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Abstract: Fractional versions of graph-theoretic invariants have expanded their applicability 
to diverse fields such as connectivity, scheduling, assignment and operational research. 
Building on this extension of fractional graph theory, we introduce the local fractional metric 
dimension (LFMD) of non-planar networks. For a given network G, the local resolving 
neighbourhood LR(uw) of an edge uw is defined as the set of vertices in G that distinguish 
between u and w. A function ρ:V(G)→[0,1] is considered a local resolving function if 
ρ(LR(uw))≥1 for every edge uw in G. The LFMD of G is then defined as the minimum value 
of ρ(V(G)) taken over all possible local resolving functions. In this paper we compute the 
exact values of the LFMD for two non-planar, structurally symmetric network families—
generalised gear and generalised helm networks—each constructed with a finite number of 
levels and characterised by distinct types of vertices. We compare the results for both 
networks and analyse the impact of pendant vertices in the context of bipartite and non-
bipartite structures. Furthermore, we investigate the asymptotic behaviour as the order of the 
networks approaches infinity and present an emergency exit planning scenario to illustrate the 
practical significance of our findings. 

Keywords: fractional metric dimension, resolving neighbourhood sets, non-planar 
networks, optimisation problem 
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INTRODUCTION 
 

Graph theory has become a foundational tool for analysing complex network systems across 
disciplines, from biological networks to distributed computing. The core of many network analysis 
problems is vertex identification—determining unique node positions based on structural attributes 
[1]—a challenge formally addressed by the metric dimension (MD). Introduced by Slater [2] and 
Harary and Melter [3], the MD defines the minimal set of reference vertices needed to locate all 
nodes uniquely via distance vectors. Slater’s motivation stemmed from intruder detection in security 
networks while Harary and Melter approached it from a graph-theoretic perspective on structural 
uniqueness. Chartrand et al. [4] later characterised extremal MD values for trees and unicyclic 
graphs. The MD’s operational relevance spans various fields including robotic path planning [5] 
where landmark-based navigation algorithms exhibit O(n³) complexity for tree networks, and 
pharmaceutical chemistry [4] where resolving sets aid molecular structure identification. Khuller et 
al. [5] further demonstrated its practical value in robotic navigation, while Sebő and Tannier [6] 
applied it to combinatorial optimisation frameworks. Studies on structured graphs further advance 
the MD: Liu et al. [7] showed constant MD in Toeplitz graphs under certain parameters; Ali et al. 
[8] proved that three vertices resolve all nodes in Möbius ladders; and Imran et al. [9] computed the 
exact MD for generalised gear networks. These results underscore the role of symmetry and 
topology in network resolvability. Extensions such as fault-tolerant MD [10], mixed MD [11] and 
edge-metric MD [12-14] have since emerged to address robustness and diverse network scenarios. 

The transition to the fractional metric dimension (FMD) marks a key theoretical 
advancement, overcoming limitations of the integer-based formulation. Currie and Ollermann [15] 
introduced continuous vertex weighting, broadening the resolving-set paradigm for wider 
optimisation applications. Arumugam and Mathew [16] formalised the FMD by establishing bounds 
(1 ≤ dim_f(G) ≤ |V(G)|/2), with paths and complete graphs achieving the extremes. This fractional 
extension brought three major advancements: (1) enabling probabilistic modelling through vertex 
weighting [15]; (2) defining FMD behaviour within formal bounds [16]; and (3) expanding its 
applicability to complex domains including chemical graph theory [17] where fractional weights 
model probabilistic molecular interactions, and network design [18] where hierarchical products are 
assessed using FMD metrics. Feng et al. [19] also analysed the FMD in vertex-transitive and 
Cartesian product graphs, resolving key open problems in the field. Additional studies extended the 
FMD to Jahangir graphs [20] and comb product graphs [21], highlighting its adaptability in 
composite networks. Mufti et al. [22] further contributed by applying edge MD to barycentric 
subdivisions of Cayley graphs, expanding the scope to algebraic structures and symmetric networks. 
Collectively, these contributions deepen the understanding of both the MD and the FMD in complex 
and symmetric graph structures. 

Javaid et al. [23] advanced the FMD framework by introducing the local fractional metric 
dimension (LFMD), which focuses on distinguishing adjacent vertices via local resolving function 
(LRF) η:V(G)→[0,1], requiring the sum over each edge’s local neighbourhood to exceed one. The 
LFMD is particularly suited to applications involving local interactions, such as fault detection in 
sensor networks [24] and emergency exit planning [25]. Javaid et al. [26] proved that all connected 
bipartite graphs satisfy ݀݅݉௟௙(࣡), providing a clean parity-based characterisation, while Aisyah et 
al. [27] analysed the LFMD in corona product graphs. Recent studies have examined LFMD in 
structured graphs. For example, Ahmed et al. [28] established sharp bounds for modified prism 
networks and proved that their LFMD remains bounded as the network size increases due to edge 
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transitivity, and  Ali et al. [29] showed convergence behaviours through constructive techniques for  
rotationally heptagonal symmetrical graphs. Further studies on line networks derived from wheels 
and prisms have explored LFMD bounds using asymptotic analysis and 3D modelling [30]. Efforts 
by Zafar et al. [25] on wheel networks and Ali et al. [31] on fault-tolerant designs have started 
extending LFMD analysis into more complex topologies. Despite these advances, existing research 
remains largely focused on planar graphs and often provides only bounds rather than exact LFMD 
values, especially in non-planar hierarchical networks. While the LFMD has been explored in 
several graph operations including prism-related and corona product structures [24-27], exact 
computations for structurally rich and non-planar networks remain limited. Javaid et al. [23] and Ali 
et al. [31] also contributed by characterising the LFMD behaviour in locally dense networks where 
specific substructures and symmetry give rise to predictable patterns and measurable variations in 
resolvability, distinguishing LFMD from classical MD. 

