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Abstract:  In this article deferred density is employed to introduce new generalisations of 
topological convergence, boundedness and Cauchiness for sequences in a locally solid Riesz 
space. Along with investigating the fundamental properties and inclusion theorems of these 
newly introduced concepts, the notion of statistical continuity is extended for functions using 
the deferred Cesàro mean in locally solid Riesz spaces. 
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INTRODUCTION 
 

Zygmund [1] introduced the definition of statistical convergence in 1935. Although this method 
as a particular generalisation of sequential convergence has been studied mainly in recent years, it 
was formally introduced by Fast [2] in 1951, who also provided an alternative proof of a theorem 
initially established by Steinhaus [3]. In addition to its connection to summability, it has been studied 
under different names in various fields, such as trigonometric series [1], number theory [4], Banach 
spaces [5], measure theory [6], turnpike theory [7], Fourier analysis [8], approximation theory [9] and 
ergodic theory [10]. Schoenberg [11] investigated the notion from a summability perspective while 
Salat [12] explored some topological aspects of statistical convergence. Attention to statistical 
convergence increased significantly after Fridy's well-known article On Statistical Convergence [13] 
in 1985. Connor [14] also made a major contribution to the theory of summability by proving in 1988 
that any strongly 𝑝𝑝-Cesàro summable sequence must be statistically convergent. Over the past couple 
of decades, many generalisations of the original notion have been introduced by various authors [15-
20]. The definition of the statistical limit of a real or complex-valued sequence is based on the density 
of subsets of ℕ. In this note, for 𝐴𝐴 ⊆ ℕ, we let 
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and call 𝒟𝒟(𝐴𝐴) = lim𝑛𝑛→∞ 𝒟𝒟𝑛𝑛(𝐴𝐴) the density of 𝐴𝐴, provided the limit exists where 𝜒𝜒𝐴𝐴(𝑚𝑚) means the 
characteristic sequence of 𝐴𝐴. 

It can be said that a real valued sequence 𝑥𝑥 = (𝑥𝑥𝑚𝑚) statistically converges to ∈ ℝ , provided that  
                                                                       𝒟𝒟(𝐴𝐴𝜀𝜀) = 0,   
where 𝐴𝐴𝜀𝜀 = {𝑚𝑚 ∈ ℕ: |𝑥𝑥𝑚𝑚 − 𝑙𝑙| ≥ 𝜀𝜀}  for each 𝜀𝜀 > 0 . This is expressed by 𝑆𝑆 −  lim𝑥𝑥𝑚𝑚 = 𝑙𝑙  in the 
sequel. We call 𝑥𝑥  statistically null in the case 𝑙𝑙 = 0 . The space of all statistically convergent 
sequences is denoted by 𝑆𝑆. 

Deferred Cesàro mean for real (or complex) valued sequences was introduced by Agnew [21] as 
follows:  For a given sequence 𝑥𝑥 = (𝑥𝑥𝑚𝑚), the deferred Cesàro mean of 𝑥𝑥 is 

                                                  𝐷𝐷𝐶𝐶𝑛𝑛(𝑥𝑥) = 𝑥𝑥𝑎𝑎𝑛𝑛+1+𝑥𝑥𝑎𝑎𝑛𝑛+2⋯+𝑥𝑥𝑏𝑏𝑛𝑛
𝑏𝑏𝑛𝑛−𝑎𝑎𝑛𝑛

,𝑛𝑛 = 1,2,3, … , 

where 𝑎𝑎 = (𝑎𝑎𝑛𝑛) and 𝑏𝑏 = (𝑏𝑏𝑛𝑛) are sequences of non-negative integers satisfying the conditions 

                                                    lim
𝑛𝑛→∞

 𝑏𝑏𝑛𝑛 = ∞ and 𝑎𝑎𝑛𝑛 < 𝑏𝑏𝑛𝑛 for all 𝑛𝑛 ∈ ℕ.                                                   (1)  

Throughout the text, sequences of non-negative integers (𝑎𝑎𝑛𝑛) and (𝑏𝑏𝑛𝑛) holding the conditions in (1) 
are used. We write Ω for the set of all such ⟨𝑎𝑎, 𝑏𝑏⟩ pairs. Some restrictions on ⟨𝑎𝑎, 𝑏𝑏⟩ are imposed if 
necessary. 

Agnew's perspective inspired Küçükaslan and Yılmaztürk [22] to introduce deferred statistical 
convergence of sequences as follows: Let 𝐴𝐴 ⊆ ℕ and ⟨𝑎𝑎,𝑏𝑏⟩ ∈ Ω be given. Deferred density of 𝐴𝐴 is 
defined to be 

lim
𝑛𝑛→∞

 𝒟𝒟𝑎𝑎𝑛𝑛
𝑏𝑏𝑛𝑛(𝐴𝐴) = lim

𝑛𝑛→∞
 

1
𝑏𝑏𝑛𝑛 − 𝑎𝑎𝑛𝑛

�  
𝑏𝑏𝑛𝑛

𝑚𝑚=𝑎𝑎𝑛𝑛+1

𝜒𝜒𝐴𝐴(𝑚𝑚) 

and denoted by 𝒟𝒟𝑎𝑎
𝑏𝑏(𝐴𝐴), provided that the limit exists. Throughout the text, subsets of ℕ  having 

deferred density 0 and 1 are called deferred null and deferred dense respectively. A real valued 
sequence 𝑥𝑥 = (𝑥𝑥𝑘𝑘) is called deferred statistically convergent to a number 𝑙𝑙  if  𝒟𝒟𝑎𝑎

𝑏𝑏(𝐴𝐴𝜀𝜀) = 0, where 
𝐴𝐴𝜀𝜀 = {𝑚𝑚 ∈ ℕ: |𝑥𝑥𝑚𝑚 − 𝑙𝑙| ≥ 𝜀𝜀}  for each 𝜀𝜀 > 0.   𝑆𝑆𝑎𝑎𝑏𝑏  represents the set of deferred statistically 
convergent sequences in the paper.  

A Riesz space, first defined by Riesz [23] in 1928, is in brief an ordered vector space that is also 
a lattice. It may be recalled that a real vector space 𝑅𝑅 is called an ordered vector space, provided that 
it has a partial ordering relation ≲ such that  
(i) 𝑢𝑢 ≲ 𝑣𝑣 implies 𝑢𝑢 + 𝑤𝑤 ≲ 𝑣𝑣 + 𝑤𝑤 for all 𝑢𝑢, 𝑣𝑣,𝑤𝑤 ∈ 𝑅𝑅; 
(ii) 𝑢𝑢 ≲ 𝑣𝑣 implies 𝜂𝜂𝑢𝑢 ≲ 𝜂𝜂𝑣𝑣 for all 𝜂𝜂 ≥ 0. 

A Riesz space 𝑅𝑅  is an ordered vector space that includes 𝑢𝑢 ∨ 𝑣𝑣 = sup {𝑢𝑢,𝑣𝑣}  and 𝑢𝑢 ∧ 𝑣𝑣 =
inf {𝑢𝑢, 𝑣𝑣} for all 𝑢𝑢, 𝑣𝑣 ∈ 𝑅𝑅. Riesz spaces have been applied in measure theory, operator theory and 
economics [24-28]. 

     Recently, Küçükaslan and Aydın [29] applied the concept of deferred density to extend the 
notion of statistical order convergence in Riesz spaces. Their approach emphasises a generalised form 
of order convergence, independent of any topological framework, whereas our motivation lies in 
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providing a topological interpretation through deferred density in a locally solid Riesz space, which 
extends the concept of a Riesz space. 

Some other notions in a Riesz space are reminded here. For any vector 𝑢𝑢 in a Riesz space 𝑅𝑅, 
𝑢𝑢+ = 𝑢𝑢 ∨ 𝜃𝜃 is called the positive part of 𝑢𝑢, 
𝑢𝑢− = (−𝑢𝑢) ∨ 𝜃𝜃 is called the negative part of 𝑢𝑢 where 𝜃𝜃 denotes the zero in 𝑅𝑅 and 
|𝑢𝑢| = 𝑢𝑢 ∨ (−𝑢𝑢) is called the absolute value of 𝑢𝑢. 
A subset 𝑄𝑄 of a Riesz space 𝑅𝑅 is called solid whenever 𝑣𝑣 ∈ 𝑄𝑄 and |𝑢𝑢| ≲ |𝑣𝑣| imply 𝑢𝑢 ∈ 𝑄𝑄. 

Now some notions on topological vector spaces are mentioned. A topology 𝜏𝜏 on a vector space 
𝑅𝑅 is said to be a linear topology, provided that the vector maps 

𝑅𝑅 × 𝑅𝑅 → 𝑅𝑅
(𝑢𝑢, 𝑣𝑣) → 𝑢𝑢 + 𝑣𝑣 

and 
ℝ × 𝑅𝑅 → 𝑅𝑅
 (𝜂𝜂,𝑢𝑢) → 𝜂𝜂𝑢𝑢 

are both continuous. In this case (𝑅𝑅, 𝜏𝜏) is called a topological vector space. By 𝒩𝒩𝜏𝜏(𝜃𝜃), we mean the 
family of all neighborhoods of 𝜃𝜃, the zero vector, in (𝑅𝑅, 𝜏𝜏). 

It is recalled that each topological vector space (𝑅𝑅, 𝜏𝜏) has a base ℬ for 𝒩𝒩𝜏𝜏(𝜃𝜃) that holds the 
following properties: 

(i) Each 𝐺𝐺 ∈ ℬ is balanced, i.e. 𝜂𝜂𝜂𝜂 ∈ 𝐺𝐺 for all 𝜂𝜂 ∈ 𝐺𝐺 and each 𝜂𝜂 ∈ [−1,1]; 
(ii) Each 𝐺𝐺 ∈ ℬ is absorbing, i.e. for every 𝑢𝑢 ∈ 𝑅𝑅 there is an 𝜂𝜂 ∈ ℝ+such that 𝜂𝜂𝑢𝑢 ∈ 𝐺𝐺; 
(iii) For each 𝐺𝐺 ∈ ℬ there exists some 𝐹𝐹 ∈ ℬ such that 𝐹𝐹 + 𝐹𝐹 ⊆ 𝐺𝐺. 

