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Abstract: Fractional versions of graph-theoretic invariants have expanded their applicability
to diverse fields such as connectivity, scheduling, assignment and operational research.
Building on this extension of fractional graph theory, we introduce the local fractional metric
dimension (LFMD) of non-planar networks. For a given network G, the local resolving
neighbourhood LR(uw) of an edge uw is defined as the set of vertices in G that distinguish
between u and w. A function p:V(G)—[0,1] is considered a local resolving function if
p(LR(uw))>1 for every edge uw in G. The LFMD of G is then defined as the minimum value
of p(V(G)) taken over all possible local resolving functions. In this paper we compute the
exact values of the LFMD for two non-planar, structurally symmetric network families—
generalised gear and generalised helm networks—each constructed with a finite number of
levels and characterised by distinct types of vertices. We compare the results for both
networks and analyse the impact of pendant vertices in the context of bipartite and non-
bipartite structures. Furthermore, we investigate the asymptotic behaviour as the order of the
networks approaches infinity and present an emergency exit planning scenario to illustrate the
practical significance of our findings.

Keywords: fractional metric dimension, resolving neighbourhood sets, non-planar
networks, optimisation problem
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INTRODUCTION

Graph theory has become a foundational tool for analysing complex network systems across
disciplines, from biological networks to distributed computing. The core of many network analysis
problems is vertex identification—determining unique node positions based on structural attributes
[1]—a challenge formally addressed by the metric dimension (MD). Introduced by Slater [2] and
Harary and Melter [3], the MD defines the minimal set of reference vertices needed to locate all
nodes uniquely via distance vectors. Slater’s motivation stemmed from intruder detection in security
networks while Harary and Melter approached it from a graph-theoretic perspective on structural
uniqueness. Chartrand et al. [4] later characterised extremal MD values for trees and unicyclic
graphs. The MD’s operational relevance spans various fields including robotic path planning [5]
where landmark-based navigation algorithms exhibit O(n?) complexity for tree networks, and
pharmaceutical chemistry [4] where resolving sets aid molecular structure identification. Khuller et
al. [5] further demonstrated its practical value in robotic navigation, while Sebé and Tannier [6]
applied it to combinatorial optimisation frameworks. Studies on structured graphs further advance
the MD: Liu et al. [7] showed constant MD in Toeplitz graphs under certain parameters; Ali et al.
[8] proved that three vertices resolve all nodes in Mobius ladders; and Imran et al. [9] computed the
exact MD for generalised gear networks. These results underscore the role of symmetry and
topology in network resolvability. Extensions such as fault-tolerant MD [10], mixed MD [11] and
edge-metric MD [12-14] have since emerged to address robustness and diverse network scenarios.

The transition to the fractional metric dimension (FMD) marks a key theoretical
advancement, overcoming limitations of the integer-based formulation. Currie and Ollermann [15]
introduced continuous vertex weighting, broadening the resolving-set paradigm for wider
optimisation applications. Arumugam and Mathew [16] formalised the FMD by establishing bounds
(1 <dim_f(G) <|V(Q)|/2), with paths and complete graphs achieving the extremes. This fractional
extension brought three major advancements: (1) enabling probabilistic modelling through vertex
weighting [15]; (2) defining FMD behaviour within formal bounds [16]; and (3) expanding its
applicability to complex domains including chemical graph theory [17] where fractional weights
model probabilistic molecular interactions, and network design [ 18] where hierarchical products are
assessed using FMD metrics. Feng et al. [19] also analysed the FMD in vertex-transitive and
Cartesian product graphs, resolving key open problems in the field. Additional studies extended the
FMD to Jahangir graphs [20] and comb product graphs [21], highlighting its adaptability in
composite networks. Mufti et al. [22] further contributed by applying edge MD to barycentric
subdivisions of Cayley graphs, expanding the scope to algebraic structures and symmetric networks.
Collectively, these contributions deepen the understanding of both the MD and the FMD in complex
and symmetric graph structures.

