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Abstract:  Co-coatomically ss-supplemented modules are identified by extending the concept 
of ss-supplemented modules, and certain characteristics of co-coatomically ss-supplemented 
modules are demonstrated. It is established that the sum of a finite set of co-coatomically ss-
supplemented modules remains co-coatomically ss-supplemented. Moreover, it is proven that 
any quotient module of a co-coatomically ss-supplemented module is also co-coatomically ss-
supplemented. It is observed that if ܩ is a co-coatomically ss-supplemented submodule of a 
module ܧ with the condition that ܩ/ܧ lacks a maximal submodule, then ܧ is co-coatomically 
ss-supplemented. It is demonstrated that the ring ܵ is semi-perfect and ܴܽ݀(ܵ)  ⊆ )ܿ݋ܵ  ܵௌ ) if 
and only if ܵ is semi-local and ܴܽ݀(ܵ)  ⊆ )ܿ݋ܵ  ܵௌ ) if and only if each left S-module is co-
coatomically ss-supplemented. Furthermore, specific characteristics of co-coatomically ss-
supplemented modules over Dedekind rings are examined.   

 
Keywords: co-coatomically ss-supplemented modules, co-coatomic submodules, semi-
perfect rings, semi-local rings, left ss-perfect rings 

 

INTRODUCTION  
 

All along this text, S is considered an associative ring with a unit, and all modules are 
assumed to be unital left S-modules unless explicitly mentioned otherwise. Let E be an S-module. 
The notation ܵௌ  is referred to the left S-module structure of the ring S. A submodule G of E is 
called small in E, denoted as ܩ ≪ ܧ if ܧ  ≠ + ܩ   (ܧ)ܴ݀ܽ .of E ′ܩ for each proper submodule ′ܩ 
represents the intersection of all maximal submodules of E, equivalently the sum of all small 
submodules of E. A module E is called radical if E does not have any maximal submodule, i.e. ܧ =
(ܧ)ܴ݀ܽ  . Moreover, ܵ(ܧ)ܿ݋  indicates the socle of a module E, i.e. the sum of all simple 
submodules of E. As discussed in Corollary 9.1.3 [1], it is widely known that ܵ(ܧ)ܿ݋ is the largest 
semi-simple submodule of a module E.  Zhou and Zhang [2] introduced the concept of ܵܿ݋௦(ܧ) for 
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a module E as an extension of the idea of the socle of a module E by considering all simple 
submodules that are small within E instead of considering all simple submodules of E, i.e. 

(ܧ)௦ܿ݋ܵ = ≫ ܩ}∑  .{݈݁݌݉݅ݏ ݏ݅ ܩ | ܧ 
A module is called coatomic when for each proper submodule, there exists a maximal 

submodule including it [3]. Assume that G is a submodule of a module E. G is called (cofinite) co-
coatomic in E in the case the quotient module ܩ/ܧ is (finitely generated) coatomic [4, 5]. Examples 
of coatomic modules include local, semi-simple and finitely generated modules. It is well known 
that the property of being a coatomic module is transferred by quotient modules. So it can be 
concluded that each submodule of local modules and each submodule of finitely generated semi-
simple modules are also co-coatomic [5]. Throughout this paper, the notations ܩ ≤ ܧ   and 
௖௖≥ ܩ  .notify that G is a submodule of E and G is a co-coatomic submodule of E respectively  ܧ

A non-zero module E is called local when the sum of all proper submodules of E is also a 
proper submodule of E. A ring S is called local when ܵௌ  is a local module. Kaynar et al. [6] defined 
strongly local modules and rings as follows. A module E is called strongly local when E is local and 
is semi-simple. A ring S is called left strongly local when ܵௌ (ܧ)ܴ݀ܽ  is a strongly local module. 

Let E be a module and ܩ ≤  A submodule W is called an ss-supplement of G in E when .ܧ 
= ܧ + ܩ   ܹ and ܩ ∩  ௦ (ܹ) [6]. It is shown in Lemma 3 [6] that W is an ss-supplementܿ݋ܵ ≥ ܹ 
of G in E if and only if ܧ = ܩ + ܹ, ܩ ∩ ܹ being semi-simple, and ܩ ∩ ܹ ≪ ܹ if and only if ܧ =
ܩ +  ܹ, ∩ ܩ  ܹ being semi-simple, and ܩ ∩  ܹ ≤  ܴܽ݀(ܹ). Moreover, a module E is called ss-
supplemented when each submodule of E has an ss-supplement in E [6]. A submodule W is called a 
(weak) supplement of ܩ in ܧ when ܧ = + ܩ   ܹ and ܩ ∩  ܹ ≪ ∩ ܩ) ܹ   ܹ ≪  A module E .(ܧ 
is called (weak) supplemented when each submodule of E has a (weak) supplement in E. Semi-
simple, artinian and local modules are supplemented [7, 8]. A submodule W is called a Rad-
supplement of G in E when ܧ = ܩ + ܹ  and ܩ ∩ ܹ ≤ ܴܽ݀(ܹ).  A module E is called Rad-
supplemented when each submodule of E has a Rad-supplement in E [9]. Based on the provided 
definitions,  the following implication regarding submodules of a module is observed:  

direct summand ⟹ ss-supplement ⟹ supplement.  
A module E is called cofinitely supplemented when each cofinite submodule has a 

supplement in E [4]. A module E is called cofinitely ss-supplemented in the case each cofinite 
submodule has an ss-supplement within E [10]. The same paper introduced different characteristics 
of cofinitely ss-supplemented modules. 

A module E is called co-coatomically supplemented in the case each ܩ ≤௖௖ ܧ  has a 
supplement in E [5]. Moreover, a module E is called co-coatomically weak supplemented in the case 
each ܩ ≤௖௖  has a weak supplement in E, in which case there exists a submodule W of E such that ܧ
= ܧ ܩ + ܹ and ܩ ∩ ܹ ≪  Explicitly, the class of modules that are co-coatomically weakly .[5] ܧ 
supplemented includes modules that are co-coatomically supplemented, and also the class of 
modules that are cofinitely supplemented includes the modules that are co-coatomically 
supplemented. Sozen et al. [11] generalised co-coatomically supplemented modules to Rad-cc-
supplemented modules and studied the module class ܵோ௔ௗି௖௖. If for every co-coatomic submodule ܩ 
of ܧ, there is ܹ ≤  is called belonging ܧ then the module ,ܩ such that ܹ is a Rad-supplement of ܧ
to the class ܵோ௔ௗି௖௖  [11]. Furthermore, in recent years more generalisations of co-coatomically 
supplemented modules have been studied [12, 13].  

