, F27, F28
Bridge F12, F13, F14

Based on Table 2, a feature vector representing a design pattern (DPFV) is constructed. A

DPFV for a design pattern DP is a sequence [v1, v2, …, v28], where, for each i {1, 2, …, 28},

vi ‘1’ if the TCF Fi is associated with DP, and vi ‘0’ otherwise. For example, in the DPFV for

Maejo Int. J. Sci. Technol. 2016, 10(01), 113-126; doi: 10.14456/mijst.2016.11

117

the Strategy pattern, only the elements v12, v13 and v15 are ‘1’ and all other elements of the vector are

‘0’. DPFVs are normalised as follows: the normalised vector of a DPFV [v1, v2, …, v28] is the

sequence [nv1, nv2, …, nv28], where, for each i {1, 2, …, 28}, nvi vi (v1 v2 … v28).

Constructing Clue Words of TCFs

A clue word of a TCF is a word or a phrase that partially characterises the TCF. Four

linguistic types of clue words are considered, i.e. nouns, adjective-noun pairs, verbs and verb-noun

pairs. Noun and adjective-noun-pair clue words represent entities that are involved with a TCF,

while verb and verb-noun-pair clue words represent intentions to perform some activities or tasks

related to a TCF.

Clue words are associated with a TCF by words/phrases from candidate words/phrases

collected from sentences in predetermined sections of three object-oriented design pattern textbooks

[1-3]. Three sections of the first book [1], i.e. ‘Intent’, ‘Motivation’ and ‘Applicability’, two

sections of the second book [2], i.e. ‘Role’ and ‘Use’, and one section of the third book [3], i.e.

‘Description’, are used as the sources of candidate words/phrases. The collected candidate

words/phrases are preprocessed by (1) removing stop words and (2) determining the base forms of

the remaining words by using the WordNet stemmer [8]. For example, by these preprocessing steps,

a candidate phrase ‘parsing a string’ is changed into ‘parse string’; the indefinite article ‘a’ is

removed and ‘parsing’ is replaced with its base form (‘parse’).

Clue words are selected from candidate words and word pairs by a human expert. Candidate

nouns and adjective-noun pairs that represent important entities related to a TCF and candidate

verbs and verb-noun pairs that represent certain specific intentions of a TCF are selected as clue

words. For example, ‘parse’ and ‘undo’ are verb clue words of TCFs F1 and F22 respectively, and

‘select algorithm’ is a verb-noun-pair clue word of TCF F12.

Scheme 1 shows the obtained clue words of TCF F1. Table 3 and Table 4 show the number

of the obtained clue words of TCFs F1-F14 and F15-F28 respectively, classified by clue-word type.

grammar (noun)
language (noun)

syntax (noun)

text (noun)

string (noun)

syntax tree (noun)
language expression (noun)

expression (noun)
parse (verb)

interpret sentence (verb, noun)
interpret string (verb, noun)

interpret text (verb, noun)
interpret language (verb, noun)

parse tree (verb, noun)

parse string (verb, noun)

parse text (verb, noun)

express language (verb, noun)

Scheme 1. Clue words of TCF F1

 Table 3. Number of clue words of TCFs F1-F14

Clue-word type F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

Noun 8 8 8 2 7 6 5 8 8 8 5 4 2 4
Adjective-noun 0 56 31 3 3 8 10 8 3 2 0 2 6 0
Verb 1 0 0 0 1 0 0 0 0 0 0 0 0 0
Verb-noun 8 15 10 12 5 0 0 12 1 3 8 8 0 6

 Table 4. Number of clue words of TCFs F15-F28

Clue-word type F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28

Noun 5 2 7 4 4 2 7 4 1 4 2 3 5 4
Adjective-noun 2 4 2 0 0 0 1 0 0 0 0 0 1 0
Verb 0 0 0 0 0 0 0 1 0 0 0 0 0 0
Verb-noun 16 1 5 4 6 6 10 4 7 2 9 2 2 2

Maejo Int. J. Sci. Technol. 2016, 10(01), 113-126; doi: 10.14456/mijst.2016.11

118

METHOD FOR AUTOMATIC RECOMMENDATION OF DESIGN PATTERNS

A method for automatically recommending appropriate design patterns for a given design

problem based on TCFs and their clue words is next described. As outlined in Scheme 2, the

method consists of five steps: (1) generating typed dependencies (TDs) from the textual description

of an input design problem, (2) extracting problem keywords from the obtained TDs, (3) matching

problem keywords with clue words of each TCF in order to construct a feature vector representing

the input problem called PBFV, (4) normalising the vector PBFV, and (5) computing cosine

similarity scores between the normalised PBFV and normalised DPFVs for the 13 patterns under

consideration. Design patterns are ranked according to the resulting similarity scores.

