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Abstract:  The ordinary least square (OLS) estimates become inappropriate in the presence of 
outliers and consequently the mean estimators based on the OLS coefficients also become 
unsuitable. To address this issue, employing robust regression tools and covariance matrices 
for mean estimation is a well-established practice under a simple random sampling scheme. 
However, the mean estimation using robust regression tools and covariance matrices under 
systematic sampling has not been explored yet. To fill this gap, we develop a class of mean 
estimators under systematic sampling in this article. This study proposes a family of 
minimum-covariance-determinant-based mean estimators along with their theoretical 
properties. The Dixon test is used to confirm the presence of extremes in the data. Numerical 
analyses related to real and simulated data are performed to assess the new proposals. 
According to the percentage of relative efficiency in the practical study with timber volume 
data, estimators based on the Huber regression show a percentage relative efficiency (PRE) 
increase from 226.16 to 241.68. In simulated data scenarios, the PRE of various robust 
estimators exceeds 450. Hence the proposed estimators provide excellent performance. 

 
Keywords:  minimum covariance determinant, mean estimation, robust regression, systematic 
 random sampling 

_______________________________________________________________________________________ 
 
 
INTRODUCTION  
 

The statistical procedure of selecting a sample of components to survey a target population 
is known as survey sampling. The word ‘survey’ can be used to describe a variety of analytical 
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methods. Various methods of contacting selected sample representatives are the subject of survey 
data gathering.  

The goal of sampling is to minimise the cost or effort needed to sample the entire target 
population. Although there are numerous methods for obtaining a sample in both probability and 
non-probability sampling systems, systematic sampling is the focus of this paper. 

In applied research, among the many important examples of surveys and sampling 
procedures are the European Union Labour Force Survey which offers quarterly data on job 
participation, the Public Service Employee Survey which measures federal government employees' 
opinions about their leadership, workplace, workforce and reimbursement, and the National Co-
morbidity Survey to evaluate anxiety’s levels and physical disturbance. The uppermost aim of 
sampling activities remains to estimate population parameters or trends according to the ongoing 
study’s mandate. One of the most effective approaches to meeting the challenge of obtaining more 
reliable sample estimates is to use supplementary (additional or auxiliary) information thoughtfully. 
In survey sampling, mean estimation is one of the major concerns that can be enhanced by using 
supplementary information. 

Kadilar and Cingi [1], Abd-Elfattah et al. [2] and Koyuncu [3] have developed some classes 
of estimators using supplementary information under a simple random sampling scheme. Kadilar 
and Cingi [1] pioneered the development of regression-type-ratio estimators based on the ordinary 
least square (OLS) regression coefficient. However, the OLS estimate becomes inappropriate in the 
presence of extremes or outliers. To solve this issue, there are some modifications available in the 
literature such as those of Kadilar et al. [4] who used Huber regression instead of OLS regression 
coefficient. Abid et al. [5-7] used non-traditional measures of location and dispersion with OLS 
regression coefficient. Irfan et al. [8] used the median of a study variable and an auxiliary variable. 
Zaman and Bulut [9] and Zaman [10] extended the work of Kadilar et al. [4] and used least absolute 
deviation, Huber-M and some other robust regression tools. Bulut and Zaman [11] extended the 
work by introducing ratio-type mean estimators using minimum covariance determinant (MCD). It 
is worth mentioning that the algorithm by Rousseeuw and Van Driessen [12] made the MCD 
computationally practical while Hubert et al. [13] developed even faster algorithms.  