In this paper firstly a module E is called co-coatomically ss-supplemented when each 
௖௖≥ ܩ  has an ss-supplement in E as a proper generalisation of ss-supplemented modules. It can ܧ
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be observed that each co-coatomically ss-supplemented module is cofinitely ss-supplemented. An 
example of a module that is co-coatomically ss-supplemented but not ss-supplemented is given. In 
continuation of the study it is demonstrated that if E is an ss-semi-local module such that 
(ܧ)௦ܿ݋ܵ  ≪  then E being a co-coatomically ss-supplemented module is equivalent to it being an ,ܧ 
ss-supplemented module. It is established that quotient modules and finite sums of co-coatomically 
ss-supplemented modules remain unchanged. It is proven that when G is a co-coatomically ss-
supplemented submodule of a module E and ܩ/ܧ does not have a maximal submodule, then E is 
co-coatomically ss-supplemented. Later, it is determined that a necessary and sufficient condition 
for every left S-module to be co-coatomically ss-supplemented is that the ring S is semi-perfect such 
that ܴܽ݀(ܵ)  ⊆ )ܿ݋ܵ  ܵௌ . Equivalently S is a semi-local ring such that ܴܽ݀(ܵ)  ⊆ )ܿ݋ܵ  ܵௌ ) . 
Moreover, a novel characterisation of left ss-perfect rings via co-coatomically ss-supplemented 
modules is presented.  

In the rest of this paper, a module E is called co-coatomically ss-semi-local when each 
௖௖≥ ܩ ∩ ܩ has a weak supplement W in E such that ܧ  ܹ is semi-simple, and the rings whose left 
modules are co-coatomically ss-semi-local are determined. It is proven that when the ring has a 
semi-simple radical, each projective cover of a co-coatomically ss-semi-local module is co-
coatomically ss-semi-local. It is established that the quotient modules of co-coatomically ss-semi-
local modules continue to be co-coatomically ss-semi-local. Furthermore, attention is directed to 
specific algebraic properties of the modules defined in this paper, particularly when they are over 
Dedekind domains. Specifially, it is proven that over a non-local Dedekind domain, a torsion co-
coatomically ss-semi-local module is a co-coatomically ss-supplemented module. It is also shown 
that over a Dedekind domain which is not a field, a torsion-free co-coatomically ss-supplemented 
module is a divisible module. 
 
CO-COATOMICALLY SS-SUPPLEMENTED MODULES    

It is explicit that each ss-supplemented module is co-coatomically ss-supplemented. 
Nevertheless, it is crucial to emphasise that the reverse of this statement is generally not valid. 

Consider a commutative domain denoted as S with an S-module E. Let ܶ(ܧ) be the set 
including all elements e within E for which there exists a non-zero element s in S, leading to ݁ݏ =
 0; in other words, ݊݊ܣ(݁) ≠  0. As a submodule of E,  ܶ(ܧ) is called the torsion submodule of E. 
If E coincides with ܶ(ܧ), E is called a torsion module. Additionally, E is called torsion-free when 
 .is equal to 0 (ܧ)ܶ

 
Example 1. Consider ℚ, the set of rational numbers, as a ℤ-module. It is co-coatomically ss-
supplemented, given that the only co-coatomic submodule is ℚ itself. Besides that, ℚ is not ss-
supplemented since it is not supplemented due to its torsion-free property by Theorem 3.1 [14]. 

A module E is called ss-semi-local in the case the quotient module ܿ݋ܵ/ܧ௦(ܧ) is semi-
simple, or equivalently each submodule of E has (is) a weak ss-supplement in E. That is, for each 
submodule G of E, E has a submodule W such that ܧ = ܩ  + ܹ  and ܩ ∩ ܹ ≤  or , (ܧ)௦ܿ݋ܵ 
equivalently ܧ = + ܩ   ܹ, ∩ ܩ  ܹ is semi-simple and ܩ ∩  ܹ ≪  .[15] ܧ 

 
Proposition 1.  Let E be an ss-semi-local module with ܵܿ݋௦(ܧ)  ≪  Then E is a co-coatomically .ܧ 
ss-supplemented module if and only if E is an ss-supplemented module.  
Proof.  Suppose that E is a co-coatomically ss-supplemented module and ܩ ≤ -Due to the ss .ܧ 
semi-locality of the module E, we conclude that ܿ݋ܵ/ܧ௦(ܧ) is coatomic as it is semi-simple.   Since   
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+ ܩ)/ܧ ((ܧ)௦ܿ݋ܵ   = + ܩ)]/[(ܧ)௦ܿ݋ܵ/ܧ]    [(ܧ)௦ܿ݋ܵ/((ܧ)௦ܿ݋ܵ 
and each quotient module of a coatomic module is coatomic, then ܩ)/ܧ + ((ܧ)௦ܿ݋ܵ   is also 
coatomic. By the hypothesis, ܩ + = ܧ has an ss-supplement in E, say W. Then (ܧ)௦ܿ݋ܵ ܩ)  +
((ܧ)௦ܿ݋ܵ + ܹ, ܩ) + ((ܧ)௦ܿ݋ܵ ∩ ܹ  is semi-simple and (ܩ + ((ܧ)௦ܿ݋ܵ ∩  ܹ ≪  ܹ . Since 
(ܧ)௦ܿ݋ܵ  ≪ ܧ   and ܩ ∩  ܹ ≤ + ܩ)  ((ܧ)௦ܿ݋ܵ   ∩  ܹ , we have ܧ = + ܩ   ܹ  and ܩ ∩  ܹ ≪
 ܹ by Section 19.3 [8]. Moreover, ܩ ∩  ܹ is semi-simple as a submodule of (ܩ + ∩ ((ܧ)௦ܿ݋ܵ  ܹ 
from Corollary 8.1.5 [1]. Hence E is an ss-supplemented module. The rest of the proof is obvious. 
 

A module E is called semi-local in the case its quotient module (ܧ)ܴ݀ܽ/ܧ is semi-simple 
[7]. Each ss-semi-local module is obviously semi-local. 

 
Corollary 1.  For a semi-local module E with small radical, E is a co-coatomically ss-supplemented 
module if and only if E is an ss-supplemented module.  
Proof.  The proof can be made with a similar method for the proof of Proposition 1. 
 

Now we provide an example showing that a cofinitely supplemented module may not 
necessarily be co-coatomically ss-supplemented. 

It is recalled that an ideal J of the ring S is called left t-nilpotent when for any sequence of 
elements ܽଵ, ܽଶ, … belonging to J, there is a ݇ ∈  ℤା with ܽ௞ܽ௞ିଵ … ܽଵ  =  0. A ring S is called left 
perfect in the case that S is semi-local and ܴܽ݀(ܵ) is left t-nilpotent [8]. 

 
Example 2.  Assuming that ݐ ∈  ℤ is prime, let us consider the local Dedekind domain below: 

ܵ =  ℤ(௧) =  {
ܽ
ܾ  | ܽ, ܾ ∈ ℤ, ܾ ≠ 0, (ܾ, (ݐ  =  1}. 