A locally solid topology 𝜏𝜏  on a Riesz space 𝑅𝑅  is defined as a linear topology where the 
aforementioned base ℬ for 𝒩𝒩𝜏𝜏(𝜃𝜃) is composed of solid sets (cf. [27, 30]).  (𝑅𝑅, 𝜏𝜏) is said to be a locally 
solid Riesz space if 𝑅𝑅 is a Riesz space endowed with a locally solid topology 𝜏𝜏. By ℬsld , we denote 
the base for 𝒩𝒩𝜏𝜏(𝜃𝜃) in an (𝑅𝑅, 𝜏𝜏) locally solid Riesz space. For convenience, the term 'locally solid 
Riesz' is abbreviated as LSR throughout the remainder of the paper. 

Topological generalisations of statistical convergence have interested many researchers [31-40]. 
For instance, one of these studies was provided by Albayrak and Pehlivan [33] as follows: 

In an (𝑅𝑅, 𝜏𝜏) LSR space, a sequence 𝑥𝑥 = (𝑥𝑥𝑚𝑚) is called statistically 𝜏𝜏-convergent to 𝜎𝜎 ∈ 𝑅𝑅  if 
𝒟𝒟({𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚 − 𝜎𝜎) ∉ 𝑈𝑈}) = 0 for each 𝑈𝑈 ∈ 𝒩𝒩𝜏𝜏(𝜃𝜃). This is written as 𝑆𝑆𝜏𝜏 − lim𝑥𝑥𝑚𝑚 = 𝜎𝜎. 

Using lacunary sequences, another point of view was provided by Mohiuddine and Alghamdi 
[34]: 

In an (𝑅𝑅, 𝜏𝜏) LSR space, a sequence 𝑥𝑥 = (𝑥𝑥𝑚𝑚) is called lacunary statistically 𝜏𝜏-convergent to 𝜎𝜎 ∈
𝑅𝑅 if 

lim
𝑛𝑛→∞

 
|{𝑚𝑚 ∈ (𝑘𝑘𝑛𝑛−1, 𝑘𝑘𝑛𝑛]: (𝑥𝑥𝑚𝑚 − 𝜎𝜎) ∉ 𝑈𝑈}|

𝑘𝑘𝑛𝑛 − 𝑘𝑘𝑛𝑛−1
= 0 

for each 𝑈𝑈 ∈ 𝒩𝒩𝜏𝜏(𝜃𝜃), where (𝑘𝑘𝑛𝑛) is a lacunary sequence [41], i.e. an increasing sequence of integers 
such that 𝑘𝑘0 = 0 and 𝑘𝑘𝑛𝑛 − 𝑘𝑘𝑛𝑛−1 → ∞ as 𝑛𝑛 → ∞. 

Subsequently, Mohiuddine et al. [35] utilised the Vallée-Poussin mean to extend the initial 
concept to what they termed generalised statistical 𝜏𝜏-convergence, defined as follows: 

In an (𝑅𝑅, 𝜏𝜏) LSR space, a sequence 𝑥𝑥 = (𝑥𝑥𝑚𝑚) is said to be generalised statistically 𝜏𝜏-convergent 
to 𝜎𝜎 ∈ 𝑅𝑅 if 
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lim
𝑛𝑛→∞

 
|{𝑚𝑚 ∈ 𝐼𝐼𝑛𝑛: (𝑥𝑥𝑚𝑚 − 𝜎𝜎) ∉ 𝑈𝑈}|

𝜆𝜆𝑛𝑛
= 0 

for each 𝑈𝑈 ∈ 𝒩𝒩𝜏𝜏(𝜃𝜃), where (𝜆𝜆𝑛𝑛) is a non-decreasing sequence of positive numbers tending to ∞ such 
that 𝜆𝜆𝑛𝑛+1 ≤ 𝜆𝜆𝑛𝑛 + 1, 𝜆𝜆1 = 0 and 𝐼𝐼𝑛𝑛 = [𝑛𝑛 − 𝜆𝜆𝑛𝑛 + 1, 𝑛𝑛]. 

In this note the notions of statistical 𝜏𝜏-convergence and lacunary statistical 𝜏𝜏-convergence are 
extended to deferred statistical 𝜏𝜏 -convergence in LSR spaces. Additionally, the following are 
introduced and examined: deferred statistical 𝜏𝜏-boundedness, deferred statistical 𝜏𝜏-Cauchiness of 
sequences, and deferred statistical continuity of functions in LSR spaces. 

Before proceeding to main results, some basic properties of deferred density that are used 
throughout the paper are presented. The proofs are omitted since they are straightforward.  
Proposition 1.  Let ⟨𝑎𝑎, 𝑏𝑏⟩ ∈ Ω and 𝑇𝑇,𝑇𝑇1 and 𝑇𝑇2 be subsets of ℕ. Then 
(i) If 𝑇𝑇1 ⊆ 𝑇𝑇2, then 𝒟𝒟𝑎𝑎

𝑏𝑏(𝑇𝑇1) ≤ 𝒟𝒟𝑎𝑎
𝑏𝑏(𝑇𝑇2); 

(ii) 𝑇𝑇1 ⊆ 𝑇𝑇2 and 𝒟𝒟𝑎𝑎
𝑏𝑏(𝑇𝑇2) = 0 imply 𝒟𝒟𝑎𝑎

𝑏𝑏(𝑇𝑇1) = 0; 
(iii) 𝒟𝒟𝑎𝑎

𝑏𝑏(𝑇𝑇1) = 𝒟𝒟𝑎𝑎
𝑏𝑏(𝑇𝑇2) = 1 implies 𝒟𝒟𝑎𝑎

𝑏𝑏(𝑇𝑇1 ∩ 𝑇𝑇2) = 1; 
(iv) If 𝑇𝑇 is finite, then 𝒟𝒟𝑎𝑎

𝑏𝑏(𝑇𝑇) = 0. 
 
Proposition 2.  If 𝑇𝑇 ⊆ ℕ  such that 𝒟𝒟𝑎𝑎

𝑏𝑏(𝑇𝑇)  exists, then 𝒟𝒟𝑎𝑎
𝑏𝑏(𝑇𝑇) + 𝒟𝒟𝑎𝑎

𝑏𝑏(𝑇𝑇𝑐𝑐) = 1  where 𝑇𝑇𝑐𝑐  is the 
complement of 𝑇𝑇 in ℕ. 

MAIN RESULTS 

The main results of this work are presented in three subsections. The first subsection begins with 
deferred statistical 𝜏𝜏-convergence in LSR spaces, which harbours several fundamental definitions, 
theorems and examples. The second subsection compares the sets of deferred statistically 𝜏𝜏 -
convergent sequences corresponding to distinct pairs of ⟨𝑎𝑎, 𝑏𝑏⟩ from Ω. Finally, the third subsection 
introduces and examines the deferred statistical continuity of functions between LSR spaces. 
 
Deferred Statistical 𝝉𝝉-Convergence in LSR Spaces 

This subsection presents the essential definitions and examples central to this work. Inclusion 
theorems that highlight the relationships among the newly introduced notions are also proved. 
Furthermore, fundamental and practical properties of deferred statistical 𝜏𝜏-convergence in an LSR 
space are provided.  
Definition 1.  Let ⟨𝑎𝑎, 𝑏𝑏⟩ ∈ Ω be given. In an (𝑅𝑅, 𝜏𝜏) LSR space, a sequence 𝑥𝑥 = (𝑥𝑥𝑚𝑚) is named to be 
deferred statistically 𝜏𝜏 -convergent to a point 𝜎𝜎 ∈ 𝑅𝑅  if 𝒟𝒟𝑎𝑎

𝑏𝑏(𝑀𝑀𝑈𝑈) = 0  for each 𝑈𝑈 ∈ 𝒩𝒩𝜏𝜏(𝜃𝜃) , where 
𝑀𝑀𝑈𝑈 = {𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚 − 𝜎𝜎) ∉ 𝑈𝑈}, i.e. 

lim
𝑛𝑛→∞

 
1

𝑏𝑏𝑛𝑛 − 𝑎𝑎𝑛𝑛
�  
𝑏𝑏𝑛𝑛

𝑚𝑚=𝑎𝑎𝑛𝑛+1

𝜒𝜒𝑀𝑀𝑈𝑈(𝑚𝑚) = 0. 

This is signified by 𝑆𝑆𝜏𝜏
⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑥𝑥𝑚𝑚 = 𝜎𝜎.  𝑆𝑆𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩(𝑅𝑅) symbolises the set of all deferred statistically 𝜏𝜏-
convergent sequences in (𝑅𝑅, 𝜏𝜏). 

In the following examples two sequences are presented: one that is deferred statistically 𝜏𝜏-
convergent and another that is not, within the same LSR space. In order to do this let us consider the 
topological vector space (𝑐𝑐0, 𝜏𝜏∞) where 𝑐𝑐0 is the Riesz space of all real valued null sequences and 𝜏𝜏∞ 
is the linear topology generated by the supremum norm ‖∙‖∞. It follows that 𝜏𝜏∞ is locally solid by 
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Theorem 2.28 [27]. Therefore, (𝑐𝑐0, 𝜏𝜏∞) is an LSR space. One can observe that the base ℬsld  for 
𝒩𝒩𝜏𝜏∞(𝜃𝜃), where 𝜃𝜃 denotes the zero sequence in 𝑐𝑐0, consists of the open neighborhoods 

𝐵𝐵𝜀𝜀 = {𝑥𝑥 ∈ 𝑐𝑐0: ‖𝑥𝑥‖∞ < 𝜀𝜀} 

of 𝜃𝜃 where 𝜀𝜀 is any positive number.  