Javaid et al. [23] advanced the FMD framework by introducing the local fractional metric
dimension (LFMD), which focuses on distinguishing adjacent vertices via local resolving function
(LRF) n:V(G)—[0,1], requiring the sum over each edge’s local neighbourhood to exceed one. The
LFMD is particularly suited to applications involving local interactions, such as fault detection in
sensor networks [24] and emergency exit planning [25]. Javaid et al. [26] proved that all connected
bipartite graphs satisfy dim;;(G), providing a clean parity-based characterisation, while Aisyah et
al. [27] analysed the LFMD in corona product graphs. Recent studies have examined LFMD in
structured graphs. For example, Ahmed et al. [28] established sharp bounds for modified prism
networks and proved that their LFMD remains bounded as the network size increases due to edge
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transitivity, and Ali et al. [29] showed convergence behaviours through constructive techniques for
rotationally heptagonal symmetrical graphs. Further studies on line networks derived from wheels
and prisms have explored LFMD bounds using asymptotic analysis and 3D modelling [30]. Efforts
by Zafar et al. [25] on wheel networks and Ali et al. [31] on fault-tolerant designs have started
extending LFMD analysis into more complex topologies. Despite these advances, existing research
remains largely focused on planar graphs and often provides only bounds rather than exact LFMD
values, especially in non-planar hierarchical networks. While the LFMD has been explored in
several graph operations including prism-related and corona product structures [24-27], exact
computations for structurally rich and non-planar networks remain limited. Javaid et al. [23] and Ali
et al. [31] also contributed by characterising the LFMD behaviour in locally dense networks where
specific substructures and symmetry give rise to predictable patterns and measurable variations in
resolvability, distinguishing LFMD from classical MD.

Recent studies have further expanded the scope of LFMD. Fatima et al. [32] computed exact
LFMD values for a non-planar subclass derived from subdivided wheel graphs, demonstrating how
fractional techniques capture subtle structural variations. However, their analysis was confined to a
single network family and lacked broader consideration of hierarchical structure, symmetry,
bipartiteness or asymptotic behaviour. Similarly, Javaid et al. [33] examined generalised sunlet
networks providing bounds and selected exact values but without addressing complex topologies or
convergence behaviour. Ali et al. [34] analysed LFMD in rotationally symmetric planar graphs
using linear programming techniques, offering asymptotic insights but limiting their scope to low-
order planar structures without deriving closed-form generalisations.

This study addresses identified research gaps by investigating generalised gear and helm
networks, which are two non-planar symmetric families. The objectives are: (1) to derive exact
closed-form LFMD expressions; (2) to quantify the impact of pendant vertices and bipartite
structures; (3) to analyse asymptotic behaviour as network complexity increases; and (4) to
demonstrate practical relevance through an emergency evacuation optimisation scenario. By
integrating rigorous theoretical modelling with applied validation, this work offers a comprehensive
advancement in both the theory and application of FMDs in complex network systems.

BASIC NOTIONS AND CONSTRUCTION OF NON-PLANAR NETWORKS

Throughout this study, it is assumed that G = (V(G), E(G)) is a finite, simple (without loops
or parallel edges) and connected network, where V(G) and E(G) € V(G) X V(G) are sets of vertices
and edges respectively with cardinalities |V (G)| (order) and |E(G)| (size). For any two vertices
x,y € V(G), the distance d(x, y) is defined as the number of edges along the shortest path between
them [35, 36].

For an edge e = ab € E(G), the local resolving neighbourhood set (LRN) is defined as
LR(e) ={u €V (G§):d(u,a) # d(u,b)}. A function :V(G) — [0,1] is an LRF if y(LR(e)) =1
for all e € E(G), where Y(LR(e)) = Xyerre) Y(v). Moreover, an LRF 9 is called a minimal LRF
if there exists a mapping g:V(G) — [0,1] such that g(v) < y(v) for all v € V(G) and g(v) #
Y(v) for at least one v € V(G) and g is not an LRF of G. Thus, the LFMD of G is defined as
dim;(G) = min{|yp|, being a minimal LRF of G} [23]. The most commonly utilised results in
the development of the main findings are outlined below:

Lemma 1 [26]. For any integer value « = 2 and LRNs, i.e. LR(e) of an edge of a connected
network G, assume that |[LR(e)| = a. Forall e € E(G) and |[LR(e) N W| = «a, then
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w
1< dimy(G) < %

Here, W denotes the union of all the LRNs of order a.
Lemma 2 [26]. For any connected and bipartite network G, the LFMD is always unity, 1.e.
dim(g) = 1.
The following present the constructions of generalised n-level gear and generalised p-level
helm networks [31].