Recent studies have further expanded the scope of LFMD. Fatima et al. [32] computed exact 
LFMD values for a non-planar subclass derived from subdivided wheel graphs, demonstrating how 
fractional techniques capture subtle structural variations. However, their analysis was confined to a 
single network family and lacked broader consideration of hierarchical structure, symmetry, 
bipartiteness or asymptotic behaviour. Similarly, Javaid et al. [33] examined generalised sunlet 
networks providing bounds and selected exact values but without addressing complex topologies or 
convergence behaviour. Ali et al. [34] analysed LFMD in rotationally symmetric planar graphs 
using linear programming techniques, offering asymptotic insights but limiting their scope to low-
order planar structures without deriving closed-form generalisations.  

This study addresses identified research gaps by investigating generalised gear and helm 
networks, which are two non-planar symmetric families. The objectives are: (1) to derive exact 
closed-form LFMD expressions; (2) to quantify the impact of pendant vertices and bipartite 
structures; (3) to analyse asymptotic behaviour as network complexity increases; and (4) to 
demonstrate practical relevance through an emergency evacuation optimisation scenario. By 
integrating rigorous theoretical modelling with applied validation, this work offers a comprehensive 
advancement in both the theory and application of FMDs in complex network systems. 

 
BASIC NOTIONS AND CONSTRUCTION OF NON-PLANAR NETWORKS 
 

Throughout this study, it is assumed that ࣡ = (ܸ(࣡),  is a finite, simple (without loops ((࣡)ܧ
or parallel edges) and connected network, where ܸ(࣡) and ܧ(࣡) ⊆ ܸ(࣡) × ܸ(࣡) are sets of vertices 
and edges respectively with cardinalities |ܸ(࣡)| (order) and |ܧ(࣡)| (size). For any two vertices 
,ݔ ݕ ∈ ܸ(࣡), the distance ݀(ݔ,  is defined as the number of edges along the shortest path between (ݕ
them [35, 36].  

For an edge ݁ = ܾܽ ∈  the local resolving neighbourhood set (LRN) is defined as ,(࣡)ܧ
(݁)ܴܮ = ݑ} ∈ ܸ(࣡): ,ݑ)݀ ܽ) ≠ ,ݑ)݀ ܾ)}. A function ߰: ܸ(࣡) → [0,1] is an LRF if ߰(ܴܮ(݁)) ≥ 1 
for all ݁ ∈ ((݁)ܴܮ)߰ where ,(࣡)ܧ = ∑௩∈௅ோ(௘)  Moreover, an LRF ߰ is called a minimal LRF .(ݒ)߰
if there exists a mapping ݃: ܸ(࣡) → [0,1]  such that ݃(ݒ) ≤ (ݒ)߰  for all ݒ ∈ ܸ(࣡)  and ݃(ݒ) ≠
ݒ for at least one (ݒ)߰ ∈ ܸ(࣡) and ݃ is not an LRF of ࣡ . Thus, the LFMD of ࣡  is defined as 
݀݅݉௟௙(࣡) = ݉݅݊{|߰|, ߰ being a minimal LRF of ࣡} [23]. The most commonly utilised results in 
the development of the main findings are outlined below:   
Lemma 1 [26]. For any integer value ߙ ≥ 2 and LRNs, i.e. ܴܮ(݁) of an edge of a connected 
network ࣡, assume that |ܴܮ(݁)| ≥ ݁ For all .ߙ ∈ (݁)ܴܮ| and (࣡)ܧ ∩ ܹ| ≥   then ,ߙ
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1 ≤ ݀݅݉௟௙(࣡) ≤
|ܹ|

ߙ . 

Here, ܹ denotes the union of all the LRNs of order ߙ.  
Lemma 2 [26].  For any connected and bipartite network ࣡, the LFMD is always unity, i.e.  

݀݅݉௟௙(࣡) = 1. 
The following present the constructions of generalised ݊-level gear and generalised ݌-level 

helm networks [31]. 
 

Generalised ۼ-Level Gear Networks 
 

For an integer ݉ ≥ 3, each vertex of ݊ copies of the cycle network ܥ௠ is joined to form the 
݊-level wheel network. Additionally, it becomes a generalised ݊-level gear network ܬ௠,௡

௞  by addition 
of ݇ ≥ 1 vertices to every edge of each cycle. Thus, the vertex and edge sets of ܬ௠,௡

௞  are given 
by ܸ(J୫,୬

୩ ) = {ܽ௢ , ܽ௜
௝ , ௟ܾ,௝

௜ ; 1 ≤ ݅, ݆, ݈ ≤ ݉, ݊, ݇}  and ௠,௡ܬ)ܧ
௞ ) = {ܽ௢ܽ௜

௝; 1 ≤ ݅, ݆ ≤ ݉, ݊} ∪

{ ௟ܾ,௝
௜

௟ܾ,௝
௜ାଵ; 1 ≤ ݅, ݆, ݈ ≤ ݉, ݊, ݇} ∪ {ܽ௜

௝ܾଵ,௝
௜ ; 1 ≤ ݅, ݆ ≤ ݉, ݊} ∪ {ܽ௜

௝ܾ௞,௝
௜ ; 1 ≤ ݅, ݆ ≤ ݉, ݊}  respectively, 

where |ܸ(J୫,୬
୩ )| = ݊݉(1 + ݇) + 1 . The vertices of ܬ௠,௡

௞  can be classified into three types: the 
central vertex ܽ௢, major vertices ܽ௜

௝ and minor vertices ௟ܾ,௝
௜ . A generalised ݊-level gear network ܬ଺,ଷ

ଶ  
is illustrated in Figure 1(a).  