A problem
description

Generating typed
dependencies

Problem
keywords

Constructing a PBFV
based on keyword matching

Ranking of design
patterns

WordNet

Extracting
keywords

(1)

Feature vector
normalisation

(2) (3)

Computing
cosine similarity

Normalised
PBFV

...F1 F2 F28

TCFs and their clue words

...P1 P2 P13

Normalised DPFVs

(4) (5)

PBFV

Scheme 2. Overview of proposed recommendation method

Generating TDs

TDs between words in a given textual problem description are generated by using the

Stanford dependency parser [15]. A TD represents the grammatical relationship between a pair of

words in a sentence. From 49 grammatical relationship types generated by the dependency parser,

only 9 types that potentially provide the entities and intentions associated with a problem

description are selected. The 9 selected types are adjectival modifier (amod), passive auxiliary

(auxpass), direct object (dobj), indirect object (iobj), noun-compound modifier (nn), nominal

subject (nsubj), passive-nominal subject (nsubjpass), object of a preposition (pobj) and open-clausal

complement (xcomp).

Scheme 3 exemplifies the TDs generated from the sentence: ‘We want to parse a Roman

numeral string and convert it into an Arabic number’. The TD dobj(parse-4, string-8), for example,

indicates that the noun ‘string’ acts as the direct object of the verb ‘parse’, and they occur as the 8th

and 4th words respectively in the source sentence.

nsubj(want-2, We-1)
root(ROOT-0, want-2)
aux(parse-4, to-3)
xcomp(want-2, parse-4)

det(string-8, a-5)
nn(string-8, Roman-6)
nn(string-8, numeral-7)
dobj(parse-4, string-8)

cc(parse-4, and-9)
conj(parse-4, convert-10)
dobj(convert-10, it-11)
prep(convert-10, into-12)

det(number-15, an-13)
amod(number-15, Arabic-14)
pobj(into-12, number-15)

Scheme 3. TDs generated from the sentence ‘We want to parse a Roman numeral string and
convert it into an Arabic number’ using Stanford dependency parser

Extracting Problem Keywords

From the TDs generated from the description of a given problem, problem keywords are

constructed as follows (KWN, KWAN, KWV and KWVN being a set of noun keywords, a set of

Maejo Int. J. Sci. Technol. 2016, 10(01), 113-126; doi: 10.14456/mijst.2016.11

119

adjective-noun-pair keywords, a set of verb keywords and a set of verb-noun-pair keywords

respectively):

1. Initially, let each of KWN, KWAN, KWV and KWVN be empty.

2. Change each word occurring in each TD into its base form by using the WordNet stemmer.

3. For any m noun-compound TDs nn(x1, y1), nn(x2, y2), …, nn(xm, ym), if x1, x2, …, xm are the

same word occurrence and y1, y2, …, ym are adjacent word occurrences, then add to KWN the

result of concatenating y1, y2, …, ym, x1 with a space being inserted after each of yi.

4. For each TD, e.g. , examine its form and construct keyword(s) as follows:

a) If has the form nn(x, y) and has not been used for keyword construction in Step 3, then

add to KWN the result of concatenating y, a space and x.

b) If has one of the forms dobj(x, y), iobj(x, y), nsubj(x, y), nsubjpass(x, y) or pobj(x, y),

then add y to KWN.

c) If has the form amod(x, y), then add x to KWN and add to KWAN the result of

concatenating y, a space and x.

d) If has the form auxpass(x, y), then add x to KWV.

e) If has the form xcomp(x, y), then add y to KWV.

f) If has one of the forms dobj(x, y), iobj(x, y) or nsubjpass(x, y), then add x to KWV and

add to KWVN the result of concatenating x, a space and y.

5. Remove each keyword that contains a pronoun and/or a stop word.

6. Remove duplicate keywords.

From the TDs in Scheme 3, for example, the above steps generate 3 noun keywords, i.e.