Using kernels, the MCD has also been extended to non-elliptical distributions [14] and high-
dimensional data sets [15-17]. Shahzad et al. [18] utilised the quantile regression with MCD-based 
measures of location to introduce a class of quantile-regression-type mean estimators. Bulent [19] 
combined bootstrapping and MCD robust estimator to offer some benefits for enhanced diagnostics 
and outlier identification. Alomair and Shahzad [20] used a calibrated MCD  to optimise mean 
estimators in median-ranked set sampling. Anas et al. [21] provided quantile regression coefficients 
by including the Sarndal idea. Abid et al. [22] used dual auxiliary variable-based exponential-cum-
ratio estimators that combined conventional and non-traditional measurements. Zaman and Bulut 
[23] used robust covariance matrices in mean estimation. Zaman [24] developed robust ratio-type 
mean estimators by using two tuning parameters. Raymaekers and Rousseeuw [25] proposed a 
cellwise robust version of the MCD  approach by concentrating on single-class multivariate 
numerical data without a response variable. Further, the works of Hubert and Debruyne [26], Al-
Noor and Mohammed [27], Hubert et al. [28], Bhushan and Gupta [29], Subzar et al. [30], Grover 
and Kaur [31], Koç and Koç [32], Malik et al. [33], Kumar and Siddiqui [34], Bhushan and Kumar 
[35], and Tian and Qin [36] are among the other important works that interested readers might 
review.  
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All of the above-mentioned works were done using a simple random sampling scheme or 
median-ranked set sampling. However, no significant development is considered under systematic 
sampling with MCD. Therefore, by exploring this gap and drawing inspiration from the work of 
Shahzad et al. [37, 38], we are introducing the MCD-based mean estimators under systematic 
sampling.  

The systematic sampling technique is a probability sampling technique where elements are 
taken from a population at equal intervals from a random point. This strategy is used when the 
population structures are even or inhabitants are evenly distributed to ensure even coverage without 
clustering residents. It is useful for testing product quality control examination or sampling the 
workforce. Systematic sampling is more efficient and cost-effective compared to simple random 
sampling when the sampling frame is easily accessible. It is particularly convenient for studies 
involving periodic monitoring or spatial analysis where balance within the population is critical. 

In the next sections we briefly present the mean estimates from MCD-based estimators by 
Bulut and Zaman [11] in the context of systematic sampling. In addition, we propose MCD-based 
regression-type estimators under systematic sampling. Efficiency comparisons are provided based 
on practical and quantified simulation studies. 

 

METHODS  
 
Adapted Estimators in Systematic Sampling 
 

Bulut and Zaman [11] developed MC-based mean estimators under simple random sampling. 
We adapt their class of estimators under systematic sampling as given below: 

௨ܶ௝ = ௬തೞା௕ೝ೚್(௑തି௫̅ೞ)
ிೕ௫̅ೞାீೕ

൫ܨ௝ തܺ + ݆  ௝൯  forܩ = 1,2, … ,35                                (1) 

All the 35 family members of Bulut and Zaman [11] are provided in Table 1, where  
ܾ௛ି௥௥௖      = Huber regression coefficient for ݆ = 1, … ,5, 

௟ܾ௔ௗି௥௥௖   = Least absolute deviation (LAD) regression coefficient for ݆ = 6, … ,10, 
௟ܾ௠௦ି௥௥௖    = Least median of square (LMS) regression coefficient for ݆ = 11, … ,15, 
௟ܾ௧௦ି௥௥௖    = Least trimmed square (LTS) regression coefficient for ݆ = 16, … ,20, 

ܾ௛௣௟ି௥௥௖    = Hample regression coefficient for ݆ = 21, … ,25, 
ܾ௧௞௬ି௥௥௖   = Tukey regression coefficient for ݆ = 26, … ,30, 
ܾ௛௠௠ି௥௥௖  = Huber method of moments (HMM) regression coefficient for ݆ = 31, … ,35. 

 
The mean square error (MSE) of ௨ܶ௝ family is given below: 

MSE൫ ௨ܶ௝൯ =
1 − ݂

݊
ቂߴ௬ܵ௬

ଶ + ൫ܭ௨௝ + ௟௔ௗି௥௥௖൯ଶܤ
௫ܵ௫ߴ

ଶ − 2൫ܭ௨௝ + ௟௔ௗି௥௥௖൯ܤ ௫௬ቃܵ∗ݐ௫ߴ  for ݆ = 1, … ,5

                                                                                                                                                                                (2)
 

where ߴ௫ = 1 + (݊ − ௫ݎ(1 , ௬ߴ  = 1 + (݊ − ,௬ݎ(1 ∗ݐ = ටణ೤

ణೣ
. Further, ൫ܵ௫

ଶ, ܵ௬
ଶ൯  are the unbiased 

variances of (ܺ, ܻ),  ܵ௫௬  represents covariance, and ൫ݎ௫ , ,ܺ) ௬൯ are the intra-class correlations ofݎ ܻ). 