Let us say ܧ = ܵௌ
(ℕ) . ܵௌ  is a supplemented module as S is a local ring. Thus, E is 

cofinitely supplemented according to Corollary 2.4 [4]. Let us put ܩ =  ܴܽ݀( ܵௌ
(ℕ)). The ring S is 

semi-local;  however it is not a left perfect ring, as ܴܽ݀(ܵ) is not left t-nilpotent by Section 43.9 [8]. 
It should be noted that ܩ ≤௖௖  and G does not have an ss-supplement in E because it neither has a ܧ
supplement in E. This is due to the fact that S is not a left perfect ring, as stated in Theorem 1 [16]. 
Therefore, it follows that E is not a co-coatomically ss-supplemented module.  

In Section 19.4 [8], it is defined that a projective cover of a module X as a module E is 
equipped with a homomorphism ℎ ∶ → ܧ   ܺ, where E itself is a projective module and h is a small 
epimorphism, meaning that the kernel of h (denoted as Ker(h)) is a small submodule of E. 

A ring S is called semi-perfect in the case each finitely generated left S-module has a 
projective cover in Section 42.6 [8]. Example 2 also illustrates that co-coatomically ss-
supplemented modules and cofinitely supplemented modules do not necessarily have the same 
characteristics over semi-perfect rings and discrete valuation rings. 
 
Proposition 2.  Co-coatomically ss-supplemented modules exhibit transfer properties through their 
quotient modules.  
Proof.  Suppose that E is a co-coatomically ss-supplemented module and ܩ ≤  If we take any .ܧ 
co-coatomic submodule in the quotient module ܩ/ܧ, it can be represented as a submodule of the 
form ܩ/ܪ, where ܪ ≤௖௖ = ܧ ,By the assumption, H has an ss-supplement W in E. Therefore .ܧ
+ ܪ  ܹ , ∩ ܪ  ܹ  is semi-simple and ܪ ∩  ܹ ≪  ܹ  . Then we have  ܩ/ܧ = + ܩ/ܪ   (ܹ +
ܩ/(ܩ  . Now consider the canonical projection ߨ ∶ → ܧ  ܩ/ܧ  . Therefore, ܪ)ߨ ∩ ܹ )  = ∩ ܪ) 
(ܹ + ܩ/((ܩ  is semi-simple from Corollary 8.1.5 [1], since ܪ ∩  ܹ  is semi-simple. Moreover, 
+ ܹ) ∩ ܪ) = ܩ/((ܩ  ∩ ܪ)ߨ   ܹ )  ≪ ( ܹ)ߨ   =  (ܹ + ܩ/(ܩ   from Section 19.3 [8]. Hence 
(ܹ +   .ܩ/ܧ in ܩ/ܪ is an ss-supplement of ܩ/(ܩ 
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Proposition 3.  Suppose that E is a co-coatomically ss-supplemented module. In that case each co-
coatomic submodule of the quotient module ܿ݋ܵ/ܧ௦(ܧ) is a direct summand.  
Proof. The quotient module ܿ݋ܵ/ܧ௦(ܧ)  has co-coatomic submodules of the form ܿ݋ܵ/ܩ௦(ܧ) , 
where ܩ ≤௖௖ (ܧ)௦ܿ݋ܵ and ܧ  ≤  Then by the assumption, there is a submodule W of E such that .ܩ 
= ܧ + ܩ   ܹ , ∩ ܩ  ܹ ≤ ∩ ܩ ௦(ܹ ). This yieldsܿ݋ܵ   ܹ ≤    ,Thus .(ܧ)௦ܿ݋ܵ 

(ܧ)௦ܿ݋ܵ/ܧ  = (ܧ)௦ܿ݋ܵ/ܩ   +  (ܹ +  and  (ܧ)௦ܿ݋ܵ/((ܧ)௦ܿ݋ܵ 
((ܧ)௦ܿ݋ܵ/ܩ)   ∩ ((ܹ + ((ܧ)௦ܿ݋ܵ/((ܧ)௦ܿ݋ܵ   = ∩ ܩ))   ܹ ) (ܧ)௦ܿ݋ܵ/((ܧ)௦ܿ݋ܵ +   =  0.   

Consequently,  
(ܧ)௦ܿ݋ܵ/ܧ  = ((ܧ)௦ܿ݋ܵ/ܩ)   ⊕ ((ܹ +  .((ܧ)௦ܿ݋ܵ/((ܧ)௦ܿ݋ܵ 

 
Corollary 2.  For a co-coatomically ss-supplemented module E, the conditions below are verified. 

(1) For each (ܧ)ܴ݀ܽ/ܩ  ≤௖௖ ,(ܧ)ܴ݀ܽ/ܧ   .(ܧ)ܴ݀ܽ/ܧ is a direct summand of (ܧ)ܴ݀ܽ/ܩ
(2) For each (ܧ)ܿ݋ܵ/ܩ  ≤௖௖ ,(ܧ)ܿ݋ܵ/ܧ    .(ܧ)ܿ݋ܵ/ܧ is a direct summand of (ܧ)ܿ݋ܵ/ܩ

Proof.  The proofs for these statements can be carried out in a similar manner as that of Proposition 
3.  

In the next step it is aimed to demonstrate that any finite sum of modules that are co-
coatomically ss-supplemented is also co-coatomically ss-supplemented. To begin, the validity of the 
following commonly used lemma is established. 

 
Lemma 1. Suppose that E is a module, ܪ ≤ ܧ   and ܩ ≤௖௖ ܧ . When H is co-coatomically ss-
supplemented and ܩ +   .has an ss-supplement in E, G has an ss-supplement in E ܪ 
Proof.  Let W be an ss-supplement of ܩ + = ܧ ,in E. Thus ܪ   ܹ + + ܩ  ∩ ܹ  ,ܪ  + ܩ)   is (ܪ 
semi-simple and ܹ ∩ + ܩ)  (ܪ   ≪  ܹ . It is denoted that ܪ/ܪ ∩ + ܩ)   ܹ ) ≅ + ܩ)/ܧ   ܹ ) . 
Since ܩ)/ܧ +  ܹ )  ≅ + ܩ))/(ܩ/ܧ)  (ܩ/( ܹ   and ܩ/ܧ  is coatomic, then ܩ)/ܧ +  ܹ )  is 
coatomic. Thus, ܪ ∩ + ܩ)   ܹ ) has an ss-supplement ܺ in ܪ by assumption, i.e. ܪ = ܺ + ∩ ܪ 
+ ܩ)   ܹ), ܺ ∩ + ܩ)   ܹ) is semi-simple and ܺ ∩ + ܩ)   ܹ)  ≪  ܺ. Therefore, ܧ =  ܹ + + ܩ 
= ܪ   ܹ + + ܩ   (ܺ + ∩ ܪ  + ܩ)   ܹ))  = + ܩ   ܹ +  ܺ.  Also, we obtain    