Example 1.  Let ⟨𝑎𝑎, 𝑏𝑏⟩ ∈ Ω and the sequence (𝑥𝑥𝑚𝑚) in (𝑐𝑐0, 𝜏𝜏∞) be given so that 𝑥𝑥𝑚𝑚 is the sequence 
with 1

𝑚𝑚2 in place of 𝑚𝑚 and 0 elsewhere, that is 

𝑥𝑥𝑚𝑚 = �0,0,0, … ,0,
1
𝑚𝑚2 , 0,0, … �. 

Take any 𝑈𝑈 ∈ 𝒩𝒩𝜏𝜏∞(𝜃𝜃). Then there is some 𝐵𝐵𝜀𝜀 ∈ ℬsld  such that 𝐵𝐵𝜀𝜀 ⊆ 𝑈𝑈. It is clear that we have some 

𝑚𝑚0 ∈ ℕ so that 1
𝑚𝑚0

≤ 𝜀𝜀. Thus, it follows that 𝐵𝐵 1
𝑚𝑚0

⊂ 𝐵𝐵𝜀𝜀. Moreover, we have 

𝑇𝑇 = �𝑚𝑚 ∈ ℕ: 𝑥𝑥𝑚𝑚 ∉ 𝐵𝐵 1
𝑚𝑚0

� = {𝑚𝑚 ∈ ℕ:𝑚𝑚2 ≤ 𝑚𝑚0} 

implying that 𝒟𝒟𝑎𝑎
𝑏𝑏(𝑇𝑇) = 0 since 𝑇𝑇 is finite. This and the inclusion 

{𝑚𝑚 ∈ ℕ: 𝑥𝑥𝑚𝑚 ∉ 𝑈𝑈} ⊆ {𝑚𝑚 ∈ ℕ: 𝑥𝑥𝑚𝑚 ∉ 𝐵𝐵𝜀𝜀} ⊆ 𝑇𝑇 

lead to 𝒟𝒟𝑎𝑎
𝑏𝑏({𝑚𝑚 ∈ ℕ: 𝑥𝑥𝑚𝑚 ∉ 𝑈𝑈}) = 0.  Hence 𝑆𝑆𝜏𝜏∞

⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑥𝑥𝑚𝑚 = 𝜃𝜃.  

Example 2.  Let ⟨𝑎𝑎, 𝑏𝑏⟩ ∈ Ω and (𝑒𝑒𝑚𝑚) be the sequence of unit vectors in (𝑐𝑐0, 𝜏𝜏∞). For each 𝑚𝑚 ∈ ℕ we 
denote, by 𝑒𝑒𝑚𝑚 = (0,0,0, … ,0,1,0,0, … ), the 𝑚𝑚th unit vector in 𝑐𝑐0 so that 𝑒𝑒𝑚𝑚 is the sequence with 1 in 
place of  𝑚𝑚 and 0 elsewhere. It is claimed that (𝑒𝑒𝑚𝑚) can not deferred statistically 𝜏𝜏-converge to any 
sequence 𝜎𝜎 = �𝜎𝜎(𝑚𝑚)� ∈ 𝑐𝑐0. Indeed, it is observed that for each 𝜎𝜎 ∈ 𝑐𝑐0, one can find an 𝜀𝜀𝜎𝜎 > 0 which 
leads to the set 
 

𝑇𝑇 = �𝑚𝑚 ∈ ℕ: (𝑒𝑒𝑚𝑚 − 𝜎𝜎) ∉ 𝐵𝐵𝜀𝜀𝜎𝜎� = {𝑚𝑚 ∈ ℕ:‖𝑒𝑒𝑚𝑚 − 𝜎𝜎‖∞ ≥ 𝜀𝜀𝜎𝜎}, 
 

which is cofinite, where 𝐵𝐵𝜀𝜀𝜎𝜎 ∈ ℬsld ⊂ 𝒩𝒩𝜏𝜏∞(𝜃𝜃). This means 𝒟𝒟𝑎𝑎
𝑏𝑏(𝑇𝑇) = 1 and so 𝑆𝑆𝜏𝜏∞

⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑒𝑒𝑚𝑚 ≠ 𝜎𝜎. 

Remark 1.  Let ⟨𝑎𝑎, 𝑏𝑏⟩ ∈ Ω  be given. In an (𝑅𝑅, 𝜏𝜏)  LSR  space, deferred statistical 𝜏𝜏 -convergence 
reduces to: 
(i) statistical 𝜏𝜏-convergence if 𝑏𝑏𝑛𝑛 = 𝑛𝑛 and 𝑎𝑎𝑛𝑛 = 0 for all 𝑛𝑛 ∈ ℕ, 
(ii) lacunary statistical 𝜏𝜏-convergence if 𝑏𝑏𝑛𝑛 = 𝑘𝑘𝑛𝑛 and 𝑎𝑎𝑛𝑛 = 𝑘𝑘𝑛𝑛−1 where (𝑘𝑘𝑛𝑛) is a lacunary sequence. 

Definition 2.  Let ⟨𝑎𝑎, 𝑏𝑏⟩ ∈ Ω be given. In an (𝑅𝑅, 𝜏𝜏) LSR space, a sequence 𝑥𝑥 = (𝑥𝑥𝑚𝑚) is named to be 
deferred statistically 𝜏𝜏-bounded if for each 𝑈𝑈 ∈ 𝒩𝒩𝜏𝜏(𝜃𝜃), there is an 𝜂𝜂 ∈ ℝ+such that 𝒟𝒟𝑎𝑎

𝑏𝑏(𝐿𝐿𝑈𝑈) = 0, 
where 

𝐿𝐿𝑈𝑈 = {𝑚𝑚 ∈ ℕ: 𝜂𝜂𝑥𝑥𝑚𝑚 ∉ 𝑈𝑈}.  
𝑆𝑆𝐵𝐵𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩(𝑅𝑅)  stands for the set of all deferred statistically 𝜏𝜏 -bounded sequences in (𝑅𝑅, 𝜏𝜏)  in the 
remainder.   
Definition 3.  Let ⟨𝑎𝑎, 𝑏𝑏⟩ ∈ Ω . In an (𝑅𝑅, 𝜏𝜏)  LSR space, a sequence 𝑥𝑥 = (𝑥𝑥𝑚𝑚)  is called deferred 
statistically 𝜏𝜏-Càuchy if there is a 𝑡𝑡 ∈ ℕ such that 

𝒟𝒟𝑎𝑎
𝑏𝑏({𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚 − 𝑥𝑥𝑡𝑡) ∉ 𝑈𝑈}) = 0 

holds for every 𝑈𝑈 ∈ 𝒩𝒩𝜏𝜏(𝜃𝜃). 
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In the next theorem some basic and useful properties of deferred statistically 𝜏𝜏 -convergent 
sequences in an LSR space are proved. 

Theorem 1.  Let ⟨𝑎𝑎,𝑏𝑏⟩ ∈ Ω. In an (𝑅𝑅, 𝜏𝜏) LSR space, we have what follows:   
(i) Every (𝑥𝑥𝑚𝑚) ∈ 𝑆𝑆𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩(𝑅𝑅)  has a unique deferred statistically 𝜏𝜏 -limit, provided that (𝑅𝑅, 𝜏𝜏)  is 
Hausdorff; 
(ii) Let (𝑥𝑥𝑚𝑚) ∈ 𝑆𝑆𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩(𝑅𝑅)  with 𝑆𝑆𝜏𝜏
⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑥𝑥𝑚𝑚 = 𝜎𝜎 . Then 𝑆𝑆𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩ − lim𝜂𝜂𝑥𝑥𝑚𝑚 = 𝜂𝜂𝜎𝜎  for each 𝜂𝜂 ∈ ℝ ; 
(iii) Let (𝑥𝑥𝑚𝑚), (𝑦𝑦𝑚𝑚) ∈ 𝑆𝑆𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩(𝑅𝑅)  with 𝑆𝑆𝜏𝜏
⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑥𝑥𝑚𝑚 = 𝜎𝜎  and 𝑆𝑆𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑦𝑦𝑚𝑚 = 𝜍𝜍 . Then 𝑆𝑆𝜏𝜏
⟨𝑎𝑎,𝑏𝑏⟩ −

lim(𝑥𝑥𝑚𝑚 + 𝑦𝑦𝑚𝑚) = 𝜎𝜎 + 𝜍𝜍. 

Proof.  Before proving the assertions, it is reminded that for every 𝑈𝑈 ∈ 𝒩𝒩𝜏𝜏(𝜃𝜃) there exists some 𝐺𝐺 ∈
ℬsld  so that 𝐺𝐺 ⊆ 𝑈𝑈. Moreover, we have some 𝐹𝐹 ∈ ℬsld  satisfying 𝐹𝐹 + 𝐹𝐹 ⊆ 𝐺𝐺. 
(i) Suppose that 𝑆𝑆𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑥𝑥𝑚𝑚 = 𝜎𝜎1 and  𝑆𝑆𝜏𝜏
⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑥𝑥𝑚𝑚 = 𝜎𝜎2. For every 𝑈𝑈 ∈ 𝒩𝒩𝜏𝜏(𝜃𝜃),  let us define 

the sets 
𝑇𝑇1 = {𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚 − 𝜎𝜎1) ∈ 𝐹𝐹} 

and 
𝑇𝑇2 = {𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚 − 𝜎𝜎2) ∈ 𝐹𝐹}. 