Note that the intra-class correlation ௌಳ
మ

ௌಳ
మାௌೈ

మ  can be calculated using within-group and between-group 

variances (ܵ஻
ଶ, ܵௐ

ଶ ) of any variable. Also, ܩ௖ = ௫ܥ  and ܩ௕ =  ଶ௫ are the coefficients of variation andߚ
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kurtosis, and  ܭ௨௝ = ிೕ௒ത

ிೕ௑തାீೕ
  for ݆ = 1,2, … ,35. It is worth mentioning that all characteristics are 

calculated through MCD. 
 

Table 1.  Adapted estimators from Bulut and Zaman [11]  
 

Estimator ܾ௥௢௕ ܨ௝ଵ ܩ௝ଵ 

௨ܶଵ ܾ௛ି௥௥௖ 1 0 
௨ܶଶ ܾ௛ି௥௥௖ 1 ܩ௖ 
௨ܶଷ ܾ௛ି௥௥௖ 1 ܩ௕ 
௨ܶସ ܾ௛ି௥௥௖ ܩ௕ ܩ௖ 
௨ܶହ ܾ௛ି௥௥௖ ܩ௖ ܩ௕ 
௨ܶ଺ ௟ܾ௔ௗି௥௥௖ 1 0 
௨ܶ଻ ௟ܾ௔ௗି௥௥௖ 1 ܩ௖ 
௨଼ܶ ௟ܾ௔ௗି௥௥௖ 1 ܩ௕ 
௨ܶଽ ௟ܾ௔ௗି௥௥௖ ܩ௕ ܩ௖ 

௨ܶଵ଴ ௟ܾ௔ௗି௥௥௖ ܩ௖ ܩ௕ 
௨ܶଵଵ ௟ܾ௠௦ି௥௥௖ 1 0 
௨ܶଵଶ ௟ܾ௠௦ି௥௥௖ 1 ܩ௖ 
௨ܶଵଷ ௟ܾ௠௦ି௥௥௖ 1 ܩ௕ 
௨ܶଵସ ௟ܾ௠௦ି௥௥௖ ܩ௕ ܩ௖ 
௨ܶଵହ ௟ܾ௠௦ି௥௥௖ ܩ௖ ܩ௕ 
௨ܶଵ଺ ௟ܾ௧௦ି௥௥௖ 1 0 
௨ܶଵ଻ ௟ܾ௧௦ି௥௥௖ 1 ܩ௖ 
௨ܶଵ଼ ௟ܾ௧௦ି௥௥௖ 1 ܩ௕ 
௨ܶଵଽ ௟ܾ௧௦ି௥௥௖ ܩ௕ ܩ௖ 
௨ܶଶ଴ ௟ܾ௧௦ି௥௥௖ ܩ௖ ܩ௕ 
௨ܶଶଵ ܾ௛௣௟ି௥௥௖ 1 0 

௨ܶଶଶ ܾ௛௣௟ି௥௥௖ 1 ܩ௖ 

௨ܶଶଷ ܾ௛௣௟ି௥௥௖ 1 ܩ௕ 

௨ܶଶସ ܾ௛௣௟ି௥௥௖ ܩ௕ ܩ௖ 

௨ܶଶହ ܾ௛௣௟ି௥௥௖ ܩ௖ ܩ௕ 

௨ܶଶ଺ ܾ௧௞௬ି௥௥௖ 1 0 

௨ܶଶ଻ ܾ௧௞௬ି௥௥௖ 1 ܩ௖ 

௨ܶଶ଼ ܾ௧௞௬ି௥௥௖ 1 ܩ௕ 

௨ܶଶଽ ܾ௧௞௬ି௥௥௖ ܩ௕ ܩ௖ 

௨ܶଷ଴ ܾ௧௞௬ି௥௥௖ ܩ௖ ܩ௕ 
௨ܶଷଵ ܾ௛௠௠ି௥௥௖ 1 0 
௨ܶଷଶ ܾ௛௠௠ି௥௥௖ 1 ܩ௖ 
௨ܶଷଷ ܾ௛௠௠ି௥௥௖ 1 ܩ௕ 
௨ܶଷସ ܾ௛௠௠ି௥௥௖ ܩ௕ ܩ௖ 
௨ܶଷହ ܾ௛௠௠ି௥௥௖ ܩ௖ ܩ௕ 
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Proposed Robust Regression-Type Estimators 
 