  
Generalised ࡼ-Level Helm Networks 
 

The generalised ݌-level helm network (ܪ௠,௤
௣ ) is formed by adding a pendant vertex to each 

vertex of every cycle in the generalised ݊-level gear network [31]. Thus, the vertex set and edge sets 
of ܪ௠,௤

௣  are given by ܸ(ܪ௠,௤
௣ ) = {ܽ௢ , ܽ௞

௝ , ௟ܾ,௝
௞ , ܿ௞

௝; 1 ≤ ݇, ݆, ݈ ≤ ݉, ,݌ {ݍ  and ܪ)ܧ௠,௤
௣ ) = {ܽ௢ܽ௞

௝ ; 1 ≤

݇, ݆ ≤ ݉, {݌ ∪ { ௟ܾ,௝
௞

௟ܾ,௝
௞ାଵ; 1 ≤ ݇, ݆, ݈ ≤ ݉, ,݌ {ݍ ∪ {ܽ௞

௝ ܾଵ,௝
௞ ; 1 ≤ ݇, ݆ ≤ ݉, {݌ ∪ {ܽ௞

௝ ܾ௤,௝
௞ ; 1 ≤ ݇, ݆ ≤

{݌ ∪ {ܽ௞
௝ ܿ௞

௝; 1 ≤ ݇, ݆ ≤ ݉, ௠,௤ܪ respectively. The order of {݌
௣  is 2)݉݌ + (ݍ + 1. A generalised ݌-

level Helm network ܪସ,ଶ
ଷ  is illustrated in Figure 1(b). 

 

  
(a) (b) 

Figure 1. Representation of generalised (a) ࢔-level gear network ࡶ૟,૜
૛  and (b) ࢖-level helm network 

૝,૛ࡴ
૜  
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EXACT CLOSED-FORM LFMD FOR GENERALISED N-LEVEL GEAR NETWORK 
 

The significant findings on the LFMD of the generalised ݊-level gear network are included 
in this section.  
Theorem 1.  Let ࣡ ≅ ௠,௡ܬ

଴  be a generalised ݊-level gear network. Then  

݀݅݉௟௙(࣡) = ൞

3݊
2 , ݂݅ ݉ = 3

݉݊
4 , ݂݅ ݉ ≥ 4

. 

Proof: Consider the following cases under the assumption that ݅ ∈ {1,2,3}  and 1 ≤ ݆ ≤ ݊ 
throughout the proof: 

Case 1. When ݉ = 3,  then the LRNs of ࣡  are ܴܮ(ܽ௢ܽ௜
௝) = ܸ(࣡) − {ܽ௜ାଵ

௝ , ܽ௜ାଶ
௝ }  and 

௜ܽ)ܴܮ
௝ܽ௜ାଵ

௝ ) = {ܽ௜
௝ , ܽ௜ାଵ

௝ } . Moreover, |ܴܮ(ܽ௢ܽ௜
௝)| = 3݊ − 1 ௜ܽ)ܴܮ| ,

௝ܽ௜ାଵ
௝ )| = 2  and ܺ =

⋃ଷ,௡
௜ୀଵ,௝ୀଵ ௜ܽ)ܴܮ

௝ܽ௜ାଵ
௝ ) = ܸ(࣡) − {ܽ௢}, which implies that |ܺ| = 3݊. For ߙ > ଵ

ଶ
, define ߰: ܸ(࣡) →

[0,1] as  

(ݒ)߰ = ൞
ݒ if    ,ߣ ∈ {ܽଵ

௝ , ܽଷ
௝}

1 − ݒ if    ,ߣ = ܽଶ
௝

0,    if ݒ = ܽ௢ .
 

 
Since for all ݁ ∈ ࣡ ((݁)ܴܮ)߰ , ≥ 1 , therefore ߰  is an LRF of ࣡ . Similarly, the function 

߶: ܸ(࣡) → [0,1] defined as 

f(x)(ݒ)߶ = ൝
1
2 , if ݒ ∈ ܺ

0, if ݒ ∈ ܺ
 , 

 
is also an LRF with ߶(ܴܮ(݁)) ≥ 1  for each ݁ ∈ ࣡ . Furthermore, if there exists a mapping 
݃: ܸ(࣡) → [0,1]  such that ݃(ݒ) ≤ (ݒ)߰  or ݃(ݒ) ≤ (ݒ)߶  and ݃(ݒ) ≠ (ݒ)߰ (ݒ)݃  ≠ (ݒ)߶  for at 
least one ݒ ∈ ܸ(࣡), then ݃ does not remain as an LRF of ࣡. Consequently, the LRFs ߰ and ߶ are 
minimal LRFs. Now consider: |߰| = ∑௩∈࣡ ((ݒ)߰) = ∑ଷ,௡

௜ୀଵ,௝ୀଵ ߰(ܽ௜
௝) = ݊(1 + (ߣ  and |߶| =

∑௩∈࣡ ((ݒ)߰) = ∑௩∈௑ ((ݒ)߰) = |ܺ| ଵ
ଶ

= ଷ௡
ଶ

  such that |߶| < |߰|  as ߙ > ଵ
ଶ
.  Thus, ߶  is a minimal 

LRF of minimum |߶|, which implies that ଷ௡
ଶ

≤ ݀݅݉௟௙(࣡). 