Generalised N-Level Gear Networks

For an integer m > 3, each vertex of n copies of the cycle network C,, is joined to form the
n-level wheel network. Additionally, it becomes a generalised n-level gear network JX ,, by addition
of k = 1 vertices to every edge of each cycle. Thus, the vertex and edge sets of J ,, are given

by VOEn ={anal,bi;1<ijl<mnk} and E(E,) ={a,a;1<ij<mn}u

{bli'jblijl; 1<ij,l<mnk}u {a{bij-; 1<ij<mn}u {a{b,‘;'j; 1<1i,j<m,n} respectively,
where |V(]rl§m)| =nm(1+ k) + 1. The vertices of J , can be classified into three types: the
central vertex a,, major vertices a{ and minor vertices bl"’ j- A generalised n-level gear network ]62'3

is illustrated in Figure 1(a).

Generalised P-Level Helm Networks

The generalised p-level helm network (Hf;l'q) is formed by adding a pendant vertex to each
vertex of every cycle in the generalised n-level gear network [31]. Thus, the vertex set and edge sets
of H}, , are given by V(H), ) = {a,, a5, bf, ci; 1 < k,j,l <m,p,q} and E(H;, ) = {a,a;;1 <
k,j <mp}u{bfb i1 <kj,l<mpqtuf{abl;1<kj<mp}u{abl;1<kj<
p}u {aic,{; 1 < k,j < m,p} respectively. The order of Hf;l'q ispm(2+q)+ 1. A generalised p-

level Helm network H3 , is illustrated in Figure 1(b).

Figure 1. Representation of generalised (a) n-level gear network J 3'3 and (b) p-level helm network
Hi,
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EXACT CLOSED-FORM LFMD FOR GENERALISED N-LEVEL GEAR NETWORK

The significant findings on the LFMD of the generalised n-level gear network are included
in this section.

Theorem 1. Let G = ], , be a generalised n-level gear network. Then

3n )
. - ifm=3
dimir(G) =y mn :
fz—, ian»Z 4

Proof: Consider the following cases under the assumption that i € {1,2,3} and 1<j<n
throughout the proof:

Case 1. When m =3, then the LRNs of G are LR(a, j) =V(g)—{a{+1, {+2} and
LR(al l+1) = {al,alﬂ} Moreover, |LR(a, ])| =3n—-1, |LR(al 1+1)| =2 and X =
Ul 1j=1 LR(al l+1) =V (G) —{a,}, which implies that |X| = 3n. For a > =, define Y:V(G) -
[0,1] as

A ifve {ai,aé}
Y@)=4{1-1, ifv=ad]
0, ifv=a,.

Since for all e € G, Y(LR(e)) = 1, therefore Y is an LRF of G. Similarly, the function
¢:V(G) — [0,1] defined as

1
P =120 TVEX
0, ifveX
is also an LRF with ¢(LR(e)) =1 for each e € G. Furthermore, if there exists a mapping
g:V(G) — [0,1] such that g(v) < ¢Y(v) or g(v) < ¢p(v) and g(v) # Y(v) g(v) # ¢(v) for at
least one v € V(§G), then g does not remain as an LRF of G. Consequently, the LRFs 1 and ¢ are
minimal LRFs. Now consider: || = X eq (Y(v)) = Z?':nl'j:l 1/)(a{) =n(1+21) and |¢p| =

3n

Sveg W) = Tyex @) = |X|7 =21 such that || < 1| as @ >~ Thus, ¢ is a minimal
LRF of minimum ||, which implies that = < dimy(G).