Taking motivation from Bulut and Zaman [11], we define the following class of MCD-based 
regression-type estimators under systematic random sampling: 

௩ܶ௜ = ത௦ݕ + ܾ௥௢௕( തܺ − ݅  ௦)  forݔ̅ = 1,2, … ,7 

where (̅ݔ௦, ,ܺ) ത௦) represents the systematic sample means ofݕ ܻ). The derivation of the MSE of the 
௩ܶ௜ family using Taylor-series is given below:  

MSE( ௩ܶ௜) = (ത௦ݕ)ܸ − ,௦ݔ̅)ݒ݋ܥ௥௢௕ܤ2 (ത௦ݕ + ௥௢௕ܤ
ଶ ݅ for (௦ݔ̅)ܸ = 1, … ,7 

 Putting the values of ܸ(ݕത௦), ,௦ݔ̅)ݒ݋ܥ and (௦ݔ̅)ܸ  ത௦), we get the finalised MSE expression asݕ
given below : 

MSE( ௩ܶ௜) =
1 − ݂

݊
௬ܵ௬ߴൣ

ଶ − ௥௢௕ܤ2 ௫௬ܵ∗ݐ௫ߴ + ௥௢௕ܤ
ଶ

௫ܵ௫ߴ
ଶ൧ for ݅ = 1, … ,7. 

Now utilising 7 diverse robust regression tools and MCD estimation, we get the proposed 
class containing 7 members, each with their own MSE as follows: 

௩ܶ௜ =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

ത௦ݕ] + ܾ௛ି௥௥௖( തܺ − ݅  ௦)]   forݔ̅ = 1, ܾ௥௢௕ = ܾ௛ି௥௥௖     
ത௦ݕ] + ௟ܾ௔ௗି௥௥௖( തܺ − [(௦ݔ̅ for  ݅ = 2, ܾ௥௢௕ = ௟ܾ௔ௗି௥௥௖
ത௦ݕ] + ௟ܾ௠௦ି௥௥௖( തܺ − [(௦ݔ̅ for  ݅ = 3, ܾ௥௢௕ = ௟ܾ௠௦ି௥௥௖

ത௦ݕ]  + ௟ܾ௧௦ି௥௥௖( തܺ − ݅  ௦)]  forݔ̅ = 4, ܾ௥௢௕ = ௟ܾ௧௦ି௥௥௖   .
ത௦ݕൣ + ܾ௛௣௟ି௥௥௖( തܺ − ௦)൧ݔ̅ for  ݅ = 5, ܾ௥௢௕ = ܾ௛௣௟ି௥௥௖

ത௦ݕൣ + ܾ௧௞௬ି௥௥௖( തܺ − ௦)൧ݔ̅ for  ݅ = 6, ܾ௥௢௕ = ܾ௧௞௬ି௥௥௖

ത௦ݕ]  + ܾ௛௠௠ି௥௥௖( തܺ − [(௦ݔ̅ for  ݅ = 7, ܾ௥௢௕ = ܾ௛௠௠ି௥௥௖

                       (3) 