∩ ܩ  (ܺ +  ܹ) ≤  ܺ ∩ + ܩ)   ܹ) + + ܩ) ∩ ܹ   ܺ) 
                                                      ≤ + ܩ) ∩ ܺ   ܹ) +  ܹ ∩ + ܩ)  (ܪ   ≪  ܺ +  ܹ   

by Section 19.3 [8]. Moreover, since ܺ ∩ + ܩ)   ܹ) and ܹ ∩ + ܩ)   are semi-simple, then (ܪ 
+ ܺ) ∩ ܩ  ܹ) is semi-simple by Corollary 8.1.5 [1]. Hence ܺ +  ܹ is an ss-supplement of ܩ in 
 .ܧ
 
Theorem 1. The sum of finitely many co-coatomically ss-supplemented modules is also co-
coatomically ss-supplemented.  
Proof. Consider a finite collection of co-coatomically ss-supplemented modules, denoted as 
,ଵܧ ,ଶܧ … , = ܧ ௡, and putܧ ଵܧ  + ଶܧ + ⋯ +  ௡. To demonstrate the claim, we can limit our proof toܧ
the case when there are only two modules, namely ܧଵ and ܧଶ, both of which are co-coatomically ss-
supplemented. We show that if ܧ = ଵܧ   + ଶܧ  , then the result holds for any finite collection. 
Suppose that ܩ ≤௖௖ = ܧ Then .ܧ  ଵܧ  + ଶܧ + ଶܧ)/ܧ Note that .ܩ  +  is coatomic as a quotient (ܩ 
module of the coatomic module ܩ/ܧ, and hence ܧଶ  + ௖௖≥ ܩ  -ଵ is co-coatomically ssܧ Since .ܧ 
supplemented, ܧଶ + ௖௖≥ ܩ ܧ   and ܧ  has an ss-supplement 0  in ܧ . Then ܧଶ  + ܩ   has an ss-
supplement in ܧ  by Lemma 1. By using Lemma 1 once more, we conclude that ܩ  has an ss-
supplement in ܧ  since ܧଶ  is co-coatomically ss-supplemented, ܩ ≤௖௖ ܧ   and ܧଶ + ܩ  has an ss-
supplement in ܧ. Hence ܧଵ +   .ଶ is a co-coatomically ss-supplemented moduleܧ



 
Maejo Int. J. Sci. Technol. 2025, 19(01), 80-93  
 

 

85

A module X  is called finitely ܧ-generated in the case there is an epimorphism ℎ ∶ (௸)ܧ   →
 ܺ where ߉ is a finite set. 

 
Corollary 3.  For a co-coatomically ss-supplemented module ܧ, any finitely ܧ-generated module is 
co-coatomically ss-supplemented.  
Proof.  The proof can be seen by Proposition 2 and Theorem 1.  
 

The left ℤ-module ܧ =  ℤସ ⊕ ℤସ is a co-coatomically ss-supplemented module, although it 
is not semi-simple. When each simple left S-module is injective, the ring S is called left ܸ −ring. It 
is widely known that ܴܽ݀(ܧ)  =  0 for each left S-module E if and only if the ring S is left ܸ −ring 
[8].  
 
Proposition 4.  Suppose that S is a left ܸ −ring and E is a left S-module. Then E is a semi-simple 
module if and only if E is a co-coatomically ss-supplemented module.  
Proof.  (⟹) This is explicit. 
(⟸)  Let E be co-coatomically ss-supplemented S-module. Then each ܩ ≤௖௖ ܧ  has an ss-
supplement W in E and thus, ܩ ∩  ܹ ≤  ܴܽ݀(ܹ). Since S is a left ܸ −ring, then ܴܽ݀(ܹ)  =  0. 
Therefore, we conclude that ܧ = ⊕ ܩ   ܹ. Thus, (ܧ)ܿ݋ܵ/ܧ does not have a maximal submodule 
from Theorem 2.1 [5]. By Section 23.1 [8], we reach the conclusion that (ܧ)ܿ݋ܵ/ܧ  =
((ܧ)ܿ݋ܵ/ܧ)ܴ݀ܽ   =  0  since S is a left ܸ −ring. Hence E is a semi-simple module. 
 
Corollary 4.  Over a left ܸ −ring, a module that is a direct sum of co-coatomically ss-supplemented 
modules is co-coatomically ss-supplemented.   
Proof.  According to Proposition 4, we arrive at the conclusion that over left ܸ −rings, semi-simple 
modules and co-coatomically ss-supplemented modules coincide. This completes the proof.  

 
While a quotient module of a module is co-coatomically ss-supplemented, the module itself 

does not necessarily have to be co-coatomically ss-supplemented.  
 
Example 3.  Let us assume that S signifies the ring ܳ[[ݔ]] of all power series ∑ ݇ఒݔఒஶ

ఒୀ଴  where x is 
an indeterminate and coefficients belong to a field ܳ. The ring S is local [1]. Hence the module ܵௌ  
is supplemented, and so S is a semi-perfect ring by Section 42.6 [8]. Note that  

ܴܽ݀(ܵ)  =  {෍ ݇ఒݔఒ
ஶ

ఒୀଵ
 | ݇ఒ ∈  ܳ}  =  ݔܵ 

 
is not left t-nilpotent [1]. Thus, S is not a left perfect ring by Section 43.9 [8]. Since S is semi-
perfect, ܵ/ܴܽ݀(ܵ) is semi-simple. If ܧ = ܵௌ

(ℕ) and ܩ =  ܴܽ݀( ܵௌ
(ℕ)),  ܩ/ܧ is a co-coatomically 

ss-supplemented module as it is semi-simple. It is noted that ܩ ≤௖௖ ܧ  as ܩ/ܧ  is semi-simple. 
According to  Theorem 1 [16], G does not have a supplement in E and thus, it does not have an ss-
supplement in E. Thus, E is not a co-coatomically ss-supplemented module. 
 
Theorem 2.  Suppose that ܩ ≤  ܩ/ܧ is a co-coatomically ss-supplemented module and ܩ When .ܧ 
does not have any maximal submodule, ܧ is a co-coatomically ss-supplemented module. 
 
Proof. Let ܪ ≤௖௖ ܧ  . Then ܩ)/ܧ + (ܪ   = + ܩ))/(ܪ/ܧ)  (ܪ/(ܪ   is coatomic since ܪ/ܧ  is 
coatomic. Since ܩ/ܧ  gets no maximal submodule, then ܩ)/ܧ + (ܪ   also gets no maximal 
submodule. Therefore, we conclude that ܧ = + ܩ  ܪ  . Since ܩ  is a co-coatomically ss-
supplemented module and ܪ ≤௖௖ ܧ  , then ܪ has an ss-supplement in ܧ  according to Lemma 1. 
Hence ܧ is a co-coatomically ss-supplemented module.  
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Corollary 5. For a module E, when (ܧ)ܿ݋ܵ/ܧ does not include a maximal submodule, ܧ is a co-
coatomically ݏݏ-supplemented module.  
Proof.  Explicitly, ܵ(ܧ)ܿ݋  is a co-coatomically ss-supplemented submodule of ܧ . By the 
hypothesis, E is a co-coatomically ss-supplemented module according to Theorem 2.  
 