On the other hand, G has LRs of two types, LR(a, ]) and LR(al l+1) with |LR(aO ])|
3n—1 and |LR(alal,))| =2 respectlvely Additionally, |LR(aO a)nX|=|LR(alal, )| =2.
Then by Lemma 1, dim¢(G) < Consequently, dims(G) ==

Case 2. Whenm = 4, then the LRNs of J9, , are of two types LR(a, ]) =V(G) — {a

i-1’ l+1}
and LR(al l+1) = {al val,al,, l+2} with cardinalities nm — 1 and 4 respectively. Let us
assume that a, € [0,1] for 1 < p <4 such that Z§=1 a,=1and a; < a, <az <a,. Let us
define the function yY: V(G) — [0,1] as Y (a,) = 0 and

aq, ifi = 1(mod4)

as, ifi = 2(mod4)

as, ifi = 3(mod4)

Qy, ifi = 0(mod4).

Y(a)) =
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Moreover, if m = 1(mod4), then 1/)(afn) = a,; if m = 2(mod4), then 1/)(afn) = a,and

1/)(afn_1) = a3 ; and if m = 3(mod4), then 1/)(afn) =aq,, 1/)(afn_1) = a3 and 1/)(afn_2) =a
Since for each e € G, Y(LR(e)) =1, therefore, Y is an LRF of . Similarly, the function
¢:V(G) - [0,1], defined as

qb(v):%’ ifveX’
0, ifveX
is also an LRF, where X =U LR(al i +1) Furthermore, the LRFs 1 and ¢ are minimal LRFs
because, if g:V(G) — [0,1] such that g(v) < ¢Y(v) or g(v) < ¢(v) and g(v) # Y(v) or g(v) #
¢ (v) for at least one v € V(G), then g does not remain as an LRF of G. Now by these minimal
LRFs, we have either [¢)| = X,eqg (W(v)) = % -1 Y(ap) = Lor || = —n+ B and |p| = %
where § € {ay, a4 + a3, a4 + a3 + a,}, which implies that |¢| < |1,l)|. Thus, 2= < dim¢(G).
Additionally, |LR(a, j)| >mn—1>4, |LR(al H_1)| =4 and |LR(al 1+1) nZ| >4,
where Z =U LR(al l+1) Therefore, by Lemma 1, dim¢(G) < ™% Thus, dims(G) = —
Consequently, from both of the cases, the proof is complete.
Lemma 3. LetG=JK withm=>4,n>1,k>2and k = 0(mod2) be a generalised n-level
gear network. Then for each e € G,
1.2k + 4 < |LR(e)|,
2. |LR(e) N X| = |LR(e™)|, where X =U {LR(e*):|LR(e*)| = 2k + 4} fore™ € E(G).

Proof: 1. There are eight types of LRNs of G:
Forl1<i<m,1<j<nandk =2,

LR(a,al) =V(G) - {béﬂj,bgm‘l},
Jpi ) — _)pt
LR(albi ;) =V(9) {b§+z,j}’

LR(a]bH'm 1) — V(g) _ {b}i(+71n71}’
7_ i

w‘
w‘

i i i+1 l+m 1. < < < < - < <
LR (b;jb%lj) {al, ol bl bt b1 s IS k1< s <o+ o< x <k

For k > 4,

. . k
i bl _
R (oh, o) = V@)~ folunt 1 2723

. k
LR (bk bi+2'j> =V(G) — {a b}”,— +1<x< k}

5+1,j 5

andfork26and1ShSk;4
o) =0~ )

LR(bk bi )V(g)—{bh,}

5th+1j S+h+2,]
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The cardinalities of all the aforementioned LRNs are listed in Table 1. Accordingly,
|LR(e)| = 2k + 4 Ve € E(G).

2. We have |LR(béjbi;;+1j)| < LR(e) for each e € G (refer to Table 1). Let us take X =
27 207
Uit 1j=1 LR(bk bk ) =V(G) — {a,} with |[X| = mn(1 + k). Now

ILR(e) n X| = [LR(e) N (V(G) — {a, DI
= |LR(e)|
aaaaa > (2k + 4)aa by part (1)
= |LR(e")|
This completes the proof.