The corresponding MSEs of ௩ܶ௜ members are given by 

MSE( ௩ܶ௜) =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧

1 − ݂
݊

௬ܵ௬ߴൣ
ଶ − ௛ି௥௥௖ܤ2 ௫௬ܵ∗ݐ௫ߴ + ௛ି௥௥௖ܤ

ଶ
௫ܵ௫ߴ

ଶ൧   for ݅ = 1, ௥௢௕ܤ = ௛ି௥௥௖ܤ     

1 − ݂
݊

௬ܵ௬ߴൣ
ଶ − ௟௔ௗି௥௥௖ܤ2 ௫௬ܵ∗ݐ௫ߴ + ௟௔ௗି௥௥௖ܤ

ଶ
௫ܵ௫ߴ

ଶ൧ for ݅ = 2, ௥௢௕ܤ = ௟௔ௗି௥௥௖ܤ

1 − ݂
݊

௬ܵ௬ߴൣ
ଶ − ௟௠௦ି௥௥௖ܤ2 ௫௬ܵ∗ݐ௫ߴ + ௟௠௦ି௥௥௖ܤ

ଶ
௫ܵ௫ߴ

ଶ൧ for ݅ = 3, ௥௢௕ܤ = ௟௠௦ି௥௥௖ܤ

 1 − ݂
݊

௬ܵ௬ߴൣ
ଶ − ௫௬ܵ∗ݐ௫ߴ ௟௧௦ି௥௥௖ܤ2 +  ௟௧௦ି௥௥௖ܤ

ଶ
௫ܵ௫ߴ

ଶ൧  for ݅ = 4, ௥௢௕ܤ = .   ௟௧௦ି௥௥௖ܤ

1 − ݂
݊

௬ܵ௬ߴൣ
ଶ − ௛௣௟ି௥௥௖ܤ2 ௫௬ܵ∗ݐ௫ߴ + ௛௣௟ି௥௥௖ܤ

ଶ
௫ܵ௫ߴ

ଶ൧ for ݅ = 5, ௥௢௕ܤ = ௛௣௟ି௥௥௖ܤ

1 − ݂
݊

௬ܵ௬ߴൣ
ଶ − ௧௞௬ି௥௥௖ܤ2 ௫௬ܵ∗ݐ௫ߴ + ௧௞௬ି௥௥௖ܤ

ଶ
௫ܵ௫ߴ

ଶ൧ for ݅ = 6, ௥௢௕ܤ = ௧௞௬ି௥௥௖ܤ

1 − ݂
݊

௬ܵ௬ߴൣ
ଶ − ௛௠௠ି௥௥௖ܤ2 ௫௬ܵ∗ݐ௫ߴ + ௛௠௠ି௥௥௖ܤ

ଶ
௫ܵ௫ߴ

ଶ൧ for ݅ = 7, ௥௢௕ܤ = ௛௠௠ି௥௥௖ܤ

                                                                                                                                                                                (4)

 

 
It is worth noting that the proposed estimators are simple in nature compared to adapted 

estimators as the latter are based on both ratio and regression while the former are only based on the 
regression part. 
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Efficiency Comparisons 
 

This section includes numerical analyses of both real and simulated data to evaluate the 
performance of the proposals. Efficiency comparisons are analysed using the percentage relative 
efficiency (PRE) criteria. 

 
Population 1: practical study 
 

 For numerical illustration, the tree data are taken from Murthy [39], where ܺ = strip length 
and ܻ = volume of timber. The size of the population is ܰ = 176. Note that Murthy [39] also 
provided some values of intra-class correlation, i.e. ݎ௫ = ௬ݎ = ఠݎ  for instance, with respect to 
different sample sizes as follows: 
ఠݎ = −0.1510 when ݊ = 4, 
ఠݎ = −0.1106 when ݊ = 8, 
ఠݎ = −0.0522 when ݊ = 16, 
ఠݎ = −0.0435 when ݊ = 22. 

In light of all the aforementioned values, the performance of the adapted and proposed 
estimators is compared. For the presence of outliers in (ܺ, ܻ) individually, Dixon test (DT) is used 
[40, 41], whose results are: 
For ܺ, DT = 111.35, P-value= 2.2݁ − 16, 
For ܻ, DT = 63.02, P-value= 1.998݁ − 15. 

The DT's significant results emphasise the presence of extremes in the data. As a result, the 
data are appropriate for handling the estimators under consideration. 

Population 2: simulation study 
 
            In the simulation study the variable Xj  follows a Gamma distribution with shape parameter 
of 2.7 and scale parameter of 3.9, i.e. ௝ܺ~ G(2.7, 3.9). Further, ௝ܻ  is defined as ௝ܻ = ܽ +  ܴ ௝ܺ  +
 ܾ ௝ܺ

௣  with ܽ = 6, ܴ = 2.2, ݌ = 1.7, and b  following a standard normal distribution with ܰ =
1000. The systematic sampling was replicated 1000 times with ݊ = 100.  