Then we have 𝒟𝒟𝑎𝑎
𝑏𝑏(𝑇𝑇1) = 𝒟𝒟𝑎𝑎

𝑏𝑏(𝑇𝑇2) = 1 due to the supposition. Thus, 𝒟𝒟𝑎𝑎
𝑏𝑏(𝑇𝑇1 ∩ 𝑇𝑇2) = 1, which yields 

𝑇𝑇1 ∩ 𝑇𝑇2 ≠ ∅.  Then 
𝜎𝜎1 − 𝜎𝜎2 = (𝜎𝜎1 − 𝑥𝑥𝑚𝑚) + (𝑥𝑥𝑚𝑚 − 𝜎𝜎2) ∈ 𝐹𝐹 + 𝐹𝐹 ⊆ 𝐺𝐺 ⊆ 𝑈𝑈 

follows for every 𝑚𝑚 ∈ 𝑇𝑇1 ∩ 𝑇𝑇2 . Therefore,  𝜎𝜎1 − 𝜎𝜎2  belongs to every 𝑈𝑈 ∈ 𝒩𝒩𝜏𝜏(𝜃𝜃) . Since (𝑅𝑅, 𝜏𝜏) is 
Hausdorff,  we have ∩ 𝑈𝑈

𝑈𝑈∈𝒩𝒩𝜏𝜏(𝜃𝜃)
= {𝜃𝜃}. Hence  𝜎𝜎1 − 𝜎𝜎2 = 𝜃𝜃, i.e. 𝜎𝜎1 = 𝜎𝜎2. 

(ii) Let 𝑆𝑆𝜏𝜏
⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑥𝑥𝑚𝑚 = 𝜎𝜎 and an arbitrary 𝑈𝑈 ∈ 𝒩𝒩𝜏𝜏(𝜃𝜃) be given. Choose an 𝜂𝜂 ∈ ℝ with |𝜂𝜂| ≤ 1. 

The inclusions  
{𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚 − 𝜎𝜎) ∈ 𝐺𝐺} ⊆ {𝑚𝑚 ∈ ℕ: (𝜂𝜂𝑥𝑥𝑚𝑚 − 𝜂𝜂𝜎𝜎) ∈ 𝐺𝐺} ⊆ {𝑚𝑚 ∈ ℕ: (𝜂𝜂𝑥𝑥𝑚𝑚 − 𝜂𝜂𝜎𝜎) ∈ 𝑈𝑈} 

are confirmed to hold since 𝐺𝐺 is balanced. Also, we have 𝒟𝒟𝑎𝑎
𝑏𝑏({𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚 − 𝜎𝜎) ∈ 𝐺𝐺}) = 1 due to 

𝑆𝑆𝜏𝜏
⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑥𝑥𝑚𝑚 = 𝜎𝜎. Hence 𝒟𝒟𝑎𝑎

𝑏𝑏({𝑚𝑚 ∈ ℕ: (𝜂𝜂𝑥𝑥𝑚𝑚 − 𝜂𝜂𝜎𝜎) ∈ 𝑈𝑈}) = 1 for every 𝑈𝑈 ∈ 𝒩𝒩𝜏𝜏(𝜃𝜃). 
       Now let |𝜂𝜂| > 1 and ⌈|𝜂𝜂|⌉ denote the ceiling of |𝜂𝜂|. We know that there exists some 𝐻𝐻 ∈ ℬsld  so 
that ⌈|𝜂𝜂|⌉𝐻𝐻 ⊆ 𝐺𝐺. Since 𝑆𝑆𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑥𝑥𝑚𝑚 = 𝜎𝜎, we get 𝒟𝒟𝑎𝑎
𝑏𝑏(𝑇𝑇) = 1 where 𝑇𝑇 = {𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚 − 𝜎𝜎) ∈ 𝐻𝐻}. 

Then we can write ⌈|𝜂𝜂|⌉|𝑥𝑥𝑚𝑚 − 𝜎𝜎| ∈ ⌈|𝜂𝜂|⌉𝐻𝐻 ⊆ 𝐺𝐺 ⊆ 𝑈𝑈 for every 𝑚𝑚 ∈ 𝑇𝑇. This and the relation 

|𝜂𝜂𝑥𝑥𝑚𝑚 − 𝜂𝜂𝜎𝜎| = |𝜂𝜂||𝑥𝑥𝑚𝑚 − 𝜎𝜎| ≲ ⌈|𝜂𝜂|⌉|𝑥𝑥𝑚𝑚 − 𝜎𝜎| 

imply that (𝜂𝜂𝑥𝑥𝑚𝑚 − 𝜂𝜂𝜎𝜎) ∈ 𝐺𝐺 ⊆ 𝑈𝑈 for every 𝑚𝑚 ∈ 𝑇𝑇 since 𝐺𝐺 is solid. We obtain 

{𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚 − 𝜎𝜎) ∈ 𝐻𝐻} ⊆ {𝑚𝑚 ∈ ℕ: (𝜂𝜂𝑥𝑥𝑚𝑚 − 𝜂𝜂𝜎𝜎) ∈ 𝑈𝑈} 
which yields 𝒟𝒟𝑎𝑎

𝑏𝑏({𝑚𝑚 ∈ ℕ: (𝜂𝜂𝑥𝑥𝑚𝑚 − 𝜂𝜂𝜎𝜎) ∈ 𝑈𝑈}) = 1 for every 𝑈𝑈 ∈ 𝒩𝒩𝜏𝜏(𝜃𝜃). Consequently, 𝑆𝑆𝜏𝜏
⟨𝑎𝑎,𝑏𝑏⟩ −

lim 𝜂𝜂𝑥𝑥𝑚𝑚 = 𝜂𝜂𝜎𝜎 for each 𝜂𝜂 ∈ ℝ.  
(iii)  Let 𝑈𝑈 ∈ 𝒩𝒩𝜏𝜏(𝜃𝜃) be arbitrarily given. By the hypothesis, we have 𝒟𝒟𝑎𝑎

𝑏𝑏(𝑇𝑇1) = 𝒟𝒟𝑎𝑎
𝑏𝑏(𝑇𝑇2) = 1, where 

 
𝑇𝑇1 = {𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚 − 𝜎𝜎) ∈ 𝐹𝐹} 

and 
𝑇𝑇2 = {𝑚𝑚 ∈ ℕ: (𝑦𝑦𝑚𝑚 − 𝜍𝜍) ∈ 𝐹𝐹}. 

Consider  𝑇𝑇 = 𝑇𝑇1 ∩ 𝑇𝑇2. Then 𝑇𝑇 is non-empty due to 𝒟𝒟𝑎𝑎
𝑏𝑏(𝑇𝑇) = 1. This implies that 
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(𝑥𝑥𝑚𝑚 + 𝑦𝑦𝑚𝑚) − (𝜎𝜎 + 𝜍𝜍) = (𝑥𝑥𝑚𝑚 − 𝜎𝜎) + (𝑦𝑦𝑚𝑚 − 𝜍𝜍) ∈ 𝐹𝐹 + 𝐹𝐹 ⊆ 𝐺𝐺 ⊆ 𝑈𝑈 

holds for each 𝑚𝑚 ∈ 𝑇𝑇. Thus, we get  
𝑇𝑇 ⊆ {𝑚𝑚 ∈ ℕ: [(𝑥𝑥𝑚𝑚 + 𝑦𝑦𝑚𝑚)− (𝜎𝜎 + 𝜍𝜍)] ∈ 𝑈𝑈},  

which yields 𝒟𝒟𝑎𝑎
𝑏𝑏({𝑚𝑚 ∈ ℕ: [(𝑥𝑥𝑚𝑚 + 𝑦𝑦𝑚𝑚)− (𝜎𝜎 + 𝜍𝜍)] ∈ 𝑈𝑈}) = 1. Hence  𝑆𝑆𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩ − lim(𝑥𝑥𝑚𝑚 + 𝑦𝑦𝑚𝑚) = 𝜎𝜎 +
𝜍𝜍. 

Theorem 2.  𝑆𝑆𝜏𝜏
⟨𝑎𝑎,𝑏𝑏⟩(𝑅𝑅) ⊆ 𝑆𝑆𝐵𝐵𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩(𝑅𝑅) holds for an (𝑅𝑅, 𝜏𝜏) LSR space.  
 
Proof.  Let ⟨𝑎𝑎,𝑏𝑏⟩ ∈ Ω  and 𝜎𝜎 ∈ 𝑅𝑅 . Suppose 𝑆𝑆𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑥𝑥𝑚𝑚 = 𝜎𝜎  and let us pick an arbitrary 𝑈𝑈 ∈
𝒩𝒩𝜏𝜏(𝜃𝜃). Then there are some 𝐹𝐹,𝐺𝐺 ∈ ℬsld  such that 𝐹𝐹 + 𝐹𝐹 ⊆ 𝐺𝐺 ⊆ 𝑈𝑈. Since 𝑆𝑆𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑥𝑥𝑚𝑚 = 𝜎𝜎 , the 
set 𝑇𝑇 = {𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚 − 𝜎𝜎) ∉ 𝐹𝐹}  is deferred null. Then we have 𝜂𝜂𝜎𝜎 ∈ 𝐹𝐹  holds for some 𝜂𝜂 > 0 
because 𝐹𝐹 is absorbing. We choose a 𝜇𝜇 ∈ ℝ+such that 𝜇𝜇 ≤ 1 and 𝜇𝜇 ≤ 𝜂𝜂. Then the relation |𝜇𝜇𝜎𝜎| ≲
|𝜂𝜂𝜎𝜎|  implies 𝜇𝜇𝜎𝜎 ∈ 𝐹𝐹  since 𝐹𝐹  is solid. On the other hand, (𝑥𝑥𝑚𝑚 − 𝜎𝜎) ∈ 𝐹𝐹  implies 𝜇𝜇(𝑥𝑥𝑚𝑚 − 𝜎𝜎) ∈ 𝐹𝐹 
because 𝐹𝐹 is balanced. Now we have 𝜇𝜇𝑥𝑥𝑚𝑚 ∈ 𝑈𝑈 since 𝜇𝜇(𝑥𝑥𝑚𝑚 − 𝜎𝜎) + 𝜇𝜇𝜎𝜎 ∈ 𝐹𝐹 + 𝐹𝐹 holds for every 𝑚𝑚 ∈
𝑇𝑇𝑐𝑐. Therefore, we obtain the inclusion 

{𝑚𝑚 ∈ ℕ:𝜇𝜇𝑥𝑥𝑚𝑚 ∉ 𝑈𝑈} ⊆ 𝑇𝑇,  
which yields 𝒟𝒟𝑎𝑎

𝑏𝑏({𝑚𝑚 ∈ ℕ:𝜇𝜇𝑥𝑥𝑚𝑚 ∉ 𝑈𝑈}) = 0. Consequently, (𝑥𝑥𝑚𝑚) is deferred statistically 𝜏𝜏-bounded. 