Table 1. Cardinalities of LRN sets of n-level gear graph

LR Cardinality
LR(b. bt _
( ;1 §+1,j) 0(—2k+4-
LR(a,a]) V@l-22a
LR (b’:‘_L bé) and LR(b§+1,jb§+2,j) V@I -——2a
LR(a’bl 1) and LR(a’b‘*m 1 V)| -1=>a

LR(b}, ;bj,,1 ;) and LR (bi h+1]b;;;+h+2'j) V| -12a

Theorem 2. Form >3,k > 1andn > 1, if G = J , is a generalised n-level gear network, then

mn(1+ k) £l = 0(mod2
dimy(G) ={ 2k 4 @ \fk=0(mod2)
1, if k = 1(mod2)
Proof: Let us consider the following cases.
Case 1. When k = 0(mod2), let us define a function g: V(G) — [0,1] with the conditions of

O<a<—— e 1<L],l<mnk—1andl=l(modZ)asfollows

(g ifveiabiy
g(v) = () = { 1

L e iveld,bit)

k 0, ifv=a,

Since |LR(e)| = (2k + 4) for cach e € E(G) (by Lemma 3), therefore (LR(e)) =

2k+4 1
ZveLR(e) g(v) = 2 (2k+4 @+ 2k+4

define Y: V(G) — [0,1] such that

—a) =1, which implies that g is an LRF. Now let us
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1
—_— ifveX
pw)={2k+4" "7,
0, ifreX
where X =U {LR(e):|LR(e)| = 2k + 4a foralle € G. Let us consider W(LR(e)) =
ZUELR(e) Yw) = ZUELR(e)nX 2k+a = [LR(e) N X|_ ILR(e)| 2kia = = 1.

This shows that ¢ is an LRF. Now if we have f:V(G) — [0,1] such that f(v) < g(v) and f(v) <
Y(w) Vv e g, then f(LR(e)) < 1, for |LR(e)| = 2k + 4 = f is not an LRF. Consequently both
the LRFs g and 1 are minimal. Now we discuss the following two possibilities.

mn(1+k) 1 mn(1+k) i _ mn(1+k) _
() Ifmiseven, then |g| = )G+ O+ G-~ =— = [].
(1+k)
(i) If m is odd, then |g| = (m;lkH ) (2k+4 +a)n > |1/)|. Thus,

mn(1+k)

T < dimlf(g).
Moreover by Lemma 3, for each e € G, |LR(e)| = 2k + 4 and |[LR(e) N X| = 2k + 4,
where X =U {LR(e): |LR(e)| = 2k + 4} for e € E(G). Therefore, Lemma 1 shows that
| X1 mn(1 + k)
dimy(9) < 3 3= 2k 2

mn(1+k)
2k+4
Case 2. When k = 1(mod2), then G is a bipartite network containing no odd-length cycles.
Thus by Lemma 2, dim;¢(G) = 1.

Consequently, from both of the cases, the proof is complete.

Now from above two equations, dim;¢(G) =

EXACT CLOSED-FORM LFMD FOR GENERALISED P-LEVEL HELM NETWORK

The significant findings on the LFMD of the generalised n-level helm network are presented
in this section.

Theorem 3. Let us consider that G = Hf;l'o be a generalised p-level helm network. Then

3

7p, ifm=3
—_— i >
g ifm = 4.

Proof: We consider the following two cases for the proof of above results.

Case 1. When m = 3, then the LRNs of G are LR(aoaﬁ) =V(G) — {aﬁﬂ, a£+2,c,{+1, c,{+2},
LR(aﬁaﬁH) = {aﬁ, a£+1,c,{,c,{+1} and LR(aﬁc,{) =V(G), where 1<k<3and 1<j<p. In
addition, |LR(a,a;)| = 6p — 3,|LR(alal,,)| = 4,|LR(a,, c,i)| =6p+1landZ = Uk 1j=1
LR(aﬁaﬁH) = V(G) — {a,}, which implies that |Z| = 6p.