             The empirical MSE values of ௨ܶ௝ and ௩ܶ௜ are investigated as MSE(ݐ௜) = ∑ (௧೔ି௧̅)಼
೔సభ

௄
, where ݐ௜ 

representing proposed and existing estimators. The PRE is computed as 

(௜ݐ)ܧܴܲ  = ௏(௬തೞ)
ெௌா(௧೔)

× 100.  

RESULTS AND DISCUSSION 
 

The results of the PRE values related to population 1 are provided in Tables 2-5, and PRE 
values related to population 2 are provided in Table 6. 

With different sample sizes and various values of intra-class correlation, the proposed 
estimators provide excellent performance, where their performance can be arranged respectively for 
populations 1 and 2 in the following manner: 

௩ܶଷ: LTS > ௩ܶସ: LMS > ௩ܶହ: Hample > ௩ܶ଺: Tukey > ௩ܶଵ: Huber > ௩ܶ଻: HMM > ௩ܶଶ: LAD 

௩ܶ଺: Tukey > ௩ܶଷ: LTS > ௩ܶ଻: HMM > ௩ܶଶ: LAD > ௩ܶସ: LMS > ௩ܶଵ: Huber > ௩ܶହ: Hample. 
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Thus, for real data, among the proposed estimators, the estimators ௩ܶଷ and ௩ܶସ based on 
employing LTS and LMS record the highest efficiency. On the other hand, for simulated data, the 
estimators ௩ܶ଺ and ௩ܶଷ  based on employing Tukey and LTS record the highest efficiency. Further, 
in comparison to other robust regression estimators, the proposed estimators perform best or nearly 
so overall when examined on real and simulated data. Given these outcomes, the proposed 
estimators can be regarded as highly robust and effective estimators. These results are also provided 
in Figures 1-5.  

 
Table 2.  PRE of adapted and proposed estimators with ݊ = 4 and ݎఠ = −0.1510 in Population 1 

 
Estimator Adapted Proposed 

Huber ௨ܶଵ ௨ܶଶ ௨ܶଷ ௨ܶସ ௨ܶହ ௩ܶଵ 
226.1582     241.6759 419.8329 521.1829 520.5255 461.8194 

LAD ௨ܶ଺ ௨ܶ଻ ௨଼ܶ ௨ܶଽ ௨ܶଵ଴ ௩ܶଶ 
231.2658    247.1671 427.3614 518.9625 522.4009 454.9534 

LTS ௨ܶଵଵ ௨ܶଵଶ ௨ܶଵଷ ௨ܶଵସ ௨ܶଵହ ௩ܶଷ 
214.6931    229.3321 401.9831 524.3695 514.1828 477.0048 

LMS ௨ܶଵ଺ ௨ܶଵ଻ ௨ܶଵ଼ ௨ܶଵଽ ௨ܶଶ଴ ௩ܶସ 
217.6949    232.5662 406.7810 523.7974 516.1412 473.0761 

Hample ௨ܶଶଵ ௨ܶଶଶ ௨ܶଶଷ ௨ܶଶସ ௨ܶଶହ ௩ܶହ 
222.5908    237.8377 414.4180 522.4563 518.8771 466.5895 

Tukey ௨ܶଶ଺ ௨ܶଶ଻ ௨ܶଶ଼ ௨ܶଶଽ ௨ܶଷ଴ ௩ܶ଺ 
225.8080    241.2993 419.3071 521.3184 520.3762 462.2888 

HMM ௨ܶଷଵ ௨ܶଷଶ ௨ܶଷଷ ௨ܶଷସ ௨ܶଷହ ௩ܶ଻ 
226.4114 241.9483 420.2124 521.0836 520.6317 461.4798 

 
 
Table 3.  PRE of adapted and proposed estimators with  ݊ = 8 and ݎఠ = −0.1106 in Population 1 
 

Estimator Adapted Proposed 

Huber ௨ܶଵ ௨ܶଶ ௨ܶଷ ௨ܶସ ௨ܶହ ௩ܶଵ 
250.6176    269.3937 499.0314 627.5682 633.5100 534.5242 