Proposition 5.  When a co-coatomically ss-supplemented module E includes a maximal submodule, 
E also includes a strongly local submodule.  
Proof.  Suppose that ܪ ≤ ௖௖≥ ܪ is maximal. Then ܧ   By assumption, there is a submodule W .ܧ 
of E such that ܧ = + ܪ   ܹ, ∩ ܪ  ܹ  is semi-simple and ܪ ∩  ܹ ≪  ܹ.  Hence ܹ is a strongly 
local submodule of ܧ by Proposition 12 [6].  
 
RINGS WHOSE MODULES ARE CO-COATOMICALLY SS-SUPPLEMENTED  
 

In this section it is firstly aimed to provide a characterisation of rings whose modules are co-
coatomically ss-supplemented. However, initially, we need to articulate a lemma. The remainder of 
the section will examine the behaviour of co-coatomically ss-supplemented modules over various 
rings. 

 
Lemma 2.  Given a coatomic module E, the statements below are equivalent: 

(1) E is the sum of all strongly local submodules. 
(2) E is an ss-supplemented module. 
(3) E is a co-coatomically ss-supplemented module. 
(4) Each co-coatomic (cofinite, maximal) submodule of E has an ss-supplement in E.  

Proof.  (1) ⟺  (2):  By Corollary 31 [6]. 
The implications (2)  ⟹ (3) and (3)  ⟹  (4) are explicit. 
(4)  ⟹  (1):  Suppose that ܩ is the sum of all strongly local submodules of ܧ and ܩ ≠  Because .ܧ
of coatomic E, there is a maximal submodule ܪ of ܧ such that ܩ ≤ ௖௖≥ ܪ Note that .ܪ   ,By (4) .ܧ 
 has an ss-supplement W in E. Thus, according to Proposition 12 [6], we conclude that W is a ܪ
strongly local module. Therefore, the inclusions ܹ ≤ ≥ ܩ    .arise, and this is a contradiction ܪ 

 
G is called co-closed submodule in a module E when G does not have any proper submodule 

K for which ܭ/ܩ ≪  It is remembered that a co-closed submodule of a coatomic module .[9] ܭ/ܧ 
is coatomic as given in Lemma 4.1 [17]. Thus, we obtain the direct consequence below.  
 
Corollary 6.  Suppose that E is a coatomic module and G is a co-closed submodule of E. In that 
case G is a co-coatomically ss-supplemented module if and only if G is an ss-supplemented module. 
 
Theorem 3.  For any ring S, the conditions below are equivalent: 

(1) ܵௌ  is a co-coatomically ss-supplemented module. 
(2) S is a semi-perfect ring and ܴܽ݀(ܵ)  ⊆ )ܿ݋ܵ  ܵௌ ). 
(3) S is a semi-local ring and ܴܽ݀(ܵ)  ⊆ )ܿ݋ܵ  ܵௌ ). 
(4) Each projective left S-module is co-coatomically ss-supplemented. 
(5) Each left S-module is co-coatomically ss-supplemented. 
(6) Each left S-module is cofinitely ss-supplemented. 
(7) Each left S-module is the sum of all strongly local submodules. 
(8) ܵௌ  is a finite sum of strongly local submodules. 
(9) Each maximal left ideal of S has an ss-supplement in S. 
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Proof.  (1) ⟹  (2):  Since ܵௌ  is a co-coatomically ss-supplemented module, then each left ideal J 
of S has an ss-supplement in S. Thus, ܵௌ  is a supplemented module and so S is a semi-perfect ring 
by  Section 42.6 [8]. Moreover, since S is an ss-supplement of ܴܽ݀(ܵ) in S, then we conclude that 
ܴܽ݀(ܵ)  ⊆ )ܿ݋ܵ  ܵௌ ). 
(2)  ⟹  (3):  By Section 42.6 [8]. 
(3)  ⟹ (4):  By Theorem 41 [6], the result holds. 
(4)  ⟹  (5):  The claim holds from Section 18.6 [8] and Proposition 2. 
The implications (5)  ⟹  (6) and (7)  ⟹  (8) are explicit. 
(6)  ⟹  (7):  By Lemma 5 [10]. 
(8)  ⟹  (9):  By Corollary 31 [6]. 
(9)  ⟹  (1):  The assertion can be seen from Lemma 2. 

 
Now an example of a module that is co-coatomically supplemented but not co-coatomically 

ss-supplemented is provided. The notation ܲ(ܧ)  is used to represent the sum of all radical 
submodules of a module E, defined as ܲ(ܧ)  = ≥ ܩ}∑ (ܩ)ܴ݀ܽ | ܧ   =  (ܧ)ܲ It is obvious that .{ܩ 
is the largest radical submodule of E. A module E is called reduced when ܲ(ܧ) = 0. 

 
Example 4 [18].  Consider the polynomial ring ܳ[ݔଵ, ,ଶݔ . . . ] with countably many indeterminates 
∋ ݇ ௞ where Q is a field andݔ ℤା. Let ܬ = ଵݔ) 

ଶ, ଶݔ
ଶ − ,ଵݔ ଷݔ

ଶ − ,ଶݔ … ) be the ideal generated by ݔଵ
ଶ 

and ݔ௞ାଵ
ଶ − ௞ݔ  for each ݇ ∈ ℤା . Then the quotient ring ܵ = ,ଵݔ]ܳ  ,ଶݔ . . . ܬ/[  is local with the 

unique maximal ideal ܯ = ,ଵݔ) ,ଶݔ . . . ܬ/(  generated by all ݔ௞തതത = ௞ݔ + ܬ , ݇ ∈ ℤା . Note that 
(ܯ)ܴ݀ܽ  = ܯ  ≠ 0 by Example 6.2 [18]. If ܧ = ܵௌ , then E is a co-coatomically supplemented 
module because local modules are supplemented. However, since ܲ(ܧ)  = (ܯ)ܴ݀ܽ   = ܯ  ≠  0, 
then E is not reduced. Thus, E is not strongly local, which means that ܴܽ݀(ܧ) is not semi-simple by 
Proposition 6 [6]. Consequently, E  is not a co-coatomically ss-supplemented module by Theorem 
3.  

As an extension of the concept of left ܸ −rings, a ring ܵ is called a left weakly ܸ −ring 
(abbreviated ܹܸ −ring) when each simple S-module is ܵ/ܬ-injective for any left ideal ܬ of ܵ such 
that ܵ/ܬ is a proper quotient ring [19]. 