 On the other hand,  ࣡ has LRs of two types, ܴܮ(ܽ௢ܽ௜
௝) and ܴܮ(ܽ௜

௝ܽ௜ାଵ
௝ ) with |ܴܮ(ܽ௢ܽ௜

௝)| =
3݊ − 1  and |ܴܮ(ܽ௜

௝ܽ௜ାଵ
௝ )| = 2  respectively. Additionally, |ܴܮ(ܽ௢ܽ௜

௝) ∩ ܺ| ≥ ௜ܽ)ܴܮ|
௝ܽ௜ାଵ

௝ )| = 2 . 
Then by Lemma 1, ݀݅݉௟௙(࣡) ≤ ଷ௡

ଶ
. Consequently, ݀݅݉௟௙(࣡) = ଷ௡

ଶ
. 

Case 2.  When ݉ ≥ 4, then the LRNs of ܬ௠,௡
଴  are of two types: ܴܮ(ܽ௢ܽ௜

௝) = ܸ(࣡) − {ܽ௜ିଵ
௝ , ܽ௜ାଵ

௝ } 
and ܴܮ(ܽ௜

௝ܽ௜ାଵ
௝ ) = {ܽ௜ିଵ

௝ , ܽ௜
௝ , ܽ௜ାଵ

௝ , ܽ௜ାଶ
௝ } , with cardinalities ݊݉ − 1  and 4  respectively. Let us 

assume that ߙ௣ ∈ [0,1]  for 1 ≤ ݌ ≤ 4  such that ∑ସ
௣ୀଵ ௣ߙ = 1  and ߙଵ < ଶߙ < ଷߙ < ସߙ . Let us 

define the function ߰: ܸ(࣡) → [0,1] as ߰(ܽ଴) = 0 and 
  

߰(ܽ௜
௝) = ൞

,ଵߙ if ݅ ≅ (4݀݋݉)1
,ଶߙ if ݅ ≅ (4݀݋݉)2
,ଷߙ if ݅ ≅ (4݀݋݉)3
,ସߙ if ݅ ≅ .(4݀݋݉)0
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Moreover, if ݉ ≅ then ߰(ܽ௠ ,(4݀݋݉)1
௝ ) = ସߙ ; if ݉ ≅ then ߰(ܽ௠ ,(4݀݋݉)2

௝ ) = ସߙ and 
߰(ܽ௠ିଵ

௝ ) = ଷߙ ; and if ݉ ≅ (4݀݋݉)3 , then ߰(ܽ௠
௝ ) = ସߙ , ߰(ܽ௠ିଵ

௝ ) = ଷߙ  and ߰(ܽ௠ିଶ
௝ ) = ଶߙ . 

Since for each ݁ ∈ ࣡ ((݁)ܴܮ)߰ , ≥ 1 , therefore, ߰  is an LRF of ࣡ . Similarly, the function 
߶: ܸ(࣡) → [0,1], defined as  

(ݒ)߶ = ൝
1
4 , if ݒ ∈ ܺ

0, if ݒ ∈ ܺ
 , 

is also an LRF, where ܺ =∪ ௜ܽ)ܴܮ
௝ܽ௜ାଵ

௝ ).  Furthermore, the LRFs ߰  and ߶  are minimal LRFs 
because, if ݃: ܸ(࣡) → [0,1] such that ݃(ݒ) ≤ (ݒ)݃ or (ݒ)߰ ≤ (ݒ)݃ and (ݒ)߶ ≠ (ݒ)߰  or ݃(ݒ) ≠
ݒ for at least one (ݒ)߶ ∈ ܸ(࣡), then ݃ does not remain as an LRF of ࣡. Now by these minimal 
LRFs, we have either |߰| = ∑௩∈࣡ ((ݒ)߰) = ௠௡

ସ
∑ସ

௣ୀଵ (௣ߙ)߰ = ௠௡
ସ

 or |߰| = ௠௡
ସ

+ |߶| and ߚ = ௠௡
ସ

, 

where ߚ ∈ ,ସߙ} ସߙ + ,ଷߙ ସߙ + ଷߙ + |߶| ଶ}, which implies thatߙ ≤ |߰|. Thus, ௠௡
ସ

≤ ݀݅݉௟௙(࣡). 

Additionally, |ܴܮ(ܽ௢ܽ௜
௝)| ≥ ݉݊ − 1 > 4 ௜ܽ)ܴܮ| ,

௝ܽ௜ାଵ
௝ )| = 4  and |ܴܮ(ܽ௜

௝ܽ௜ାଵ
௝ ) ∩ ܼ| ≥ 4 , 

where ܼ =∪ ௜ܽ)ܴܮ
௝ܽ௜ାଵ

௝ ). Therefore, by Lemma 1, ݀݅݉௟௙(࣡) ≤ ௠௡
ସ

. Thus, ݀݅݉௟௙(࣡) = ௠௡
ସ

. 
Consequently, from both of the cases, the proof is complete. 
 