‘string’, ‘number’ and ‘Roman numeral string’; one adjective-noun-pair keyword, i.e. ‘Arabic

number’; 2 verb keywords, i.e. ‘convert’ and ‘parse’; and one verb-noun-pair keyword, i.e. ‘parse

string’.

Construction of Feature-Vectors-Represented Problems

A feature vector representing a problem (PBFV) is created based on matching keywords

extracted from the description of the problem with clue words of TCFs. A PBFV for a problem PB

is a sequence [w1, w2, …, w28], where, for each i {1, 2, …, 28}, wi is computed by the

ComputeFeatureScore procedure given in Scheme 4, with parameter KW being a set of all

keywords of PB and parameter CW being a set of all clue words of TCF Fi. Words that are

syntactically different may represent the same concept. In order to deal with the diversity of words,

the WordNet ontology [8] is used for finding synonyms, hypernyms (broader terms) and hyponyms

(narrower terms) of each component of a clue word.

The ComputeFeatureScore procedure uses parameter NL to limit the number of levels of

hypernyms/hyponyms to be considered. As a level increases, the meanings of terms in that level are

typically more different from an original word. In order to reflect the actual degree of relationship

between keywords and clue words, a penalty score PS is taken as another parameter, and a linearly

increasing value of PS is assigned to every level of hypernyms/hyponyms. In our experiment four

values of NL were considered, i.e. 0, 1, 2 and 3. When NL 0, neither hypernyms nor hyponyms

were used and PS was set to zero. For each non-zero value of NL, varying values of PS such that

1 – (PS × NL) > 0 were used. For example, when NL 2, each value in the set {0, 0.1, 0.2, 0.3, 0.4}

was used for PS.

Maejo Int. J. Sci. Technol. 2016, 10(01), 113-126; doi: 10.14456/mijst.2016.11

120

Scheme 4. ComputeFeatureScore procedure

The ComputeFeatureScore procedure uses the PhraseMatch and WordMatch procedures for

matching keywords with clue words. When matching is successful, an integer greater than zero is

produced as a matching score. The ComputeFeatureScore procedure ensures that every keyword in

KW is matched successfully with at most one clue word in CW. Moreover, the noun component of

an adjective-noun pair that has already been matched successfully will not be taken for further

matching. Similarly, the verb component of a successfully matched verb-noun pair will not be

matched again with any verb clue word.

The PhraseMatch procedure is given in Scheme 5. It is used for matching an adjective-

noun-pair or verb-noun-pair keyword KP with a clue word CP of the same type. The output

matching score is obtained by accumulating the scores resulting from matching their corresponding

word components, which are calculated using the WordMatch procedure (Scheme 6). Among the

four types of keywords, the verb-noun-pair keyword is most informative for expressing the

intention of a given problem, and one extra point is added to the accumulated matching score for

this keyword type.

procedure: ComputeFeatureScore(KW, CW, NL, PS)
input: KW: set of keywords of given problem NL: maximum number of hypernym/hyponym levels
 CW: set of clue words of TCF PS: penalty score
output: FS: feature score
begin
 FS : 0
 for each keyword KW KW
 KW.isScored : false
 for each pair (KP, CP) KW × CW
 if ((KP.isScored false) and (KP.type {‘adjective-noun’, ‘verb-noun’}) and (KP.type CP.type)) then
 begin
 S : PhraseMatch(KP, CP, NL, PS)
 if (S ≠ 0) then

 begin
 FS : FS S
 KP.isScored : true
 if ((KP.type ‘adjective-noun’) and (KP.nounWord KW)) then
 remove KP.nounWord from KW
 if ((KP.type ‘verb-noun’) and (KP.verbWord KW)) then
 remove KP.verbWord from KW
 end
 end
 for each pair (K, C) KW × CW
 if ((K.isScored false) and (K.type {‘noun’, ‘verb’}) and (K.type C.type)) then
 begin
 S : WordMatch(K, C, NL, PS)
 if (S ≠ 0) then
 begin
 FS : FS S
 K.isScored : true
 end
 end
 return FS
end

Maejo Int. J. Sci. Technol. 2016, 10(01), 113-126; doi: 10.14456/mijst.2016.11

121

Scheme 5. PhraseMatch procedure

Scheme 6. WordMatch procedure

For matching a single word component K of a keyword with a single word component C of a

clue word, the WordMatch procedure in Scheme 6 is used, where Synonyms(C), Hypernyms(C, i)

and Hyponyms(C, i) are the sets of synonyms, ith-level broader terms and ith-level narrower terms

respectively of C, which are obtained from WordNet ontology using MIT Java WordNet Interface

API [16]. When K is matched with a term in Synonyms(C), the matching score of 1 is produced.