For a > i, B> i and 1 < j < p, we define a mapping Y: V(G) — [0,1] as

(a, ifv e {a{, aé}

1—aq, ifv = aé
Yw) =10, ifv=a,

B, ifve {c{,cg}

\1-8, ifv=c]
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Since V. e€ G, Y(LR(e)) =1, therefore Y is an LRF of §. Similarly, the function
¢:V(G) - [0,1], defined as

1 :
¢(v)=z, lfUEZ’

0, ifveZ
is also an LRF with ¢ (LR(e)) = 1 for each e € G. Additionally, if g: V(G) — [0,1] such that
gw) < yY)orgw) < ¢p() and g(v) # Y(v) or g(v) # ¢p(v) for at least one v € V(G), then g
does not remain as an LRF of . Consequently, the LRFs iy and ¢ are minimal. Now let us consider
|1l’| = Zveg (l,[)(‘l?)) Zk 1,j=1 l,[)(ak) + Zk 1,j=1 ¢(C}£) = p(z +a +.B) and

3 1
|| = Zveg W) = Lvez (V) = IZI =" such that || < [ asa > .

Thus, ¢ is a minimal LRF of minimum |¢|, which implies that 3—p < dimys(G).

On the other hand, G has LRs of three types, i.e. LR(aO ak) LR(a aiﬂ) and LR(a ck) with
|LR(aoak)| =6p—3, |LR(a ai+1)| = 4 and |LR(a ck)| = 6p + 1 respectively. Additionally,
|LR(aoak) nZ| > |LR(a ai+1)| =4 and |LR(a c,i) Nzl = |LR(a ai+1)| = 4. Then by Lemma

1, dimys(G) < —. Consequently, dim;¢(G) = 3—p

Case 2. When m > 4, then the LRNs of Hp mo are of three types, i.e. LR(aoak) =V(G) —

j j j _ j j j joJ j j
{ak+1'ak+m 1 Chr1r Cerm—13 > LR(akak+1) {ak' ak+1’ak+2'ak+m v Ck'ck+1'ck+2'ck+m 1} and

LR(a c,i) =V (G) with |LR(aoak)| =2mp — 3, |LR(a ai+1)| = 8 and |LR(a c,i)| =2Zmp+1,
where 1 <k<mand1<j<p.

Let us assume that a,, B, € [0,1] for 1 < p < 4 such that Zp =1 Ap = =1 Bp =
A<, <az <a, & P11 <Py <P <P Forl<j<p, we define a mapplng 1/).V(g) [0,1]
as

(a4, if k = 1(mod4) (B1, if k = 1(mod4)
o lay,  ifk =2(mod4) B ifk = 2(mod4)
Y(ap) =0,9(al) = 40(3, if k = 3(mod4) and Y(c}) = 4,83, if k = 3(mod4).

toq, if k = 0(mod4) Ikﬁ4, if k = 0(mod4)

Moreover, if m = 1(mod4), then w(a{n) = a,; if m = 2(mod4), then (afn) =,
and 1/)(afn_1) = a3; and if m = 3(mod4), then 1/)(afn) = ay, 1/)(afn_1) = a3 and 1/)(afn_2) = a,.
Since for each e € G, Y(LR(e)) = 1, therefore Y is an LRF of G. Similarly, ¢:V(G) — [0,1],
defined as

qb(v):{%’ ifveZ’

0, ifveZ

is also an LRF with ¢ (LR(e)) = 1V e € G, where Z =U LR(a ak+1) forl1 <k,j<m,p.
Furthermore, the LRFs ¢ and ¢ are minimal LRFs because, if g:V(G) — [0,1] such that

g) <yY)org) < ¢p() and g(v) # YP(v) or g(v) # ¢p(v) for at least one v € V(G), then g

does not remain as an LRF of . Now by these minimal LRFs, we have either || =
mn

Yoeg W) === [Zpo1 Y(ap) + Zpoys Y(B)] =7~ or [Yl=""+y, +y, and |¢p| ="~
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where y; € {a, a4 +as, a4 +az + ay} and y, € {B4, Bs + B3, B4 + B3 + [2}, which implies that
|¢| < || Thus, =F < dimyp(§).