Theorem 3.  Let ⟨𝑎𝑎,𝑏𝑏⟩ ∈ Ω be given and (𝑥𝑥𝑚𝑚), (𝑦𝑦𝑚𝑚), (𝑧𝑧𝑚𝑚) be sequences in an (𝑅𝑅, 𝜏𝜏) LSR space such 
that 𝑥𝑥𝑚𝑚 ≲ 𝑦𝑦𝑚𝑚 ≲ 𝑧𝑧𝑚𝑚  for all 𝑚𝑚 ∈ ℕ . Then 𝑆𝑆𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑥𝑥𝑚𝑚 =  𝑆𝑆𝜏𝜏
⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑧𝑧𝑚𝑚 = 𝜎𝜎  implies 𝑆𝑆𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩ −
lim𝑦𝑦𝑚𝑚 = 𝜎𝜎. 

Proof.  Let 𝑈𝑈 ∈ 𝒩𝒩𝜏𝜏(𝜃𝜃) be arbitrarily given. Then we have some 𝐹𝐹,𝐺𝐺 ∈ ℬsld  implying 𝐹𝐹 + 𝐹𝐹 ⊆ 𝐺𝐺 ⊆
𝑈𝑈.  By 𝑆𝑆𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑥𝑥𝑚𝑚 = 𝑆𝑆𝜏𝜏
⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑧𝑧𝑚𝑚 = 𝜎𝜎  we get the sets 

𝑇𝑇1 = {𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚 − 𝜎𝜎) ∈ 𝐹𝐹} 
and 

𝑇𝑇2 = {𝑚𝑚 ∈ ℕ: (𝑧𝑧𝑚𝑚 − 𝜎𝜎) ∈ 𝐹𝐹}  , 

which hold 𝒟𝒟𝑎𝑎
𝑏𝑏(𝑇𝑇1) = 𝒟𝒟𝑎𝑎

𝑏𝑏(𝑇𝑇2) = 1 . If we let 𝑇𝑇 = 𝑇𝑇1 ∩ 𝑇𝑇2,  then 𝒟𝒟𝑎𝑎
𝑏𝑏(𝑇𝑇) = 1  holds. Moreover, the 

relation 𝑥𝑥𝑚𝑚 ≲ 𝑦𝑦𝑚𝑚 ≲ 𝑧𝑧𝑚𝑚 implies 𝑥𝑥𝑚𝑚 − 𝜎𝜎 ≲ 𝑦𝑦𝑚𝑚 − 𝜎𝜎 ≲ 𝑧𝑧𝑚𝑚 − 𝜎𝜎 for all 𝑚𝑚 ∈ ℕ. It follows that 

|𝑦𝑦𝑚𝑚 − 𝜎𝜎| ≲ |𝑥𝑥𝑚𝑚 − 𝜎𝜎| + |𝑧𝑧𝑚𝑚 − 𝜎𝜎| ∈ 𝐹𝐹 + 𝐹𝐹 ⊆ 𝐺𝐺 

for all 𝑚𝑚 ∈ 𝑇𝑇. Therefore, we obtain (𝑦𝑦𝑚𝑚 − 𝜎𝜎) ∈ 𝐺𝐺 ⊆ 𝑈𝑈 for all 𝑚𝑚 ∈ 𝑇𝑇 due to the solidness of 𝐺𝐺. This 
yields  

𝒟𝒟𝑎𝑎
𝑏𝑏({𝑚𝑚 ∈ ℕ: (𝑦𝑦𝑚𝑚 − 𝜎𝜎) ∈ 𝑈𝑈}) = 1  

for every 𝑈𝑈 ∈ 𝒩𝒩𝜏𝜏(𝜃𝜃).  Hence  𝑆𝑆𝜏𝜏
⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑦𝑦𝑚𝑚 = 𝜎𝜎. 

Theorem 4.  Every deferred statistically 𝜏𝜏-convergent sequence is deferred statistically 𝜏𝜏-Càuchy in 
an (𝑅𝑅, 𝜏𝜏) LSR space.  
Proof.  Let ⟨𝑎𝑎,𝑏𝑏⟩ ∈ Ω  and 𝜎𝜎 ∈ 𝑅𝑅 . Suppose 𝑆𝑆𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑥𝑥𝑚𝑚 = 𝜎𝜎  and let us pick an arbitrary 𝑈𝑈 ∈
𝒩𝒩𝜏𝜏(𝜃𝜃). Then there are some 𝐹𝐹,𝐺𝐺 ∈ ℬsld  such that 𝐹𝐹 + 𝐹𝐹 ⊆ 𝐺𝐺 ⊆ 𝑈𝑈. Since 𝑆𝑆𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩ − lim(𝑥𝑥𝑚𝑚) = 𝜎𝜎 , the 
set 𝑇𝑇 = {𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚 − 𝜎𝜎) ∉ 𝐹𝐹} is deferred null. We obtain   

𝑥𝑥𝑚𝑚 − 𝑥𝑥𝑡𝑡 = (𝑥𝑥𝑚𝑚 − 𝜎𝜎) + (𝜎𝜎 − 𝑥𝑥𝑡𝑡) ∈ 𝐹𝐹 + 𝐹𝐹 
 
for all 𝑚𝑚, 𝑡𝑡 ∈ 𝑇𝑇𝑐𝑐. Then we can confirm that the inclusion  
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{𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚 − 𝑥𝑥𝑡𝑡) ∉ 𝑈𝑈} ⊆ 𝑇𝑇  
is true. Thus, there is some 𝑡𝑡 ∈ ℕ such that 𝒟𝒟𝑎𝑎

𝑏𝑏({𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚 − 𝑥𝑥𝑡𝑡) ∉ 𝑈𝑈}) = 0  is satisfied for every 
U ∈ 𝒩𝒩𝜏𝜏(𝜃𝜃) , which gives the desired result.  

In the following theorem a sufficient condition is presented for a sequence in an (𝑅𝑅, 𝜏𝜏) LSR space 
to be deferred statistically 𝜏𝜏-convergent.  
Theorem 5.  Let ⟨𝑎𝑎,𝑏𝑏⟩ ∈ Ω.  In an (𝑅𝑅, 𝜏𝜏) LSR space,  𝑆𝑆𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑥𝑥𝑚𝑚 = 𝜎𝜎  if there exists an index 
set 𝑇𝑇 = {𝑚𝑚𝑖𝑖}𝑖𝑖=1∞ ⊆ ℕ , which is deferred dense, so that lim

𝑖𝑖→∞
 𝑥𝑥𝑚𝑚𝑖𝑖 = 𝜎𝜎 . 

Proof.  Choose an arbitrary 𝑈𝑈 ∈ 𝒩𝒩𝜏𝜏(𝜃𝜃). Since  lim
𝑖𝑖→∞

 𝑥𝑥𝑚𝑚𝑖𝑖 = 𝜎𝜎, we have some 𝑚𝑚0 = 𝑚𝑚0(𝑈𝑈) ∈ ℕ such 

that (𝑥𝑥𝑚𝑚 − 𝜎𝜎) ∈ 𝑈𝑈 holds for all 𝑚𝑚 ∈ {𝑚𝑚 ∈ 𝑇𝑇:𝑚𝑚 ≥ 𝑚𝑚0}. Then the inclusion  
{𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚 − 𝜎𝜎) ∉ 𝑈𝑈} ⊆ ℕ ∖ {𝑚𝑚 ∈ 𝑇𝑇:𝑚𝑚 ≥ 𝑚𝑚0} 

implies 
𝒟𝒟𝑎𝑎
𝑏𝑏({𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚 − 𝜎𝜎) ∉ 𝑈𝑈}) = 0. 

Hence  𝑆𝑆𝜏𝜏
⟨𝑎𝑎,𝑏𝑏⟩ − lim(𝑥𝑥𝑚𝑚) = 𝜎𝜎. 

 
Inclusion Theorems Regarding ⟨𝒂𝒂,𝒃𝒃⟩ ∈ 𝛀𝛀  

In this subsection the inclusions 𝑆𝑆𝜏𝜏
⟨𝑎𝑎,𝑏𝑏⟩(𝑅𝑅) ⊆ 𝑆𝑆𝜏𝜏

⟨𝑐𝑐,𝑑𝑑⟩(𝑅𝑅)  and 𝑆𝑆𝜏𝜏
⟨𝑐𝑐,𝑑𝑑⟩(𝑅𝑅) ⊆ 𝑆𝑆𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩(𝑅𝑅)  are studied 
under certain restrictions on ⟨𝑎𝑎, 𝑏𝑏⟩ and ⟨𝑐𝑐, 𝑑𝑑⟩ ∈ Ω.   
Theorem 6. Let ⟨𝑎𝑎, 𝑏𝑏⟩ ∈ Ω  so that lim inf𝑛𝑛  

𝑏𝑏𝑛𝑛−𝑎𝑎𝑛𝑛
𝑏𝑏𝑛𝑛

> 0  holds. In an (𝑅𝑅, 𝜏𝜏)  LSR space, if 𝑆𝑆𝜏𝜏 −

lim𝑥𝑥𝑚𝑚 = 𝜎𝜎 , then  𝑆𝑆𝜏𝜏
⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑥𝑥𝑚𝑚 = 𝜎𝜎.  