Lemma 3.  Let ࣡ ≅ ௠,௡ܬ

௞  with ݉ ≥ 4, ݊ ≥ 1, ݇ ≥ 2 and ݇ ≅ ݊ be a generalised (2݀݋݉)0 -level 
gear network. Then for each ݁ ∈ ࣡, 

1. 2݇ + 4 ≤   ,|(݁)ܴܮ|
(݁)ܴܮ| .2 ∩ ܺ| ≥ ܺ where ,|(∗݁)ܴܮ| =∪ :(∗݁)ܴܮ} |(∗݁)ܴܮ| = 2݇ + 4} for ݁∗ ∈   .(࣡)ܧ

 
Proof:  1. There are eight types of LRNs of ࣡:   
For 1 ≤ ݅ ≤ ݉, 1 ≤ ݆ ≤ ݊ and ݇ ≥ 2, 

൫ܽ௢ܽ௜ܴܮ
௝൯ = ܸ(࣡) − {ܾೖ

మାଵ,௝
௜ , ܾೖ

మ,௝
௜ା௠ିଵ}, 

൫ܽ௜ܴܮ
௝ܾଵ,௝

௜ ൯ = ܸ(࣡) − ቊܾ௞
ଶାଶ,௝
௜ ቋ, 

൫ܽ௜ܴܮ
௝ܾ௞,௝

௜ା௠ିଵ൯ = ܸ(࣡) − ቊܾ௞
ଶିଵ,௝
௜ା௠ିଵቋ, 

ܴܮ ቆܾ௞
ଶ,௝
௜ ܾ௞

ଶାଵ,௝
௜ ቇ = ൜ܽ௜

௝ , ܽ௜ାଵ
௝ , ௟ܾ,௝

௜ , ܾ௭,௝
௜ାଵ, ܾ௫,௝

௜ା௠ିଵ; 1 ≤ ݈ ≤ ݇; 1 ≤ ݖ ≤
݇
2 + 1;

݇
2 ≤ ݔ ≤ ݇ൠ. 

 
For ݇ ≥ 4, 

ܴܮ ቆܾ௞
ଶିଵ,௝
௜ ܾ௞

ଶ,௝
௜ ቇ = ܸ(࣡) − ൜ܽ௜ାଵ

௝ , ܾ௭,௝
௜ ; 1 ≤ ݖ ≤

݇
2

ൠ, 

ܴܮ ቆܾ௞
ଶାଵ,௝
௜ ܾ௞

ଶାଶ,௝
௜ ቇ = ܸ(࣡) − ൜ܽ௜

௝ , ܾ௫,௝
௜ ;

݇
2 + 1 ≤ ݔ ≤ ݇ൠ ; 

 
and for ݇ ≥ 6 and 1 ≤ ℎ ≤ ௞ିସ

ଶ
, 

൫ܾ௛,௝ܴܮ
௜ ܾ௛ାଵ,௝

௜ ൯ = ܸ(࣡) − ቊܾ௞
ଶା௛ାଶ,௝
௜ ቋ, 

ܴܮ ቆܾ௞
ଶା௛ାଵ,௝
௜ ܾ௞

ଶା௛ାଶ,௝
௜ ቇ = ܸ(࣡) − ൛ܾ௛,௝

௜ ൟ. 
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The cardinalities of all the aforementioned LRNs are listed in Table 1. Accordingly, 
|(݁)ܴܮ| ≥ 2݇ + 4  ∀݁ ∈   .(࣡)ܧ

2. We have |ܴܮ(ܾೖ
మ,௝
௜ ܾೖ

మାଵ,௝
௜ )| ≤ ݁ for each (݁)ܴܮ ∈ ࣡  (refer to Table 1). Let us take ܺ =

⋃௠,௡
௜ୀଵ,௝ୀଵ ೖܾ)ܴܮ

మ,௝
௜ ܾೖ

మାଵ,௝
௜ ) = ܸ(࣡) − {ܽ௢} with |ܺ| = ݉݊(1 + ݇). Now  

(݁)ܴܮ| ∩ ܺ| = (݁)ܴܮ| ∩ (ܸ(࣡) − {ܽ௢})| 
=  |(݁)ܴܮ|

ܽܽܽܽܽ ≥ (2݇ +  (1)  ݐݎܽ݌  ݕܾ ܽܽ(4
=  |(∗݁)ܴܮ|

This completes the proof. 
 

Table 1.  Cardinalities of LRN sets of n-level gear graph 

LR Cardinality 

௞ܾ)ܴܮ
ଶ,௝
௜ ܾ௞

ଶାଵ,௝
௜ ߙ ( = 2݇ + 4 

௢ܽ௜ܽ)ܴܮ
௝) |ܸ(࣡)| − 2 ≥  ߙ

ܴܮ ൬ܾೖ
మିଵ,௝
௜ ܾೖ

మ,௝
௜ ൰  and ܴܮ(ܾೖ

మାଵ,௝
௜ ܾೖ

మାଶ,௝
௜ )  |ܸ(࣡)| −

݇ + 2
2 ≥  ߙ

൫ܽ௜ܴܮ
௝ܾଵ,௝

௜ ൯ and ܴܮ(ܽ௜
௝ܾ௞,௝

௜ା௠ିଵ) |ܸ(࣡)| − 1 ≥  ߙ

൫ܾ௛,௝ܴܮ
௜ ܾ௛ାଵ,௝

௜ ൯ and ܴܮ(ܾ௞
ଶା௛ାଵ,௝
௜ ܾ௞

ଶା௛ାଶ,௝
௜ ) |ܸ(࣡)| − 1 ≥  ߙ

 

Theorem 2.  For ݉ ≥ 3, ݇ ≥ 1 and ݊ ≥ 1, if ࣡ ≅ ௠,௡ܬ
௞  is a generalised ݊-level gear network, then 

  

݀݅݉௟௙(࣡) = ቐ
݉݊(1 + ݇)

2݇ + 4 , if ݇ ≅ (2݀݋݉)0

1, if ݇ ≅ (2݀݋݉)1
. 

 
Proof:  Let us consider the following cases. 