 
Proposition 6.  Suppose that E is an S-module over the left WV-ring S.  E is a co-coatomically ss-
supplemented module if and only if E is a co-coatomically supplemented module.  
Proof.  Assume that ܧ  is a co-coatomically supplemented module and ܩ ≤௖௖ .ܧ   Then by the 
hypothesis, ܩ  has a supplement ܹ  in ܧ , i.e. ܧ = + ܩ   ܹ  and ܩ ∩  ܹ ≪  ܹ . Note that ܩ ∩
 ܹ ≤  ܴܽ݀(ܹ).  Now two cases arise:  

Case 1: When S is a left ܸ − ring, according to Section 23.1 [8] we conclude that 
ܴܽ݀(ܹ)  =  0, and so ܧ = ⊕ ܩ   ܹ. Hence E is a co-coatomically ss-supplemented module. 

Case 2:  When S is not a left ܸ −ring, ܴܽ݀(ܵ) is simple and ܵ/ܴܽ݀(ܵ) is a left ܸ −ring 
[19]. Therefore, we infer that S is a left good ring from Section 23.7 [8]. Thus, we have  ܩ ∩  ܹ ≤
 ܴܽ݀(ܹ) =  ܴܽ݀(ܵ)ܹ ≤ )ܿ݋ܵ  ܵௌ )ܹ ≤ (ܹ)ܿ݋ܵ   from Section 23.7 [8]. Hence E is a co-
coatomically ss-supplemented module.  The other part of the proof is explicit.  

 
The following theorem belongs to Zöschinger [20]. Using this theorem, the aim is to 

illustrate an alternative characterisation of left perfect rings through co-coatomically ss-
supplemented modules. A module E is called ∑-self-projective when for each index set ߉, the direct 
sum module ܧ(௸) is self-projective. 
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Theorem 4 [20].  When the module ܧ is ∑-self-projective and ܩ ≤  has a supplement ܩ ,(ܧ)ܴ݀ܽ 
in ܧ, so ܩ is a small submodule of ܧ.  
 
Theorem 5.  Each left S-module is co-coatomically ss-supplemented if and only if the ring S is a 
left perfect ring with ܴܽ݀(ܵ)  ⊆ )ܿ݋ܵ  ܵௌ ).  
Proof.  The sufficiency is obviously seen by Theorem 41 [6]. To demonstrate the necessity, assume 
that each left S-module is co-coatomically ss-supplemented. Then each left S-module is cofinitely 
ss-supplemented. Therefore, according to Theorem 3 [10], S is a semi-perfect ring with ܴܽ݀(ܵ)  ⊆
)ܿ݋ܵ  ܵௌ ).  By Section 42.6 [8] we conclude that the quotient ring ܵ/ܴܽ݀(ܵ) is semi-simple, and 
hence ܵௌ

(ℕ)/ܴܽ݀( ܵௌ
(ℕ))  is semi-simple as an ܵ/ܴܽ݀(ܵ) _module. Thus, we obtain  

ܴܽ݀( ܵௌ
(ℕ))  ≤௖௖ ܵௌ

(ℕ) . By the hypothesis, ܴܽ݀( ܵௌ
(ℕ))  has an ss-supplement in ܵௌ

(ℕ) . By 
applying Theorem 4 we conclude that ܴܽ݀( ܵௌ

(ℕ))  ≪ ܵௌ
(ℕ) . Therefore, by deducing that ܵ/

ܴܽ݀(ܵ) is a left semi-simple ring and ܴܽ݀( ܵௌ
(ℕ))  ≪ ܵௌ

(ℕ), ܵௌ  is left perfect by Section 43.9 [8]. 
As a result, S is a left perfect ring.  
 
 A specific class of the left perfect rings is introduced via ss-semi-local modules as follows. 
A ring S is called left ss-perfect, provided that ܵௌ  is an ss-semi-local module, or equivalently each 
left S-module is ss-semi-local [15].  
 
Corollary 7.  Each left S-module is co-coatomically ss-supplemented if and only if the ring S is left 
ss-perfect.  
Proof.  To prove the necessity, assume that each left S-module is co-coatomically ss-supplemented. 
Then by Theorem 5, S is a left perfect ring with semi-simple radical. Thus, each left S-module is ss-
supplemented by Theorem 41 [6], and so is ss-semi-local. Hence according to Theorem 2.15 [15], S 
is a left ss-perfect ring. The sufficiency can be seen by Theorem 5 and Proposition 2.17 [15]. 
 

An S-module E is called radical supplemented when ܴܽ݀(ܧ) has a supplement in E [20]. 
 

Proposition 7.  Suppose that S is a discrete valuation ring whose maximal ideal is ܵݐ where ݐ ∈  ܵ 
is the unique prime element and E is an S-module. İt is assumed that the radical of each coatomic S-
module is semi-simple. Then the basic submodule of E is coatomic if and only if E is a co-
coatomically ss-supplemented module.  
Proof.  (⟹)  Let ܪ ≤௖௖ + ܪ)/ܧ and G be the basic submodule of E. Then ܧ   .is also coatomic (ܩ 
Thus, ܪ)/ܧ +  is divisible, then ܩ/ܧ is reduced by Lemma 2.1 [14]. On the other hand, since (ܩ 
+ ܪ)/ܧ + ܪ)/ܧ ,is divisible. Therefore (ܩ  (ܩ   =  0, i.e. ܧ = + ܪ   By the hypothesis, G is .ܩ 
coatomic and hence it is supplemented by Lemma 2.1 [14]. Thus, by assumption G is an ss-
supplemented module according to Theorem 20 [6]. By applying Lemma 1, H has an ss-supplement 
in E. Hence E is a co-coatomically ss-supplemented module. 
(⟸) Since S is a discrete valuation ring, (ܧ)ܴ݀ܽ/ܧ  =  .is semi-simple, and so it is coatomic ܧݐ/ܧ 
By the hypothesis, since E is a co-coatomically ss-supplemented module, then ܧݐ  has an ss-
supplement in E. Thus, E is a radical supplemented module. Hence according to Theorem 3.1 [20], 
the basic submodule of E is coatomic.  
 

A module E is called ss-radical supplemented when ܴܽ݀(ܧ) has an ss-supplement in E [21]. 
 

Corollary 8.  Suppose that E is an S-module over discrete valuation ring S and that the radical of 
each coatomic S-module is semi-simple. Then the conditions below are equivalent: 

(1) E is a co-coatomically ss-supplemented module. 
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(2) E is a radical supplemented module. 
(3) E is an ss-radical supplemented module.  

Proof. (1) ⟺ (2):  This can be seen by Proposition 7 and Theorem 3.1 [20]. 
(1) ⟹  (3):  Since S is a discrete valuation ring, (ܧ)ܴ݀ܽ/ܧ is coatomic as it is semi-simple. By the 
hypothesis, since E is a co-coatomically ss-supplemented module, then ܴܽ݀(ܧ)  has an ss-
supplement in E. Thus, E is an ss-radical supplemented module. 
(3) ⟹  (2):  Obvious. 
 