 
Proof.  Let 𝑆𝑆𝜏𝜏 − lim𝑥𝑥𝑚𝑚 = 𝜎𝜎 and take an arbitrary 𝑈𝑈 ∈ 𝒩𝒩𝜏𝜏(𝜃𝜃). Then since 𝑏𝑏𝑛𝑛 → ∞  as 𝑛𝑛 → ∞, it is 
convenient to write 

lim
𝑛𝑛→∞

  1
𝑏𝑏𝑛𝑛
∑  𝑏𝑏𝑛𝑛
𝑚𝑚=1 𝜒𝜒𝑀𝑀𝑈𝑈(𝑚𝑚) = 0, 

where 𝑀𝑀𝑈𝑈 = {𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚 − 𝜎𝜎) ∉ 𝑈𝑈} . Furthermore, the inequality ∑𝑚𝑚=𝑎𝑎𝑛𝑛+1
𝑏𝑏𝑛𝑛  𝜒𝜒𝑀𝑀𝑈𝑈(𝑚𝑚) ≤

∑𝑚𝑚=1
𝑏𝑏𝑛𝑛  𝜒𝜒𝑀𝑀𝑈𝑈(𝑚𝑚)  implies the following: 

 
𝑏𝑏𝑛𝑛−𝑎𝑎𝑛𝑛
𝑏𝑏𝑛𝑛

1
𝑏𝑏𝑛𝑛−𝑎𝑎𝑛𝑛

∑  𝑏𝑏𝑛𝑛
𝑚𝑚=𝑎𝑎𝑛𝑛+1 𝜒𝜒𝑀𝑀𝑈𝑈(𝑚𝑚) ≤ 1

𝑏𝑏𝑛𝑛
∑  𝑏𝑏𝑛𝑛
𝑚𝑚=1 𝜒𝜒𝑀𝑀𝑈𝑈(𝑚𝑚), 

 
which yields 𝑆𝑆𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑥𝑥𝑚𝑚 = 𝜎𝜎  upon taking limit as 𝑛𝑛 → ∞.   
   

In the next results a comparison between the spaces 𝑆𝑆𝜏𝜏
⟨𝑎𝑎,𝑏𝑏⟩(𝑅𝑅) and 𝑆𝑆𝜏𝜏

⟨𝑐𝑐,𝑑𝑑⟩(𝑅𝑅) is made under the 
following condition: 
                                                          𝑎𝑎𝑛𝑛 ≤ 𝑐𝑐𝑛𝑛 < 𝑑𝑑𝑛𝑛 ≤ 𝑏𝑏𝑛𝑛 ,∀𝑛𝑛 ∈ ℕ                                                                 (2)  
where ⟨𝑎𝑎,𝑏𝑏⟩ and ⟨𝑐𝑐, 𝑑𝑑⟩ ∈ Ω.  

Theorem 7.  Let ⟨𝑎𝑎,𝑏𝑏⟩, ⟨𝑐𝑐, 𝑑𝑑⟩ ∈ Ω be given such that the sets 

ℕ ∩ (𝑎𝑎𝑛𝑛 , 𝑐𝑐𝑛𝑛] and ℕ∩ (𝑑𝑑𝑛𝑛 ,𝑏𝑏𝑛𝑛] 

are finite for all 𝑛𝑛 ∈ ℕ. Then in an (𝑅𝑅, 𝜏𝜏) LSR space,  𝑆𝑆𝜏𝜏
⟨𝑐𝑐,𝑑𝑑⟩ − lim𝑥𝑥𝑚𝑚 = 𝜎𝜎  implies  𝑆𝑆𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩ −
lim𝑥𝑥𝑚𝑚 = 𝜎𝜎,  where 𝜎𝜎 ∈ 𝑅𝑅.  

Proof.  Let 𝑆𝑆𝜏𝜏
⟨𝑐𝑐,𝑑𝑑⟩ − lim𝑥𝑥𝑚𝑚 = 𝜎𝜎. In this case for each 𝑈𝑈 ∈ 𝒩𝒩𝜏𝜏(𝜃𝜃), 
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lim
𝑛𝑛→∞

 
1

𝑑𝑑𝑛𝑛 − 𝑐𝑐𝑛𝑛
�  
𝑑𝑑𝑛𝑛

𝑚𝑚=𝑐𝑐𝑛𝑛+1

𝜒𝜒𝑀𝑀𝑈𝑈(𝑚𝑚) = 0 

 
holds, where 𝑀𝑀𝑈𝑈 = {𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚 − 𝜎𝜎) ∉ 𝑈𝑈}. On the other hand, it can be easily verified that the 
identity 

�  
𝑏𝑏𝑛𝑛

𝑚𝑚=𝑎𝑎𝑛𝑛+1

𝜒𝜒𝑀𝑀𝑈𝑈(𝑚𝑚) = �  
𝑐𝑐𝑛𝑛

𝑚𝑚=𝑎𝑎𝑛𝑛+1

𝜒𝜒𝑀𝑀𝑈𝑈(𝑚𝑚) + �  
𝑑𝑑𝑛𝑛

𝑚𝑚=𝑐𝑐𝑛𝑛+1

𝜒𝜒𝑀𝑀𝑈𝑈(𝑚𝑚) + �  
𝑏𝑏𝑛𝑛

𝑚𝑚=𝑑𝑑𝑛𝑛+1

𝜒𝜒𝑀𝑀𝑈𝑈(𝑚𝑚) 

is true and gives rise to the inequality 

1
𝑏𝑏𝑛𝑛 − 𝑎𝑎𝑛𝑛

�  
𝑏𝑏𝑛𝑛

𝑚𝑚=𝑎𝑎𝑛𝑛+1

 𝜒𝜒𝑀𝑀𝑈𝑈(𝑚𝑚) ≤
1

𝑑𝑑𝑛𝑛 − 𝑐𝑐𝑛𝑛
�  
𝑐𝑐𝑛𝑛

𝑚𝑚=𝑎𝑎𝑛𝑛+1

 𝜒𝜒𝑀𝑀𝑈𝑈(𝑚𝑚) +
1

𝑑𝑑𝑛𝑛 − 𝑐𝑐𝑛𝑛
�  
𝑑𝑑𝑛𝑛

𝑚𝑚=𝑐𝑐𝑛𝑛+1

 𝜒𝜒𝑀𝑀𝑈𝑈(𝑚𝑚)

 +
1

𝑑𝑑𝑛𝑛 − 𝑐𝑐𝑛𝑛
�  
𝑏𝑏𝑛𝑛

𝑚𝑚=𝑑𝑑𝑛𝑛+1

 𝜒𝜒𝑀𝑀𝑈𝑈(𝑚𝑚).

 

We get the desired result, which is 𝑆𝑆𝜏𝜏
⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑥𝑥𝑚𝑚 = 𝜎𝜎, upon taking limit as 𝑛𝑛 → ∞.  

Theorem 8.  Let ⟨𝑎𝑎,𝑏𝑏⟩, ⟨𝑐𝑐, 𝑑𝑑⟩ ∈ Ω be given such that 

0 ≤ lim
𝑛𝑛→∞

 
𝑏𝑏𝑛𝑛 − 𝑎𝑎𝑛𝑛
𝑑𝑑𝑛𝑛 − 𝑐𝑐𝑛𝑛

< ∞ 

holds.  In this case in an (𝑅𝑅, 𝜏𝜏) LSR space, 𝑆𝑆𝜏𝜏
⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑥𝑥𝑚𝑚 = 𝜎𝜎  implies  𝑆𝑆𝜏𝜏

⟨𝑐𝑐,𝑑𝑑⟩ − lim𝑥𝑥𝑚𝑚 = 𝜎𝜎, where 
𝜎𝜎 ∈ 𝑅𝑅.  
Proof.  Let 𝑆𝑆𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑥𝑥𝑚𝑚 = 𝜎𝜎. Then 

lim
𝑛𝑛→∞

 
1

𝑏𝑏𝑛𝑛 − 𝑎𝑎𝑛𝑛
�  
𝑏𝑏𝑛𝑛

𝑚𝑚=𝑎𝑎𝑛𝑛+1

𝜒𝜒𝑀𝑀𝑈𝑈(𝑚𝑚) = 0 

for every 𝑈𝑈 ∈ 𝒩𝒩𝜏𝜏(𝜃𝜃), where 𝑀𝑀𝑈𝑈 = {𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚 − 𝜎𝜎) ∉ 𝑈𝑈}. By the inequalities in (2), it is clear that  
∑𝑚𝑚=𝑐𝑐𝑛𝑛+1
𝑑𝑑𝑛𝑛  𝜒𝜒𝑀𝑀𝑈𝑈(𝑚𝑚) ≤ ∑𝑚𝑚=𝑎𝑎𝑛𝑛+1

𝑏𝑏𝑛𝑛  𝜒𝜒𝑀𝑀𝑈𝑈(𝑚𝑚) holds and so we have the inequality 

1
𝑑𝑑𝑛𝑛 − 𝑐𝑐𝑛𝑛

�  
𝑑𝑑𝑛𝑛

𝑚𝑚=𝑐𝑐𝑛𝑛+1

𝜒𝜒𝑀𝑀𝑈𝑈
(𝑚𝑚) ≤

𝑏𝑏𝑛𝑛 − 𝑎𝑎𝑛𝑛
𝑑𝑑𝑛𝑛 − 𝑐𝑐𝑛𝑛

1
𝑏𝑏𝑛𝑛 − 𝑎𝑎𝑛𝑛

�  
𝑏𝑏𝑛𝑛

𝑚𝑚=𝑎𝑎𝑛𝑛+1

𝜒𝜒𝑀𝑀𝑈𝑈
(𝑚𝑚). 

This yields 𝑆𝑆𝜏𝜏
⟨𝑐𝑐,𝑑𝑑⟩ − lim𝑥𝑥𝑚𝑚 = 𝜎𝜎 upon taking limit as 𝑛𝑛 → ∞.     

Deferred Statistical Continuity in LSR Spaces 
 

In this section the concept of statistical continuity of functions between LSR spaces is extended 
to deferred statistical continuity. The relationship between uniform continuity and deferred statistical 
continuity of functions is explored. Additionally, it is demonstrated that lattice operators in an LSR 
space are deferred statistically continuous. 