LAD ௨ܶ଺ ௨ܶ଻ ௨଼ܶ ௨ܶଽ ௨ܶଵ଴ ௩ܶଶ 
256.8328   276.1473 509.2763 623.4399 635.4197 524.6076 

LTS ௨ܶଵଵ ௨ܶଵଶ ௨ܶଵଷ ௨ܶଵସ ௨ܶଵହ ௩ܶଷ 
237.1506    254.7440 475.5721 634.1993 626.3378 556.2317 

LMS ௨ܶଵ଺ ௨ܶଵ଻ ௨ܶଵ଼ ௨ܶଵଽ ௨ܶଶ଴ ௩ܶସ 
237.9507   255.6149 477.0127 633.9061 626.8873 554.9404 

Hample ௨ܶଶଵ ௨ܶଶଶ ௨ܶଶଷ ௨ܶଶସ ௨ܶଶହ ௩ܶହ 
246.2905    264.6889 491.6788 630.0701 631.6744 541.4801 

Tukey ௨ܶଶ଺ ௨ܶଶ଻ ௨ܶଶ଼ ௨ܶଶଽ ௨ܶଷ଴ ௩ܶ଺ 
250.1924    268.9315 498.3168 627.8283 633.3484 535.2062 

HMM  ௨ܶଷଵ ௨ܶଷଶ ௨ܶଷଷ ௨ܶଷସ ௨ܶଷହ ௩ܶ଻ 
250.9253  269.7281 499.5474 627.3782 633.6244 534.0310 
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Table 4.  PRE of adapted and proposed estimators with  ݊ = 16 and ݎఠ = −0.0522 in Population 1 
 

Estimator Adapted Proposed 

Huber ௨ܶଵ ௨ܶଶ ௨ܶଷ ௨ܶସ ௨ܶହ ௩ܶଵ 
266.7416   287.2540 550.3302 666.4366 684.9603 556.0156 

LAD ௨ܶ଺ ௨ܶ଻ ௨଼ܶ ௨ܶଽ ௨ܶଵ଴ ௩ܶଶ 
273.5493    294.6704 561.5533 660.4106 685.4877 544.7254 

LTS ௨ܶଵଵ ௨ܶଵଶ ௨ܶଵଷ ௨ܶଵସ ௨ܶଵହ ௩ܶଷ 
247.6978    266.4809 516.4603 679.6654 678.1090 588.4671 

LMS ௨ܶଵ଺ ௨ܶଵ଻ ௨ܶଵ଼ ௨ܶଵଽ ௨ܶଶ଴ ௩ܶସ 
255.5326    275.0313 530.8252 674.9641 681.9524 575.0023 

Hample ௨ܶଶଵ ௨ܶଶଶ ௨ܶଶଷ ௨ܶଶସ ௨ܶଶହ ௩ܶହ 
620.0060    282.0918 542.2432 670.2710 684.0290 563.9847 

Tukey ௨ܶଶ଺ ௨ܶଶ଻ ௨ܶଶ଼ ௨ܶଶଽ ௨ܶଷ଴ ௩ܶ଺ 
266.2761     286.7467 549.5453 666.8273 684.8899 556.7950 

HMM ௨ܶଷଵ ௨ܶଷଶ ௨ܶଷଷ ௨ܶଷସ ௨ܶଷହ ௩ܶ଻ 
267.0785  287.6211 550.8967 666.1521 685.0084 555.4521 

 

 
Table 5.  PRE of adapted and proposed estimators with ݊ = 22 and ݎఠ = −0.0435 in Population 1 
 

Estimator Adapted Proposed 

Huber ௨ܶଵ ௨ܶଶ ௨ܶଷ ௨ܶସ ௨ܶହ ௩ܶଵ 
247.1293     265.1170 487.0173 593.1248 602.0028 510.7594 

LAD ௨ܶ଺ ௨ܶ଻ ௨଼ܶ ௨ܶଽ ௨ܶଵ଴ ௩ܶଶ 
253.0916    271.5699 496.2643 589.0617 603.1537 501.7501 

LTS ௨ܶଵଵ ௨ܶଵଶ ௨ܶଵଷ ௨ܶଵସ ௨ܶଵହ ௩ܶଷ 
231.1322    247.7784 460.4040 601.1056 595.0309 535.0574 