Corollary 9.  Suppose that E is an S-module over discrete valuation ring S and that the radical of 
each coatomic S-module is semi-simple. Then E is a co-coatomically ss-supplemented module if 
and only if ܧ = (ܧ)ܶ   ⊕  ܺ  where ܶ(ܧ)  is the torsion part of ܧ , the reduced part of ܶ(ܧ)  is 
bounded  and ܺ/ܴܽ݀(ܺ) is finitely generated.  
Proof.  This can be proved by Corollary 8 and Theorem 3.1 [20]. 
 

In Lemma 3.2 [20], certain properties below were presented for radical supplemented 
modules over discrete valuation rings. Through the application of Corollary 8, it has been 
established that radical supplemented modules coincide with co-coatomically ss-supplemented 
modules over discrete valuation rings, provided a specific condition is met. Therefore, co-
coatomically ss-supplemented modules exhibit these properties under the specified condition over 
discrete valuation rings.  

 
Corollary 10.  Suppose that S is a discrete valuation ring, E is an S-module and that the radical of 
each coatomic S-module is semi-simple. Then the assertions below hold. 

(1) Suppose that E is a co-coatomically ss-supplemented module and ܩ ≤  is pure. In that ܧ 
case G is a co-coatomically ss-supplemented module. 

(2) Suppose that E and ܧ/′ܧ are co-coatomically ss-supplemented modules. Then ܧ′ is a co-
coatomically ss-supplemented module. 

(3) When E is a co-coatomically ss-supplemented module and ܩ/ܧ  is reduced for some 
submodule G of E, then G is also a co-coatomically ss-supplemented module. 

(4) Each submodule of E is a co-coatomically ss-supplemented module if and only if ܶ(ܧ) is a 
supplemented module and (ܧ)ܶ/ܧ has finite rank where ܶ(ܧ) is the torsion part of E.   

Proof.  (1) E is a radical supplemented module according to Corollary 8. Thus, G is a radical 
supplemented module by Lemma 3.2 [20]. Hence G is a co-coatomically ss-supplemented module 
according to Corollary 8. 
(2) E and ܧ/′ܧ are radical supplemented  modules according to Corollary 8. Therefore, ܧ′  is a 
radical supplemented module by Lemma 3.2 [20]. Hence ܧ′ is a co-coatomically ss-supplemented 
module according to Corollary 8. 
(3) Since E is a co-coatomically ss-supplemented S-module, then according to Corollary 8, E is a 
radical supplemented module. By the hypothesis, since ܩ/ܧ  is reduced, then G is a radical 
supplemented module by Lemma 3.2 [20]. Hence G is a co-coatomically ss-supplemented module 
according to Corollary 8. 
(4) (⟹) Since each submodule of E is co-coatomically ss-supplemented, then each submodule of 
E is a radical supplemented module according to Corollary 8. Therefore, ܶ(ܧ) is a supplemented 
module and (ܧ)ܶ/ܧ has finite rank where ܶ(ܧ) is the torsion part of E by Lemma 3.2 [20].  
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(⟸) By the hypothesis, each submodule of E is a radical supplemented module by Lemma 3.2 
[20]. Thus, each submodule of E is a co-coatomically ss-supplemented module according to 
Corollary 8. 
 
CO-COATOMICALLY SS-SEMI-LOCAL MODULES   

 
For a module E in the subsequent discussion, we call it co-coatomically ss-semi-local when 

each ܩ ≤௖௖ = ܧ .has a weak ss-supplement W within E, i.e  ܧ  + ܩ   ܹ, ∩ ܩ  ܹ is semi-simple 
and ܩ ∩  ܹ ≪  Explicitly, each co-coatomically ss-supplemented module is a co-coatomically .ܧ 
ss-semi-local module. However, as demonstrated in Example 1, the ℤ -module ℚ  is a co-
coatomically ss-semi-local module despite not being ss-semi-local as indicated in Example 2.2 [15]. 
 
Lemma 3.  Suppose that E is a coatomic module. Then E is a co-coatomically ss-semi-local module 
if and only if E is an ss-semi-local module.   
Proof.  To demonstrate the necessity, assume that the coatomic module E is co-coatomically ss-
semi-local and ܩ ≤ -is coatomic. Therefore, G has a weak ss ܩ/ܧ Then the quotient module .ܧ 
supplement in E by assumption. Hence E is an ss-semi-local module.  
 
Theorem 6.  The statements below for a ring S are equivalent: 

(1) ܵௌ  is an ss-semi-local module. 
(2) Each left S-module is an ss-semi-local module. 
(3) Each left S-module is a co-coatomically ss-semi-local module. 
(4) S is a semi-local ring and ܴܽ݀(ܵ)  ⊆ )ܿ݋ܵ  ܵௌ ).  

Proof.  (1) ⟺  (2) ⟺  (4):  By Theorem 2.15 [15].  
(2) ⟹ (3):  Obvious. 
(3) ⟹ (4):  By (3), the coatomic module ܵௌ  is a co-coatomically ss-semi-local module. Then 
according to Lemma 3, ܵௌ  is an ss-semi-local module. Thus, ܵௌ  is a semi-local module and so ܵ is 
a semi-local ring. Moreover, as ܵௌ  is a weak ss-supplement of ܴܽ݀(ܵ) in ܵௌ , ܴܽ݀(ܵ) is semi-
simple. 
 
Proposition 8.  Suppose that E is a projective module over a ring S with semi-simple radical. When 
the quotient module ܩ/ܧ  is a co-coatomically ss-semi-local module with ܩ ≪ ܧ  , E is a co-
coatomically ss-semi-local module.  
Proof.  Let ܮ ≤௖௖ ܮ) ,Thus .ܧ  + ௖௖≥ ܩ/(ܩ ܮ  because ܩ/ܧ  + ௖௖≥ ܩ  By the hypothesis, there .ܧ 
exists a weak ss-supplement ܹ/ܩ  of (ܮ + ܩ/(ܩ   in ܩ/ܧ , i.e. ܩ/ܧ = + ܮ)  + ܩ/(ܩ  ܩ/ܹ  , 
+ ܮ)) (ܩ   ∩ ܩ/(ܹ   is semi-simple and ((ܮ + (ܩ   ∩ ≫ ܩ/(ܹ  ܩ/ܧ  .  Since ܩ ≪ ܧ  , then we 
have (ܹ ∩ (ܮ   + = ܩ  + ܮ) ∩ ܹ  (ܩ   ≪ ܧ   from Section 2.2 [9]. Therefore, we obtain  ܧ =
+ ܮ   ܹ and ܮ ∩  ܹ ≪ ∩ ܮ ,Thus .ܧ   ܹ ≤  Since E is a projective module, then by  .(ܧ)ܴ݀ܽ 
assumption, ܮ ∩ ܹ ≤ ≥ ܧ(ܵ)ܴ݀ܽ  )ܿ݋ܵ  ܵௌ = ܧ(  Hence W is a weak ss-supplement of L .(ܧ)ܿ݋ܵ 
in E, and so E is a co-coatomically ss-semi-local module.  
 