When K is matched with a term in Hypernyms(C, i) or Hyponyms(C, i), where i ≤ NL, the resulting

matching score is 1 – (PS × i).

To illustrate phrase matching and word matching, suppose that:

 KW contains a verb-noun-pair keyword ‘decide algorithm’, referred to as KP, and this

keyword is obtained from the direct-object TD dobj(‘decide’, ‘algorithm’).

 CW contains a verb-noun-pair clue word ‘select algorithm’, referred to as CP.

 The parameters NL and PS are set to 2 and 0.4 respectively.

procedure: WordMatch(K, C, NL, PS)
input: K: component of problem keyword NL: maximum number of hypernym/hyponym levels
 C: component of clue word PS: penalty score
output: MS: matching score
begin
 MS : 0
 if (K Synonyms(C)) then MS : 1
 else begin
 i : 1
 while ((i ≤ NL) and (MS 0))
 begin
 if (K Hypernyms(C, i)) or (K Hyponyms(C, i)) then MS : 1 – (PS × i)
 i : i 1
 end
 end
 return MS
end

procedure: PhraseMatch(KP, CP, NL, PS)
input: KP: problem keyword NL: maximum number of hypernym/hyponym levels
 CP: clue word PS: penalty score
output: MS: matching score
begin
 MS : 0
 if (KP.type CP.type) then
 begin
 S1 : WordMatch(KP.firstWord, CP.firstWord, NL, PS)
 S2 : WordMatch(KP.secondWord, CP.secondWord, NL, PS)
 if ((S1 ≠ 0) and (S2 ≠ 0)) then
 begin
 MS : S1 S2
 if (KP.type ‘verb-noun’) then MS : MS 1
 end
 end
 return MS
end

Maejo Int. J. Sci. Technol. 2016, 10(01), 113-126; doi: 10.14456/mijst.2016.11

122

From the WordNet ontology, Hypernyms(‘select’, 1) contains the word ‘decide’ and

Synonyms(‘algorithm’) contains the word ‘algorithm’ itself. The output score resulting from

matching KP with CP using PhraseMatch is calculated as follows: (1) by calling

WordMatch(‘decide’, ‘select’, 2, 0.4), the score 1 – (0.4 × 1) 0.6 is obtained, (2) by calling

WordMatch(‘algorithm’, ‘algorithm’, 2, 0.4), the score 1 is obtained, and (3) since KP is a verb-

noun-pair keyword, the final matching score computed by PhraseMatch(KP, CP, 2, 0.4) is

(0.6 1) 1 2.6. Note that since KP is constructed from a TD of type dobj, its verb component,

i.e. ‘decide’, is also stored as a verb keyword in KW by our keyword extraction process (cf. Step 4f

of the procedure for extracting problem keywords). After KP is successfully matched, the

ComputeFeatureScore procedure also removes the verb keyword ‘decide’ from KW.

Normalising Feature Vectors and Computing Cosine Similarity

In order to determine its similarity to a DPFV for each design pattern without biased values,

the obtained PBFV is also normalised. The normalised vector of a PBFV [w1, w2, …, w28] is the

vector [nw1, nw2, …, nw28], where, for each i {1, 2, …, 28}, nwi wi (w1 w2 … w28). The

cosine similarity score between the PBFV representing an input problem and the DPFV for each

design pattern is computed by

n

i
i

n

i
i

n

i
ii NDPFVNPBFVNDPFVNPBFV

1

2

1

2

1

)()()(,

where NPBFV is the normalised vector of PBFV, NDPFV is the normalised vector of DPFV, and n

is the total number of TCFs. The design patterns are then ranked and recommended according to the

resulting similarity scores.