Case 1. When ݇ ≅ :݃ let us define a function ,(2݀݋݉)0 ܸ(࣡) → [0,1] with the conditions of 
0 < ߙ ≤ ଵ

ଶ௞ାସ
, 1 ≤ ݅, ݆, ݈ ≤ ݉, ݊, ݇ − 1 and ݅ ≅   :as follows (2݀݋݉)1

(ݒ)݃ = f(x) =

⎩
⎪
⎨

⎪
⎧

1
2݇ + 4 + ,ߙ if ݒ ∈ {ܽ௜

௝ , ௟ܾ,௝
௜ }

1
2݇ + 4 − ,ߙ if ݒ ∈ ൛ܽ௜ାଵ

௝ , ௟ܾାଵ,௝
௜ାଵ ൟ.

0, if ݒ = ܽ௢

 

 
Since |(݁)ܴܮ| ≥ (2݇ + 4)  for each ݁ ∈ (࣡)ܧ  (by Lemma 3), therefore (ܴܮ(݁)) =

∑௩∈௅ோ(௘) ≤ (ݒ)݃ ଶ௞ାସ
ଶ

( ଵ
ଶ௞ାସ

+ ߙ + ଵ
ଶ௞ାସ

− (ߙ = 1,  which implies that ݃ is an LRF. Now let us 
define ߰: ܸ(࣡) → [0,1] such that  
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(ݒ)߰ = ൝
1

2݇ + 4 , if ݒ ∈ ܺ

0, if ݒ ∈ ܺ
 , 

 
where ܺ =∪ :(݁)ܴܮ} |(݁)ܴܮ| = 2݇ + 4ܽ for all ݁ ∈ ࣡. Let us consider ߰൫ܴܮ(݁)൯ =

 ∑௩∈௅ோ(௘) (ݒ)߰ = ∑௩∈௅ோ(௘)∩௑
ଵ

ଶ௞ାସ
 = (݁)ܴܮ| ∩ ܺ| ଵ

ଶ௞ାସ
= |(݁)ܴܮ| ଵ

ଶ௞ାସ
≥ 1.  

 
This shows that ߰ is an LRF. Now if we have ݂: ܸ(࣡) → [0,1] such that ݂(ݒ) < (ݒ)݂ and (ݒ)݃ <
ݒ ∀ (ݒ)߰ ∈ ࣡, then ݂(ܴܮ(݁)) < 1, for |ܴܮ(݁)| = 2݇ + 4 ⇒ ݂ is not an LRF. Consequently both 
the LRFs ݃ and ߰ are minimal. Now we discuss the following two possibilities.  

(i) If ݉ is even, then |݃| = (௠௡(ଵା௞)
ଶ

)( ଵ
ଶ௞ାସ

+ (ߙ + (௠௡(ଵା௞)
ଶ

)( ଵ
ଶ௞ାସ

− (ߙ = ௠௡(ଵା௞)
ଶ௞ାସ

= |߰|. 

(ii) If ݉ is odd, then |݃| = (௠௡(ଵା௞)
ଶ௞ାସ

) + ( ଵ
ଶ௞ାସ

+ ݊(ߙ > |߰|. Thus,  
௠௡(ଵା௞)

ଶ௞ାସ
≤ ݀݅݉௟௙(࣡). 

Moreover by Lemma 3, for each ݁ ∈ ࣡ |(݁)ܴܮ| , ≥ 2݇ + 4  and |ܴܮ(݁) ∩ ܺ| ≥ 2݇ + 4 , 
where ܺ =∪ :(݁)ܴܮ} |(݁)ܴܮ| = 2݇ + 4} for ݁ ∈    Therefore, Lemma 1 shows that .(࣡)ܧ

 

݀݅݉௟௙(࣡) ≤
|ܺ|

2݇ + 4 =
݉݊(1 + ݇)

2݇ + 4 . 
 
Now from above two equations, ݀݅݉௟௙(࣡) = ௠௡(ଵା௞)

ଶ௞ାସ
. 

Case 2. When ݇ ≅ ࣡ then ,(2݀݋݉)1  is a bipartite network containing no odd-length cycles. 
Thus by Lemma 2, ݀݅݉௟௙(࣡) = 1. 

Consequently, from both of the cases, the proof is complete. 
 

EXACT CLOSED-FORM LFMD FOR GENERALISED ࡼ-LEVEL HELM NETWORK 
 

The significant findings on the LFMD of the generalised ݊-level helm network are presented 
in this section.   
Theorem 3.  Let us consider that ࣡ ≅ ௠,଴ܪ

௣  be a generalised ݌-level helm network. Then  

݀݅݉௟௙(࣡) = ൞

݌3
2 , if ݉ = 3

݌݉
4 , if ݉ ≥ 4.

 

 
Proof:  We consider the following two cases for the proof of above results.  