Let (𝑅𝑅1, 𝜏𝜏1) and (𝑅𝑅2, 𝜏𝜏2) be topological vector sapaces. A function 𝑓𝑓: (𝑅𝑅1, 𝜏𝜏1) → (𝑅𝑅2, 𝜏𝜏2) is said 
to be uniformly continuous if for each 𝐺𝐺 ∈ 𝒩𝒩𝜏𝜏2(𝜃𝜃2) there exists some 𝐹𝐹 ∈ 𝒩𝒩𝜏𝜏1(𝜃𝜃1) such that (𝑥𝑥 −
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𝑦𝑦) ∈ 𝐹𝐹 implies (𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑦𝑦)) ∈ 𝐺𝐺.  We define the notion of deferred statistical continuity in the 
following.  
Definition 4.  Let ⟨𝑎𝑎, 𝑏𝑏⟩ ∈ Ω, LSR spaces (𝑅𝑅1, 𝜏𝜏1), (𝑅𝑅2, 𝜏𝜏2) and a function 𝑓𝑓:𝑅𝑅1 → 𝑅𝑅2 be given. We 
call 𝑓𝑓  deferred statistically continuous at a point 𝜎𝜎 ∈ 𝑅𝑅1  if any sequence (𝑥𝑥𝑚𝑚)  in 𝑅𝑅1  such that 
𝑆𝑆𝜏𝜏1
⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑥𝑥𝑚𝑚 = 𝜎𝜎  implies 𝑆𝑆𝜏𝜏2

⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑓𝑓(𝑥𝑥𝑚𝑚) = 𝑓𝑓(𝜎𝜎) . The function 𝑓𝑓:𝑅𝑅1 → 𝑅𝑅2  is said to be 
deferred statistically continuous in the case that it is deferred statistically continuous at every 𝜎𝜎 ∈ 𝑅𝑅1. 

Theorem 9.  Uniform continuity implies deferred statistical continuity between LSR spaces.   
Proof.  Let ⟨𝑎𝑎,𝑏𝑏⟩ ∈ Ω and LSR spaces (𝑅𝑅1, 𝜏𝜏1), (𝑅𝑅2, 𝜏𝜏2) be given. Suppose a function 𝑓𝑓 :𝑅𝑅1 → 𝑅𝑅2 is 
uniformly continuous and a sequence (𝑥𝑥𝑚𝑚) in 𝑅𝑅1 is deferred statistically 𝜏𝜏-convergent to a point 𝜎𝜎 ∈
𝑅𝑅1. Since 𝑓𝑓 is uniformly continuous, for each 𝐺𝐺 ∈ 𝒩𝒩𝜏𝜏2(𝜃𝜃2) there exists some 𝐹𝐹 ∈ 𝒩𝒩𝜏𝜏1(𝜃𝜃1) such that 
(𝑥𝑥 − 𝑦𝑦) ∈ 𝐹𝐹 implies (𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑦𝑦)) ∈ 𝐺𝐺. Moreover, the set 𝑇𝑇 = {𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚 − 𝜎𝜎) ∈ 𝐹𝐹} is deferred 
dense due to 𝑆𝑆𝜏𝜏1

⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑥𝑥𝑚𝑚 = 𝜎𝜎 . Then we obtain (𝑓𝑓(𝑥𝑥𝑚𝑚)− 𝑓𝑓(𝜎𝜎)) ∈ 𝐺𝐺  for each 𝑚𝑚 ∈ 𝑇𝑇,  which 
implies 𝑇𝑇  ⊆  {𝑚𝑚 ∈ ℕ: (𝑓𝑓(𝑥𝑥𝑚𝑚)− 𝑓𝑓(𝜎𝜎)) ∈ 𝐺𝐺} . Therefore, 𝒟𝒟𝑎𝑎

𝑏𝑏({𝑚𝑚 ∈ ℕ: (𝑓𝑓(𝑥𝑥𝑚𝑚)− 𝑓𝑓(𝜎𝜎)) ∈ 𝐺𝐺}) = 1 
and  𝑆𝑆𝜏𝜏2

⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑓𝑓(𝑥𝑥𝑚𝑚) = 𝑓𝑓(𝜎𝜎). Thus, 𝑓𝑓 is deferred statistically continuous. 

Theorem 10.  In an (𝑅𝑅, 𝜏𝜏) LSR space, the following lattice mappings are all deferred statistically 
continuous for any ⟨𝑎𝑎, 𝑏𝑏⟩ ∈ Ω.: 

a) 𝑅𝑅 × 𝑅𝑅 → 𝑅𝑅
(𝑥𝑥, 𝑦𝑦) → 𝑥𝑥 ∨ 𝑦𝑦,  b) 𝑅𝑅 × 𝑅𝑅 → 𝑅𝑅

(𝑥𝑥, 𝑦𝑦) → 𝑥𝑥 ∧ 𝑦𝑦,  c) 𝑅𝑅 → 𝑅𝑅
𝑥𝑥 → |𝑥𝑥|,  d) 𝑅𝑅 → 𝑅𝑅

𝑥𝑥 → 𝑥𝑥−,  e) 𝑅𝑅 → 𝑅𝑅
𝑥𝑥 → 𝑥𝑥+ 

Proof.  Let ⟨𝑎𝑎,𝑏𝑏⟩ ∈ Ω be given. 
a)  Suppose that a sequence (𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚) is deferred statistically 𝜏𝜏 × 𝜏𝜏-convergent to (𝑥𝑥, 𝑦𝑦) in 𝑅𝑅 × 𝑅𝑅, 
i.e. 𝑆𝑆𝜏𝜏×𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩ − lim(𝑥𝑥𝑚𝑚 ,𝑦𝑦𝑚𝑚) = (𝑥𝑥,𝑦𝑦). For an arbitrary 𝑈𝑈 ∈ 𝒩𝒩𝜏𝜏(𝜃𝜃), there are some 𝐹𝐹,𝐺𝐺 ∈ ℬsld  such that 
𝐹𝐹 + 𝐹𝐹 ⊆ 𝐺𝐺 ⊆ 𝑈𝑈.  We observe that the set 𝑇𝑇 = {𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚 − 𝑥𝑥, 𝑦𝑦𝑚𝑚 − 𝑦𝑦) ∈ 𝐹𝐹 × 𝐹𝐹}  is deferred 
dense due to 𝑆𝑆𝜏𝜏×𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩ − lim(𝑥𝑥𝑚𝑚 ,𝑦𝑦𝑚𝑚) = (𝑥𝑥, 𝑦𝑦). We also see that 
 

|𝑥𝑥𝑚𝑚 ∨ 𝑦𝑦𝑚𝑚 − 𝑥𝑥 ∨ 𝑦𝑦| ≲ |𝑥𝑥𝑚𝑚 − 𝑥𝑥| + |𝑦𝑦𝑚𝑚 − 𝑦𝑦| ∈ 𝐹𝐹 + 𝐹𝐹 ⊆ 𝐺𝐺 

holds for every 𝑚𝑚 ∈ 𝑇𝑇 [28, Theorem 1.9 (2)]. This implies, 𝐺𝐺 being solid, (𝑥𝑥𝑚𝑚 ∨ 𝑦𝑦𝑚𝑚 − 𝑥𝑥 ∨ 𝑦𝑦) ∈ 𝐺𝐺 for 
every ∈ 𝑇𝑇 , which gives the following:  

𝑇𝑇 ⊆ {𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚 ∨ 𝑦𝑦𝑚𝑚 − 𝑥𝑥 ∨ 𝑦𝑦) ∈ 𝑈𝑈} 
and 

𝒟𝒟𝑎𝑎
𝑏𝑏({𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚 ∨ 𝑦𝑦𝑚𝑚 − 𝑥𝑥 ∨ 𝑦𝑦) ∈ 𝑈𝑈}) = 1.  

Thus, 𝑆𝑆𝜏𝜏
⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑥𝑥𝑚𝑚 ∨ 𝑦𝑦𝑚𝑚 = 𝑥𝑥 ∨ 𝑦𝑦 and the sup  mapping is deferred statistically continuous. 

b) The proof can be obtained in a similar manner with that of a) so it is omitted. 
c)  Let 𝑆𝑆𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑥𝑥𝑚𝑚 = 𝑥𝑥 in 𝑅𝑅 and  𝑈𝑈 ∈ 𝒩𝒩𝜏𝜏(𝜃𝜃). We have some 𝐹𝐹,𝐺𝐺 ∈ ℬsld  such that  𝐹𝐹 + 𝐹𝐹 ⊆ 𝐺𝐺 ⊆
𝑈𝑈. It is clear that 𝑇𝑇 = {𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚 − 𝑥𝑥) ∈ 𝐹𝐹}  is deferred dense. Also, it can be verified that  
�|𝑥𝑥𝑚𝑚|− |𝑥𝑥|� = |[𝑥𝑥𝑚𝑚 ∨ (−𝑥𝑥𝑚𝑚)]− [𝑥𝑥 ∨ (−𝑥𝑥)]| ≲ |𝑥𝑥𝑚𝑚 − 𝑥𝑥| + |(−𝑥𝑥𝑚𝑚)− (−𝑥𝑥)| ∈ 𝐹𝐹 + 𝐹𝐹 ⊆ 𝐺𝐺 
is true for all 𝑚𝑚 ∈ 𝑇𝑇. Therefore, since 𝐺𝐺 is solid, (|𝑥𝑥𝑚𝑚|− |𝑥𝑥|) ∈ 𝐺𝐺 for all 𝑚𝑚 ∈ 𝑇𝑇. Then we have   