EXPERIMENTAL RESULTS

In order to evaluate the proposed method, we collected 24 design problems, referred to as

Q1-Q24, from three design pattern books authored by Kuchana [3], Cooper [4] and Lasater [5], and

from the Internet. Scheme 7 shows an example of design problems taken from the third book [5],

according to which the Strategy pattern should be applied to this problem. An experiment was

conducted using 20 combinations of the NL and PS parameters (the maximum number of levels of

hypernyms/hyponyms and the penalty score), i.e. 1, 10, 5 and 4 combinations with NL being 0, 1, 2

and 3 respectively (cf. the description of ComputeFeatureScore procedure).

Scheme 7. Example of design problems

We have a set of classes, each of which has arithmetic code that returns a value based on the type of
arithmetic we wish to perform. Each class is slightly different, but all take a common input of a value
and a variance. We have a class for addition. We have a class that performs subtraction on the value
and variance. We allow a user to decide an algorithm to use at any given time. Right now we have if-
then-else code to do this, but it is not very efficient. If we want to add a class to perform multiplication
and a class to perform division, we would have to modify the if-then-else code for each algorithm. We
need a better and more flexible way to add classes and manage the algorithmic grouping. We need to
use a common interface that ties all these classes together as well.

Maejo Int. J. Sci. Technol. 2016, 10(01), 113-126; doi: 10.14456/mijst.2016.11

123

From the experimental results, the combination in which NL 1 and PS 0.8 yielded the

most accurate recommendations. Table 5 shows the recommended patterns in the top three ranks

obtained by applying this combination to the problems Q1-Q24. The correct recommended patterns

are emphasised using bold alphabets. The column ‘Actual answer’ gives the correct pattern for the

problem under consideration, and the columns ‘1st Rank’, ‘2nd Rank’ and ‘3rd Rank’ show the

patterns with highest, second highest and third highest similarity scores respectively, obtained by

the proposed method. For example, the second row of Table 5 indicates that the State pattern has

the highest similarity score (0.78), and the Bridge and Strategy patterns have the second highest

similarity score (0.15). Since there are two recommended patterns in the 2nd rank, the 3rd rank is

empty. From the 24 problems used in the evaluation, 14 actual answers were obtained as

recommended patterns in the 1st rank, 8 actual answers as recommended patterns in the 2nd rank,

and 2 actual answers as recommended patterns in the 3rd rank.

Table 5. Recommended patterns in the top three ranks when NL 1 and PS 0.8 for 24 design
problems (Q1-Q24)

Question
Actual
answer

Recommended pattern

1st Rank 2nd Rank 3rd Rank

Q1 Strategy Template M. (0.48) Strategy (0.43) Decorator (0.40)

Q2 State State (0.78) Bridge, Strategy (0.15)

Q3 Decorator Observer (0.54) Mediator (0.53) Decorator (0.46)

Q4 CoR Observer (0.58) CoR (0.53) Decorator (0.46)

Q5 Command Command (0.64) Decorator (0.48) CoR (0.39)

Q6 Observer Observer (0.95) Mediator (0.29) State (0.19)

Q7 Proxy Proxy (0.73) Memento (0.33) Mediator (0.33)

Q8 Template M. Template M. (0.62) Decorator, CoR (0.32)

Q9 Façade Façade (0.59) Memento (0.41) Decorator, CoR (0.35)

Q10 Bridge Bridge, Strategy (0.54) Template M. (0.42)

Q11 Mediator Observer (0.85) Mediator (0.54) Proxy, Memento (0.18)

Q12 Memento Memento (0.52) Command (0.50) Proxy (0.25)

Q13 Interpreter Interpreter (0.97) Decorator, CoR (0.15)

Q14 Interpreter Mediator (0.67) Interpreter (0.58) Observer (0.41)

Q15 Template M. Template M. (0.89) Façade (0.23) Strategy (0.18)

Q16 Decorator Decorator (0.42) Command (0.38) Proxy (0.20)

Q17 CoR Decorator (0.59) CoR (0.51) Command (0.36)

Q18 Façade Decorator (0.65) CoR (0.58) Façade (0.44)

Q19 Strategy Decorator (0.54) Strategy, Bridge (0.49)

Q20 State State (0.50) Mediator (0.31) Façade (0.21)

Q21 Memento Memento (0.69) Proxy (0.27) Observer (0.15)

Q22 Command Command (0.77) Mediator (0.19) Decorator, CoR, State, Observer (0.13)

Q23 Observer State (0.41) Observer (0.33) Proxy (0.29)

Q24 Mediator Observer (0.69) Mediator (0.59) Strategy (0.22)

Maejo Int. J. Sci. Technol. 2016, 10(01), 113-126; doi: 10.14456/mijst.2016.11

124

Table 6 shows the accuracy of all combinations of NL and PS. For example, the row in

which NL 1 and PS 0.8 shows that:

 The actual answers of 58.33% (14/24) of the problems are recommended in the 1st rank.