Case 1. When ݉ = 3 , then the LRNs of ࣡  are ܴܮ(ܽ௢ܽ௞
௝ ) = ܸ(࣡) − {ܽ௞ାଵ

௝ , ܽ௞ାଶ
௝ , ܿ௞ାଵ

௝ , ܿ௞ାଶ
௝ }, 

௞ܽ)ܴܮ
௝ ܽ௞ାଵ

௝ ) = {ܽ௞
௝ , ܽ௞ାଵ

௝ , ܿ௞
௝ , ܿ௞ାଵ

௝ }  and ܴܮ(ܽ௞
௝ ܿ௞

௝) = ܸ(࣡) , where 1 ≤ ݇ ≤ 3  and 1 ≤ ݆ ≤ ݌ . In 
addition, หܴܮ൫ܽ௢ܽ௞

௝ ൯ห = ݌6 − 3, หܴܮ൫ܽ௞
௝ ܽ௞ାଵ

௝ ൯ห = 4, หܴܮ൫ܽ௞
௝ ܿ௞

௝൯ห = ݌6 + 1 and ܼ = ⋃ଷ,௣
௞ୀଵ,௝ୀଵ  

൫ܽ௞ܴܮ
௝ ܽ௞ାଵ

௝ ൯ = ܸ(࣡) − {ܽ௢},  which implies that |ܼ| =  .݌6
For ߙ > ଵ

ସ
ߚ , > ଵ

ସ
 and 1 ≤ ݆ ≤ :߰ we define a mapping ,݌ ܸ(࣡) → [0,1] as 

(ݒ)߰ =

⎩
⎪⎪
⎨

⎪⎪
ݒ if    ,ߙ⎧ ∈ {ܽଵ

௝ , ܽଷ
௝}

1 − ݒ if    ,ߙ = ܽଶ
௝

0,    if ݒ = ܽ௢

ݒ if    ,ߚ ∈ {ܿଵ
௝ , ܿଷ

௝}
1 − ݒ if    ,ߚ = ܿଶ

௝

. 
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Since ∀  ݁ ∈ ࣡ ((݁)ܴܮ)߰ , ≥ 1 , therefore ߰  is an LRF of ࣡ . Similarly, the function 
߶: ܸ(࣡) → [0,1], defined as   

(ݒ)߶ = ൝
1
4 , if ݒ ∈ ܼ

0, if ݒ ∈ ܼ
 , 

 
is also an LRF with ߶(ܴܮ(݁)) ≥ 1 for each ݁ ∈ ࣡. Additionally, if ݃: ܸ(࣡) → [0,1] such that 
(ݒ)݃ ≤ (ݒ)݃ or (ݒ)߰ ≤ (ݒ)݃ and (ݒ)߶ ≠ (ݒ)݃ or (ݒ)߰ ≠ ݒ for at least one (ݒ)߶ ∈ ܸ(࣡), then ݃ 
does not remain as an LRF of ࣡. Consequently, the LRFs ߰ and ߶ are minimal. Now let us consider 
|߰| = ∑௩∈࣡ ((ݒ)߰) = ∑ଷ,௣

௞ୀଵ,௝ୀଵ ߰(ܽ௞
௝ ) + ∑ଷ,௣

௞ୀଵ,௝ୀଵ ߰(ܿ௞
௝) = 2)݌ + ߙ +   and  (ߚ

|߶| = ∑௩∈࣡ ((ݒ)߰) = ∑௩∈௓ ((ݒ)߰) = |ܼ| ଵ
ସ

= ଷ௣
ଶ

  such that |߶| < |߰| as ߙ > ଵ
ସ
.  

Thus, ߶ is a minimal LRF of minimum |߶|,  which implies that ଷ௣
ଶ

≤ ݀݅݉௟௙(࣡). 

On the other hand, ࣡ has LRs of three types, i.e. ܴܮ(ܽ௢ܽ௞
௝ ௞ܽ)ܴܮ ,(

௝ ܽ௞ାଵ
௝ ) and ܴܮ(ܽ௞

௝ ܿ௞
௝) with 

௢ܽ௞ܽ)ܴܮ|
௝ )| = ݌6 − 3 ௞ܽ)ܴܮ| ,

௝ ܽ௞ାଵ
௝ )| = 4 and |ܴܮ(ܽ௞

௝ ܿ௞
௝)| = ݌6 + 1  respectively. Additionally, 

௢ܽ௞ܽ)ܴܮ|
௝ ) ∩ ܼ| ≥ ௞ܽ)ܴܮ|

௝ ܽ௞ାଵ
௝ )| = 4  and  |ܴܮ(ܽ௞

௝ ܿ௞
௝) ∩ ܼ| ≥ ௞ܽ)ܴܮ|

௝ ܽ௞ାଵ
௝ )| = 4. Then by Lemma 

1, ݀݅݉௟௙(࣡) ≤ ଷ௣
ଶ

.  Consequently, ݀݅݉௟௙(࣡) = ଷ௣
ଶ

. 

Case 2. When ݉ ≥ 4,  then the LRNs of ܪ௠,଴
௣  are of three types, i.e. ܴܮ(ܽ௢ܽ௞

௝ ) = ܸ(࣡) −

{ܽ௞ାଵ
௝ , ܽ௞ା௠ିଵ

௝ , ܿ௞ାଵ
௝ , ܿ௞ା௠ିଵ

௝ } ௞ܽ)ܴܮ ,
௝ ܽ௞ାଵ

௝ ) = {ܽ௞
௝ , ܽ௞ାଵ

௝ , ܽ௞ାଶ
௝ , ܽ௞ା௠ିଵ

௝ , ܿ௞
௝ , ܿ௞ାଵ

௝ , ܿ௞ାଶ
௝ , ܿ௞ା௠ିଵ

௝ }  and 
௞ܽ)ܴܮ

௝ ܿ௞
௝) = ܸ(࣡)  with |ܴܮ(ܽ௢ܽ௞

௝ )| = ݌2݉ − 3 ௞ܽ)ܴܮ| ,
௝ ܽ௞ାଵ

௝ )| = 8  and |ܴܮ(ܽ௞
௝ ܿ௞

௝)| = ݌2݉ + 1 , 
where 1 ≤ ݇ ≤ ݉ and 1 ≤ ݆ ≤  .݌

Let us assume that ߙ௣, ௣ߚ ∈ [0,1] for 1 ≤ ݌ ≤ 4 such that ∑ସ
௣ୀଵ ௣ߙ = ଵ

ଶ
, ∑ସ

௣ୀଵ ௣ߚ = ଵ
ଶ
 and 

ଵߙ < ଶߙ < ଷߙ < ଵߚ ,& ସߙ < ଶߚ < ଷߚ < ସ. For 1ߚ ≤ ݆ ≤ :߰ we define a mapping ,݌ ܸ(࣡) → [0,1] 
as 