𝒟𝒟𝑎𝑎
𝑏𝑏({𝑚𝑚 ∈ ℕ: (|𝑥𝑥𝑚𝑚|− |𝑥𝑥|) ∈ 𝑈𝑈}) = 1 

 
 
and so 𝑆𝑆𝜏𝜏

⟨𝑎𝑎,𝑏𝑏⟩ − lim|𝑥𝑥𝑚𝑚| = |𝑥𝑥|. 
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d)  Let us pick an arbitrary 𝑈𝑈 ∈ 𝒩𝒩𝜏𝜏(𝜃𝜃). There exists some 𝐺𝐺 ∈ ℬsld  such that 𝐺𝐺 ⊆ 𝑈𝑈.  Let 𝑆𝑆𝜏𝜏
⟨𝑎𝑎,𝑏𝑏⟩ −

lim𝑥𝑥𝑚𝑚 = 𝑥𝑥 in 𝑅𝑅. Then the set 𝑇𝑇 = {𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚 − 𝑥𝑥) ∈ 𝐺𝐺}  is deferred dense. Furthermore, we 
observe that 

|𝑥𝑥𝑚𝑚− − 𝑥𝑥−| = |[(−𝑥𝑥𝑚𝑚) ∨ 𝜃𝜃] − [(−𝑥𝑥) ∨ 𝜃𝜃]| ≲ |(−𝑥𝑥𝑚𝑚)− (−𝑥𝑥)| + |𝜃𝜃 − 𝜃𝜃| = |𝑥𝑥 − 𝑥𝑥𝑚𝑚| ∈ 𝐺𝐺  
for every 𝑚𝑚 ∈ 𝑇𝑇. It follows that (𝑥𝑥𝑚𝑚− − 𝑥𝑥−) ∈ 𝐺𝐺 for all 𝑚𝑚 ∈ 𝑇𝑇 because 𝐺𝐺 is solid. Then the inclusion 
𝑇𝑇 ⊆ {𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚− − 𝑥𝑥−) ∈ 𝑈𝑈} implies  

𝒟𝒟𝑎𝑎
𝑏𝑏({𝑚𝑚 ∈ ℕ: (𝑥𝑥𝑚𝑚− − 𝑥𝑥−) ∈ 𝑈𝑈}) = 1 

which yields 𝑆𝑆𝜏𝜏
⟨𝑎𝑎,𝑏𝑏⟩ − lim𝑥𝑥𝑚𝑚− = 𝑥𝑥−. This completes the proof. 

e)  The proof is analogous to that of d) so it is omitted.  

CONCLUSIONS   
 

Statistical convergence and its various generalisations have been investigated in LSR spaces over 
the past few decades. However, deferred density has not been utilised to offer a broader perspective 
on these concepts in LSR spaces. In this paper, the author attempts to address this gap in the literature. 
Specifically, the author extends the notions of statistical 𝜏𝜏-convergence and lacunary statistical 𝜏𝜏-
convergence to that of deferred statistical 𝜏𝜏 -convergence. The author also proves that uniform 
continuity implies deferred statistical continuity of functions between LSR spaces. The findings in 
this note may inspire researchers to explore new and broader concepts related to deferred density and 
other types of densities in future work. 
 
REFERENCES    
 
1. A. Zygmund, “Trigonometric Series”, Cambridge University Press, Cambridge, 1979. 
2. H. Fast, “On statistical convergence”, Colloq. Math., 1951, 2, 241-244 (in French). 
3. H. Steinhaus, “On ordinary convergence and asymptotic convergence”, Colloq. Math., 1951, 2, 

73-74 (in French). 
4. P. Erdos and G. Tenenbaum, “On the densities of certain sequences of integers”, Proc.  London 

Math. Soc., 1989, 59, 417-438 (in French). 
5. E. Kolk, “The statistical convergence in Banach spaces”, Acta Comment. Univ. Tartu., 1991, 928, 

41-52. 
6. H. I. Miller, “A measure theoretical subsequence characterization of statistical convergence”, 

Trans. Amer. Math. Soc., 1995, 347, 1811-1819. 
7. M A. Mamedov and S. Pehlivan, “Statistical cluster points and turnpike theorem in nonconvex 

problems”, J. Math. Anal. Appl., 2001, 256, 686-693. 
8. F. Móricz, “Statistical convergence of Walsh-Fourier series”, Acta Math. Acad. Paedagog. 

Nyh´azi., 2004, 20, 165-168. 
9. N. L. Braha, H. M. Srivastava and S. A. Mohiuddine. “A Korovkin’s type approximation theorem 

for periodic functions via the statistical summability of the generalized de la Vallée Poussin 
mean”, Appl, Math. Comput., 2014, 228, 162-169. 

10. G. Oğuz, “Ergodic type theorems via statistical convergence”, Filomat, 2024, 38, 10061-10070. 
11. I. J. Schoenberg, “The integrability of certain functions and related summability methods”, Amer. 

Math. Monthly, 1959, 66, 361-375. 
12. T. Salat, “On statistically convergent sequences of real numbers”, Math. Slovaca, 1980, 30, 139-

150. 
13. J. A.  Fridy, “On statistical convergence”, Anal., 1985, 5, 301-313. 



 
Maejo Int. J. Sci. Technol. 2025, 19(02), 94-106  
 

 

105 

14. J. S. Connor, “The statistical and strong 𝑝𝑝-Cesàro convergence of sequences”, Anal., 1988, 8, 47-
63. 

15. J. A., Fridy and C. Orhan, “Lacunary statistical convergence”, Pac. J. Math., 1993, 160, 43-51. 
16. M. Mursaleen, “𝜆𝜆-Statistical convergence”, Math. Slovaca, 2000, 50, 111-115. 
17. V. Karakaya and T. A. Chishti, “Weighted statistical convergence”, Iran. J. Sci. Technol., 2009, 

33, 219-223. 
18. R. Çolak and Ç. A. Bektaş, “𝜆𝜆-Statistical convergence of order 𝛼𝛼”, Acta Math. Sci., 2011, 31, 

953-959. 
19. A. Aizpuru, M. C. Listan-Garcia and F. Rambla-Barreno, “Density by moduli and statistical 

convergence”, Quaestiones Math., 2014, 37, 525-530. 
20. M. Et, P. Baliarsingh, H. Ş. Kandemir and M. Küçükaslan, “On 𝜇𝜇 -deferred statistical 

convergence and strongly deferred summable functions”, Rev. R. Acad. Cienc. Exactas Fs. Nat. 
Ser. A Math., 2021, 115, Art.no.34. 

21. R. P. Agnew, “On deferred Cesàro means”, Ann. Math., 1932, 33, 413-421. 
22. M. Küçükaslan and M. Yılmazturk, “On deferred statistical convergence of sequences”, 

Kyungpook Math. J., 2016, 56, 357-366. 
23. F. Riesz, “On the decomposition of linear functional operations”, Proceedings of  International 

Congress of Mathematicians, 1928, Bologna, Italy (in French). 
24. W. A. J. Luxemburg and A. C. Zaanen, “Riesz Spaces I”, American Elsevier, New York, 1971. 
25. D. H. Fremlin, “Topological Riesz Spaces and Measure Theory”, Cambridge University Press, 

Cambridge, 1974. 
26. A. C. Zaanen, “Riesz Spaces II”, North-Holland Co., Amsterdam, 1983. 
27. C. D. Aliprantis and O. Burkinshaw, “Locally Solid Riesz Spaces with Applications to 

Economics”, 2nd Edn., American  Mathematical  Society, Providence, 2003. 
28. C. D. Aliprantis and O. Burkinshaw, “Positive Operators”, Springer, Dordrecht, 2006. 
29. M. Küçükaslan, and A. Aydın, “Deferred statistical order convergence in Riesz spaces”, Hacet. 

J. Math. Stat., 2024, 53, 1368-1377. 
30. G. T. Roberts, “Topologies in vector lattices”, Math. Proc. Cambridge Philos. Soc., 1952, 48, 

533-546. 
31. I. J. Maddox, “Statistical convergence in a locally convex space”, Math. Proc. Cambridge Philos. 

Soc., 1988, 104, 141-145. 
32. G. Di Maio and L. D. R. Kocinac, “Statistical convergence in topology”, Topol. Appl., 2008, 156, 

28-45. 
33. H. Albayrak and S. Pehlivan, “Statistical convergence and statistical continuity on locally solid 

Riesz spaces”, Topol. Appl., 2012, 159, 1887-1893. 
34. S. A. Mohiuddine and M. A. Alghamdi, “Statistical summability through a lacunary sequence in 

locally solid Riesz spaces”, J. Inequal. Appl., 2012, 2012, Art.no.225. 
35. S. A. Mohiuddine, A. Alotaibi and M. Mursaleen, “Statistical convergence through de la Vallée-

Poussin mean in locally solid Riesz spaces”, Adv. Differ. Equ., 2013, 2013, Art.no.66. 
36. E. Savas, “On lacunary double statistical convergence in locally solid Riesz spaces”, J. Inequal. 

Appl., 2013, 2013, Art.no.99. 
37. M. Başarır and Ş. Konca, “Weighted lacunary statistical convergence in locally solid Riesz 

spaces”, Filomat, 2014, 28, 2059-2067. 
38. A. Aydın, “The statistically unbounded 𝜏𝜏-convergence on locally solid Riesz spaces”, Turkish J. 

Math., 2020, 44, 949-956. 



 
Maejo Int. J. Sci. Technol. 2025, 19(02), 94-106  
 

 

106 

39. S. Ghosal and S. Mandal, “Rough weighted I-𝛼𝛼𝛼𝛼-statistical convergence in locally solid Riesz 
spaces”, J. Math. Anal. Appl., 2022, 506, Art.no.125681. 

40. F. Temizsu and A. Aydın, “Statistical convergence of nets on locally solid Riesz spaces”, J. Anal., 
2022, 30, 845-857. 

41. A. R. Freedman, J. J. Sember and M. Raphael, “Some Cesàro-type summability spaces”, Proc. 
London Math. Soc., 1978, s3-37, 508-520. 

 
 
© 2025 by Maejo University, San Sai, Chiang Mai, 50290 Thailand. Reproduction is permitted for 

noncommercial purposes. 
 
 
 

 


	Maejo Int. J. Sci. Technol. 2025, 19(02), 94-106