 The actual answers of 91.67% (22/24) of the problems belong to the top two ranks (1st

rank or 2nd rank).

 The actual answers of 100.00% (24/24) of the problems belong to the top three ranks (1st

rank, 2nd rank or 3rd rank).

Table 6. Overall experimental results

Parameter Percentage of correct answers

NL PS Top (1st) rank 2nd rank 3rd rank 4th rank 5th rank

0 0 58.33% (14/24) 79.17% (19/24) 91.67% (22/24) 91.67% (22/24) 91.67% (22/24)

1 0 54.17% (13/24) 75.00% (18/24) 87.50% (21/24) 100.00% (24/24) 100.00% (24/24)

1 0.1 54.17% (13/24) 75.00% (18/24) 87.50% (21/24) 100.00% (24/24) 100.00% (24/24)

1 0.2 54.17% (13/24) 75.00% (18/24) 91.67% (22/24) 100.00% (24/24) 100.00% (24/24)

1 0.3 58.33% (14/24) 79.17% (19/24) 91.67% (22/24) 100.00% (24/24) 100.00% (24/24)

1 0.4 58.33% (14/24) 83.33% (20/24) 95.83% (23/24) 100.00% (24/24) 100.00%(24/24)

1 0.5 58.33% (14/24) 87.50% (21/24) 100.00% (24/24) 100.00% (24/24) 100.00% (24/24)

1 0.6 58.33% (14/24) 87.50% (21/24) 100.00% (24/24) 100.00% (24/24) 100.00% (24/24)

1 0.7 54.17% (13/24) 91.67% (22/24) 100.00% (24/24) 100.00% (24/24) 100.00% (24/24)

1 0.8 58.33% (14/24) 91.67% (22/24) 100.00% (24/24) 100.00% (24/24) 100.00% (24/24)

1 0.9 58.33% (14/24) 87.50% (21/24) 100.00% (24/24) 100.00% (24/24) 100.00% (24/24)

2 0 50.00% (12/24) 62.50% (15/24) 70.83% (17/24) 79.17% (19/24) 91.67% (22/24)

2 0.1 50.00% (12/24) 62.50% (15/24) 70.83% (17/24) 83.33% (20/24) 91.67% (22/24)

2 0.2 50.00% (12/24) 66.67% (16/24) 75.00% (18/24) 91.67% (22/24) 91.67% (22/24)

2 0.3 50.00% (12/24) 66.67% (16/24) 91.67% (22/24) 95.83% (23/24) 95.83% (23/24)

2 0.4 54.17% (13/24) 79.17% (19/24) 91.67% (22/24) 95.83% (23/24) 95.83% (23/24)

3 0 33.33% (8/24) 54.17% (13/24) 70.83% (17/24) 79.17% (19/24) 79.17% (19/24)

3 0.1 45.83% (11/24) 58.33% (14/24) 70.83% (17/24) 83.33% (20/24) 83.33% (20/24)

3 0.2 45.83% (11/24) 66.67% (16/24) 70.83% (17/24) 83.33% (20/24) 83.33% (20/24)

3 0.3 50.00% (12/24) 62.50% (15/24) 87.50% (21/24) 91.67% (22/24) 95.83% (23/24)

Average 52.71% 74.58% 87.29% 93.75% 95.00%

Table 6 also reveals that only the combinations in which NL 1 yield all actual answers

within the top five recommended patterns. More specifically, the combinations in which NL 1 and

0 ≤ PS ≤ 0.4 give all actual answers within the top four recommended patterns, and the

combinations in which NL 1 and 0.5 ≤ PS ≤ 0.9 give all actual answers within the top three

recommended patterns.