LMS ௨ܶଵ଺ ௨ܶଵ଻ ௨ܶଵ଼ ௨ܶଵଽ ௨ܶଶ଴ ௩ܶସ 
237.2821    254.4481 470.9394 598.6002 598.4194 525.7297 

Hample ௨ܶଶଵ ௨ܶଶଶ ௨ܶଶଷ ௨ܶଶସ ௨ܶଶହ ௩ܶହ 
242.9736  260.6162 480.3531 595.6374 600.7559 517.0712 

Tukey  ௨ܶଶ଺ ௨ܶଶ଻ ௨ܶଶ଼ ௨ܶଶଽ ௨ܶଷ଴ ௩ܶ଺ 
246.7211    264.6750 486.3706 593.3838 601.8969 511.3785 

HMM  ௨ܶଷଵ ௨ܶଷଶ ௨ܶଷଷ ௨ܶଷସ ௨ܶଷହ ௩ܶ଻ 
247.4246  265.4368 487.4842 592.9358 602.0772 510.3116 
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     Table 6.  PRE of adapted and proposed estimators through simulation study of Population 2 
 

Estimator Adapted Proposed 

Huber ௨ܶଵ ௨ܶଶ ௨ܶଷ ௨ܶସ ௨ܶହ ௩ܶଵ 
104.146052    115.864207 454.023148 446.128689 453.923680 450.577311 

LAD ௨ܶ଺ ௨ܶ଻ ௨଼ܶ ௨ܶଽ ௨ܶଵ଴ ௩ܶଶ 
104.132586     115.764958 453.459726 443.971893 454.279508 451.854133 

LTS ௨ܶଵଵ ௨ܶଵଶ ௨ܶଵଷ ௨ܶଵସ ௨ܶଵହ ௩ܶଷ 
104.117622    115.655183 452.519469 441.290052 454.362501 452.975709 

LMS ௨ܶଵ଺ ௨ܶଵ଻ ௨ܶଵ଼ ௨ܶଵଽ ௨ܶଶ଴ ௩ܶସ 
104.016751     114.929177 437.617667 415.967362 446.066805 451.754292 

Hample ௨ܶଶଵ ௨ܶଶଶ ௨ܶଶଷ ௨ܶଶସ ௨ܶଶହ ௩ܶହ 
104.170478    116.045355 454.368573 449.409010 452.616125 447.641910 

Tukey ௨ܶଶ଺ ௨ܶଶ଻ ௨ܶଶ଼ ௨ܶଶଽ ௨ܶଷ଴ ௩ܶ଺ 
104.11241   115.61707 452.11405 440.28650 454.31313 453.29108 

HMM ௨ܶଷଵ ௨ܶଷଶ ௨ܶଷଷ ௨ܶଷସ ௨ܶଷହ ௩ܶ଻ 
104.125055  115.709643 453.027957 442.659365 454.362750 452.458326 

 
 

 
Figure 1.  PRE of adapted and proposed estimators with ݊ = 4 and ݎఠ = −0.1510 in Population 1 
 

 
Figure 2.  PRE of adapted and proposed estimators with  ݊ = 8 and ݎఠ = −0.1106 in Population 1 
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Figure 3. PRE of adapted and proposed estimators with  ݊ = 16 and ݎఠ = −0.0522 in Population 1 
 

 
Figure 4.  PRE of adapted and proposed estimators with ݊ = 22 and ݎఠ = −0.0435 in Population 1 
 

 
     Figure 5.  PRE of adapted and proposed estimators through simulation study of Population 2 
 

CONCLUSIONS 
 

In this study we have comprehensively evaluated MCD-based estimators across diverse 
scenarios and populations. The numerical results present PRE for each estimator under different 
sample sizes and intra-class correlations. The findings reveal variations in accuracy and efficiency 
across distinct conditions. Notably, the proposed estimators demonstrate superior performance 
compared to most existing ones. These results contribute valuable insights into the selection of 
appropriate estimators based on specific conditions, thereby advancing the understanding of 
estimation methodologies and facilitating informed decision-making in practical applications. In 
future studies the work can be extended in light of cluster sampling.  
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