Add1t1onally, |LR(aoak)| =2mp—3>8, |LR(akak+1)| = 8 and |LR(akck)| =2mp +
1>8, |LR(akak+1) NZ| = 8, where Z =V LR(akak+1) for 1 < k,j < m,p. Therefore by Lemma
1, dimys(G) ST' Thus, dim;f(G) = Tn. Consequently, from both the cases, the proof is
complete.

Lemma 4. LetG = Hf;l'q withm>3,p>1,q =2 and k = 0(mod2) be a generalised p-level

helm network. Then for each e € G,
1.2g 4+ 6 < |LR(e)],
2. |LR(e) N Z| = |LR(e")|, where Z =U {LR(e*):|LR(e")| = 2q + 6} for e* € E(G).

Proof: 1. There are nine types of LRNs of G:
For1<K<m,1<j<P&q=2,

LR(aoaﬁ) =V(G) — {bé bk+m 1}
LR(aﬁ —2t- 31) 4(®); _{bq+2]}
i) v -],

LR(akck) V(G)
o . ¢ q
LR(bé‘J.bé‘HJ,) = {a], al,,, b, i bl el o] s1<i<ql<z< S+tLo<x<q}

Forq = 4,
LR(bE, bE) = V(§) = (a1, byl 1 S 2,

LR (bq qu) V() —{al, bt it 41 < x < q);

and forq > 6and 1 <h <2,

LR(bf: i ) = V(@) = b8, 53,

+h+2 1) =V - {bh,j}'

The cardinalities of all the aforesaid LRNs are listed in Table 2. According to this,
|LR(e)| = 2q+6Ve€E().

2. We have |LR(b§jb§+1J.)| < LR(e) for each e € G (refer to Table 2). Let us consider Z =
27 20 7

LR (bq+h+1]bg

Ut j=1 LR(béﬁjbé‘m)) =V (G) — {a,} with |Z| = mp(q + 2). Now

ILR(e) N Z| = |LR(e) n (V(G) — {a, DI
= |LR(e)|
aaaaa = (2q + 6)aa by (1)
= |LR(e")|.
Hence the proof is complete.
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Table 2. Cardinalities of LRN sets of p-level helm graph

LR Cardinality
LR(bé}.bé‘HJ) a=2q+6
LR(a,a;) VOI-22a
LR(bY., b8 ), LRQBE,, B, ) v@I-EHza
LR(albf_5e_s), LR(ajbktm1 V(Q|-1=a
LR(thbhHJ) LR(bq+h+1]bq+h+21) VG|l -1za
LR(alc)) V(G)

Theorem 4. Form >3,gq=>1andp > 1,1fG = Hf;l'q is a generalised p-level helm network, then
mp(q +2)

dimi;(§) =4 2q+6
1, if g = 1(mod2).

if g = 0(mod2)

Proof: Let us consider the following cases.
Case 1. When g = 0(mod2), then we define g:V(G) — [0,1] with the conditions of 0 < a <

J,l<mp,qg—1land k = 1(m0d2) as follows:

a, ifve€{al,bf;)

gw) =

; j k+1 4"
-a, ifv € {ay,, biy1,}

/—__A__

0, ifv=a,

Since |LR(e)| = (Zq + 6) for each e € E(G) (by Lemma 4), therefore g(LR(e)) =
Yverr(e) 9(V) = (q + 3)(2 Tt
define another mapping ¥: V(G) — [0,1] such that

! ifveZz
Yw) ={2q+6 ves
0, ifveZ
where Z =U {LR(e)' ILR(e)| = 2q + 6aand ae € G}. Consider Y(LR(e)) = Lyerre) Y (V) =
1 . .
ZveLR(e)nZ " |LR(e)|2q? > 1. This shows that 1 is an LRF. Let us

consider that if f:V(G) — [0,1] such that f(v) < g(v) and f(v) < Y (v) for each v € G, then
f(LR(e)) < 1,for [LR(e)| = 2q + 6 = f is not an LRF. Consequently, both the LRFs g and y are
minimal LRFs.

—a) =1, which implies that g is an LRF. Now we

Now we discuss the following two possibilities.