CONCLUSIONS

Task-based conceptual features (TCFs) have been introduced as intermediate artifacts for

representing expert knowledge concerning the usage of each design pattern. By matching clue

Maejo Int. J. Sci. Technol. 2016, 10(01), 113-126; doi: 10.14456/mijst.2016.11

125

words of TCFs with problem keywords extracted from the typed dependencies generated from the

description of an input design problem, the similarity between the input problem and each design

pattern is estimated. Appropriate design patterns are ranked according the obtained similarity

scores. An evaluation using 24 design problems has shown that when the first-level hypernyms and

hyponyms are used for keyword matching and a penalty score is between 0.5-0.9, the correct design

pattern for each problem is one of the patterns recommended in the top three ranks.

ACKNOWLEDGEMENTS

This work was partially supported by (1) the National Research University Project of

Thailand, Office of the Higher Education Commission and (2) the Centre of Excellence in

Intelligent Informatics, Speech and Language Technology and Service Innovation (CILS),

Thammasat University.

REFERENCES

1. E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Design Patterns: Elements of Reusable

Object-Oriented Software”, Addison-Wesley, Boston (MA), 1994.

2. J. Bishop, “C# 3.0 Design Patterns”, O’Reilly Media, Sebastopol (CA), 2007.

3. P. Kuchana, “Software Architecture Design Patterns in Java”, Auerbach Publications, Boca

Raton (FL), 2004.

4. J. W. Cooper, “Java Design Patterns: A Tutorial”, Addison-Wesley, Boston (MA), 2000.

5. C. G. Lasater, “Design Patterns”, Jones and Bartlett Learning, Burlington (MA), 2006.

6. S. M. H. Hasheminejad and S. Jalili, “Design patterns selection: An automatic two-phase

method”, J. Syst. Softw., 2012, 85, 408-424.

7. N. Sanyawong and E. Nantajeewarawat, “Design pattern recommendation based on a pattern

usage hierarchy”, Proceedings of 18th International Computer Science and Engineering

Conference, 2014, Khon Kaen, Thailand, pp.134-139.

8. C. Fellbaum, “WordNet: An Electronic Lexical Database”, MIT Press, Cambridge (MA), 1998.

9. H. Kampffmeyer and S. Zschaler, “Finding the pattern you need: The design pattern intent

ontology”, in “Model Driven Engineering Languages and Systems” (Ed. G. Engels, B. Opdyke,

D. C. Schmidt and F. Weil), Springer, Berlin, 2007, Ch.15.

10. D.-K. Kim and C. E. Khawand, “An approach to precisely specifying the problem domain of

design patterns”, J. Vis. Lang. Comput., 2007, 18, 560-591.

11. N. Bouassida, A. Kouas and H. Ben-Abdallah, “A design pattern recommendation approach”,

Proceedings of 2nd IEEE International Conference on Software Engineering and Service

Science, 2011, Beijing, China, pp.590-593.

12. E. M. Sahly and O. M. Sallabi, “Design pattern selection: A solution strategy method”,

Proceedings of International Conference on Computer Systems and Industrial Informatics, 2012,

Sharjah, UAE, pp.1-6.

13. F. Palma, H. Farzin, Y. G. Guéhéneuc and N. Moha, “Recommendation system for design

patterns in software development: An DPR overview”, Proceedings of 3rd International

Workshop on Recommendation Systems for Software Engineering, 2012, Zurich, Switzerland,

pp.1-5.

Maejo Int. J. Sci. Technol. 2016, 10(01), 113-126; doi: 10.14456/mijst.2016.11

126

14. I. Issaoui, N. Bouassida and H. Ben-Abdallah, “A new approach for interactive design pattern

recommendation”, Lect. Notes Softw. Eng., 2015, 3, 173-178.

15. M.-C. de Marneffe, B. MacCartney and C. D. Manning, “Generating typed dependency parses

from phrase structure parses”, Proceedings of 5th International Conference on Language

Resources and Evaluation, 2006, Genoa, Italy, pp.449-454.

16. M. A. Finlayson, “Java libraries for accessing the Princeton WordNet: Comparison and

evaluation”, Proceedings of 7th International Global WordNet Conference, 2014, Tartu, Estonia,

pp.78-85.

© 2016 by Maejo University, San Sai, Chiang Mai, 50290 Thailand. Reproduction is permitted for
noncommercial purposes.