Corollary 11.  Suppose that S is a ring with semi-simple radical and that E is a co-coatomically ss-
semi-local S-module. Then the projective cover of E is a co-coatomically ss-semi-local module.  
Proof.  By Proposition 8.  
 
Proposition 9.  Co-coatomically ss-semi-local modules exhibit transfer properties through their 
quotient modules.  
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Proof.  Suppose that E is a co-coatomically ss-semi-local module and ܩ ≤ .ܧ   Then any co-
coatomic submodule of ܩ/ܧ has the form ܩ/ܮ, where ܮ ≤௖௖  By the hypothesis, L has a weak  .ܧ 
ss-supplement W in E, i.e. ܧ = + ܮ   ܹ , ܮ ∩ ܹ is semi-simple and ܮ ∩ ܹ ≪  ,For this reason .ܧ 
= ܩ/ܧ + ܩ/ܮ   (ܹ + ߨ Also by considering the canonical projection  .ܩ/(ܩ  ∶ → ܧ   we ,ܩ/ܧ 
conclude that ((ܹ + (ܩ   ∩ = ܩ/(ܮ  ∩ ܮ))   ܹ )  + = ܩ/(ܩ  ∩ ܮ)ߨ   ܹ )  ≪ (ܧ)ߨ   =  ܩ/ܧ 
from Section 2.2 [9]. Moreover, ((ܹ + (ܩ   ∩ ܩ/(ܮ   is semi-simple from Corollary 8.1.5 [1]. 
Hence ܩ/ܮ has a weak ss-supplement (ܹ + -is a co-coatomically ss ܩ/ܧ and so ,ܩ/ܧ in ܩ/(ܩ 
semi-local module.  

Let ܧ be a module and ܩ, ≥ ܪ  when it is ܪ of ܧ is called a complement submodule in ܩ  .ܧ 
maximal element in the set of whole submodules ܮ of ܧ such that ܪ ∩ = ܮ   0  [9]. By Section 1.10 
[9] it is known that a submodule of ܧ is a complement if and only if it is closed. Over a Dedekind 
domain, closed submodules and co-closed submodules coincide as indicated in Lemma 3.3 [14]. 
Consequently, a torsion submodule ܶ (ܧ) of a module ܧ  is a co-closed submodule of E over a 
Dedekind domain, as it is closed as mentioned in Example 6.34 [22].  

 
Proposition 10.  Suppose that S is a non-local Dedekind domain and E is a torsion S-module. Then 
E is a co-coatomically ss-semi-local module if and only if E is a co-coatomically ss-supplemented 
module.  
Proof.  (⟹) Let ܩ ≤௖௖  By the hypothesis, G has a weak ss-supplement W in E. Thus, we have .ܧ 
= ܧ + ܩ   ܹ , ∩ ܩ  ܹ is semi-simple and ܩ ∩  ܹ ≪  Since E is a torsion module, then W is .ܧ 
too. Hence ܹ ≤ ∩ ܩ ,is co-closed. Therefore ܧ   ܹ ≪  ܹ by Section 3.7 [9]. Hence E is a co-
coatomically ss-supplemented module. 
(⟸)  Obvious.  
 
Proposition 11.  Suppose that E is a reduced S-module where S is non-local Dedekind domain. 
When E is a co-coatomically ss-supplemented module and ܶ (ܧ) has a weak ss-supplement in E, 
(ܧ) ܶ)/(ܧ) ܶ is divisible and (ܧ) ܶ/ܧ  ∩  is co-coatomically ss-semi-local for any submodule G (ܩ 
of E.  
Proof.  We claim that (ܧ) ܶ/ܧ is a radical module. To demonstrate this, assume on the contrary that 
there is a maximal ܪ ≤  .By the hypothesis, H has an ss-supplement W in E .(ܧ) ܶ including ܧ 
Since H is a maximal submodule, then W is a strongly local module according to Proposition 12 [6], 
so that W is cyclic, and for some left ideal J of S, we deduce that ܹ ≅ ܬ ,However .ܬ/ܵ  ≠  0 as S is 
not local. Hence W is a torsion module. From this, we reach the contradiction that ܹ ⊆   So .(ܧ) ܶ 
 is divisible by Lemma 4.4 [4]. On the (ܧ) ܶ/ܧ .does not have any maximal submodule, i.e (ܧ) ܶ/ܧ
other hand, ܶ (ܧ) is closed from Example 6.34 [22]. Thus, ܶ (ܧ) is co-closed according to Lemma 
3.3 [14]. Since ܶ (ܧ) has a weak ss-supplement, then we can conclude that ܶ (ܧ) is a supplement 
submodule in E according to Section 20.2 [9]. Hence there is a submodule G of E such that ܧ =
(ܧ) ܶ  + ,ܩ  (ܧ) ܶ  ∩ ≫ ܩ  ≅ ܩ/ܧ Note here that .(ܧ) ܶ  (ܧ) ܶ)/(ܧ) ܶ   ∩  Since E is also .(ܩ 
co-coatomically ss-semi-local module, then ܶ (ܧ)/(ܶ (ܧ)  ∩  is a co-coatomically ss-semi-local (ܩ 
module by Proposition 9.  
 
Proposition 12.  Suppose that S is a Dedekind domain and E is an S-module. When ܶ(ܧ)  = ଵܧ  ⊕
ଶܧ , where ܧଵ  is semi-simple and ܧଶ  and (ܧ)ܶ/ܧ  are divisible, E is a co-coatomically ss-
supplemented module.  
Proof.  By the hypothesis, co-coatomic submodules of E are direct summands from Theorem 4.1 
[5]. Hence E is a co-coatomically ss-supplemented module.  
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Proposition 13.  Suppose that S is a Dedekind domain which is not a field and E is a torsion-free 
left S-module. If E is a co-coatomically ss-supplemented module, then E is a divisible module.  
Proof.  Let E be a co-coatomically ss-supplemented module and ܪ ≤  be maximal. Then H has ܧ 
an ss-supplement W in E by assumption. Note that ܪ ∩  ܹ ≤ (ܧ)ܿ݋ܵ   ≤  due to S being a (ܧ)ܶ 
domain, not a field. Then ܧ = ⊕ ܪ   ܹ as ܶ(ܧ)  =  0. This implies that E is a divisible module 
according to Lemma 6.10 [17].  
 
CONCLUSIONS     

In this note, ss-supplemented modules defined by Kaynar et al. [6] are viewed from the same 
point of view and co-coatomic submodules defined by Alizade and Güngör [5] having an ss-
supplement are considered instead of each submodule of the module. Over a semi-perfect ring 
whose radical is semi-simple, each module is co-coatomically ss-supplemented. In addition, co-
coatomically ss-semi-local modules are defined by weakening ss-semi-local module structure 
defined by Olgun and Türkmen [15]. A torsion module over a non-local Dedekind domain being co-
coatomically ss-supplemented is equivalent to being co-coatomically ss-semi-local. 
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