. . mp(q+2) 1 mp(q+2) 1 mp(q+2)
(i) If m is even, then |g| = (T)(zq+6 +a)+ (—— )(zq? —a) = 2046 = [¢].
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1
2q+6

(i) If m is odd, then |g| = (mP(Q+2)) +(

2046 + a)p > |Y|. Thus,

S < dimy (§).

2q+6
Moreover, by Lemma 4,V e € G, |LR(e)| =2q+ 6 and |[LR(e) NZ| = 2q + 6, where Z =U
{LR(e):|LR(e)| = 2q + 6} for e € E(G). Therefore Lemma 1 shows that
, 1Z| _ mp(q+2)
dimp(§) < 505 = 2q+6

mp(g+2)
2q+6

Case 2. When g = 1(mod2), then § is a bipartite network with no cycle of odd length. Thus, by
Lemma 2, dim;¢(G) = 1.

Consequently, from both of the cases, the proof is complete.

Now from the above two equations, dim,;f(G) =

APPLICATION: EMERGENCY EVACUATION OPTIMISATION

In this section we present an application of the obtained results. To illustrate these findings,
we consider an emergency escape route within a building. We focus on one floor that includes
stores, restrooms, food corners, juice shops, ice cream stalls, lifts and escalators as depicted in
Figures 3 and 4. This floor layout corresponds to the network J¢,. From Theorem 3, the LFMD of

]g'z is calculated as % = 5, which indicates that complete evacuation in the event of an emergency

will take approximately five minutes.

This study demonstrates how computing the LFMD can greatly enhance the design and
optimisation of network structures such as emergency exit plans. The findings provide valuable
insights for improving network efficiency and guide decision-making in practical applications,
particularly in safety and communication systems.

i il

Ty,
a
e
&
B

Floor Plan of Mall Processing

Figure 3. Emergency exit plan model (Left: simple model and Right: processing model with links
(edges))
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2 g2 g4 p4 p5 pl pl 36
a? Shops b2,lv bﬁ.h by, bigs 034, b3.2, b3, b4,
b2y, b2y, B2y, bS,, b
1.2 V4.2, 939, 039, U35
Stairs a3, a3y a3, a3, asas
Lift g, bjz
e i [ [ o G Ui Ui Bren oo, (91
a? L E 1,079 930151 V4015) 93.2>11941251.01231 042
b, Washrooms e e Utony Loy Lstoy Uiy
. 12 \ Cleaning room 8,
‘ Juice corner Ko Ui 5
b 22 3,1> 01,2, U39
2,2
- ‘ Playing area A
b’ g s
12 .
Grocery store b3,
] 3 3 3 3 5
p Restaurants by s by, b3y, by, b3,
Book store b3,
5 pa
‘ Gym b3, b3
Ice-cream corner | b3 ,, b5,
2
‘ Escalators aazNazta; Na 0.
(a) (b)

Figure 4. (a) Emergency exit plan network (converted from Figure 3); (b) Corresponding vertices-
labelling

CONCLUSIONS

In this work LFMDs of two non-planar networks have been computed in the form of exact
values rather than their lower and upper bounds. This study is summarised as follows:

e Tables 1 and 2 show the cardinalities of LRNs of generalised n-level gear and p-level helm
networks.

e In the case of bipartite networks, both the non-planar networks have the same LFMD
which is exactly 1 with no impact from the addition of pendant vertices.

e In the case of non-bipartite networks, by taking the same number of levels n, the same
number of vertices adjacent to the central vertex at each level (m), and the same
subdivided vertices on each cycle edge k, we have dim;(Hp, ) — dimlf(],’ﬁl,n) =

> 0, which implies that dim;f(Hp, ;) > dimlf(],’;,n). This shows that the

mn
2(k+2)(k+3)
addition of pendant vertices enhances the LFMD for the helm network.

e For k — oo, the asymptotic behaviour shows that both the networks have the same LFMD.

Thus, the numerical value of this error approaches 0 as k approaches infinity.

This study’s outcomes advance the theoretical understanding of fractional dimensions in
symmetric networks while providing practical insights for network design and optimisation. The
findings are particularly relevant to applications in communication networks, transportation systems
and facility layout planning, where efficient node distinguishability is crucial.
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