߰(ܽ଴) = 0, ߰(ܽ௞
௝ ) =

⎩
⎪
⎨

⎪
⎧

݇ ଵ,    ifߙ ≅ (4݀݋݉)1
݇ ଶ,    ifߙ ≅ (4݀݋݉)2
݇ ଷ,    ifߙ ≅ (4݀݋݉)3
݇ ସ,    ifߙ ≅ (4݀݋݉)0

  and ߰൫ܿ௞
௝൯ =

⎩
⎪
⎨

⎪
⎧

݇ ଵ,    ifߚ ≅ (4݀݋݉)1
݇ ଶ,    ifߚ ≅ (4݀݋݉)2
݇ ଷ,    ifߚ ≅ (4݀݋݉)3
݇ ସ,    ifߚ ≅ (4݀݋݉)0

. 

Moreover, if ݉ ≅ ,(4݀݋݉)1  then ߰൫ܽ௠
௝ ൯ = ;ସߙ  if ݉ ≅ ,(4݀݋݉)2  then (ܽ௠

௝ ) =  ସߙ
and ߰(ܽ௠ିଵ

௝ ) = ݉ ଷ; and ifߙ ≅ then ߰(ܽ௠ ,(4݀݋݉)3
௝ ) = ସ, ߰(ܽ௠ିଵߙ

௝ ) = ଷߙ  and ߰(ܽ௠ିଶ
௝ ) = ଶߙ . 

Since for each ݁ ∈ ࣡ ((݁)ܴܮ)߰ , ≥ 1 , therefore ߰  is an LRF of ࣡ . Similarly, ߶: ܸ(࣡) → [0,1] , 
defined as  

(ݒ)߶ = ൝
1
8 , if ݒ ∈ ܼ

0, if ݒ ∈ ܼ
 , 

is also an LRF with ߶(ܴܮ(݁)) ≥ 1 ∀ ݁ ∈ ࣡, where ܼ =∪ ௞ܽ)ܴܮ
௝ ܽ௞ାଵ

௝ ) for 1 ≤ ݇, ݆ ≤ ݉,  .݌
Furthermore, the LRFs ߰ and ߶  are minimal LRFs because, if ݃: ܸ(࣡) → [0,1] such that 

(ݒ)݃ ≤ (ݒ)݃ or (ݒ)߰ ≤ (ݒ)݃ and (ݒ)߶ ≠ (ݒ)݃ or (ݒ)߰ ≠ ݒ for at least one (ݒ)߶ ∈ ܸ(࣡), then ݃ 
does not remain as an LRF of ࣡ . Now by these minimal LRFs, we have either |߰| =
∑௩∈࣡ ((ݒ)߰) = ௠௡

ସ
[∑ସ

௣ୀଵ (௣ߙ)߰ + ∑ସ
௣ୀଵ [(௣ߚ)߰ = ௠௡

ସ
 or |߰| = ௠௡

ସ
+ ଵߛ + ଶߛ  and |߶| = ௠௡

ସ
, 
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where ߛଵ ∈ ,ସߙ} ସߙ + ,ଷߙ ସߙ + ଷߙ + {ଶߙ  and ߛଶ ∈ ,ସߚ} ସߚ + ,ଷߚ ସߚ + ଷߚ + {ଶߚ , which implies that 
|߶| ≤ |߰|. Thus, ௠௣

ସ
≤ ݀݅݉௟௙(࣡). 

Additionally, |ܴܮ(ܽ௢ܽ௞
௝ )| = ݌2݉ − 3 > 8 ௞ܽ)ܴܮ| ,

௝ ܽ௞ାଵ
௝ )| = 8  and |ܴܮ(ܽ௞

௝ ܿ௞
௝)| = ݌2݉ +

1 ≥ ௞ܽ)ܴܮ| ,8
௝ ܽ௞ାଵ

௝ ) ∩ ܼ| ≥ 8, where ܼ =∪ ௞ܽ)ܴܮ
௝ ܽ௞ାଵ

௝ ) for 1 ≤ ݇, ݆ ≤ ݉,  Therefore by Lemma .݌
1, ݀݅݉௟௙(࣡) ≤ ௠௡

ସ
. Thus, ݀݅݉௟௙(࣡) = ௠௡

ସ
.   Consequently, from both the cases, the proof is 

complete. 
 

Lemma 4.  Let ࣡ ≅ ௠,௤ܪ
௣  with ݉ ≥ ݌ ,3 ≥ ݍ ,1 ≥ 2 and ݇ ≅  level-݌ be a generalised (2݀݋݉)0

helm network. Then for each ݁ ∈ ࣡,   
ݍ2 .1 + 6 ≤   ,|(݁)ܴܮ|
(݁)ܴܮ| .2 ∩ ܼ| ≥ ܼ where ,|(∗݁)ܴܮ| =∪ :(∗݁)ܴܮ} |(∗݁)ܴܮ| = ݍ2 + 6} for ݁∗ ∈   .(࣡)ܧ

 
Proof:  1. There are nine types of LRNs of ࣡:   

For 1 ≤ ܭ ≤ ݉, 1 ≤ ݆ ≤ ݍ & ܲ ≥ 2, 

൫ܽ௢ܽ௞ܴܮ
௝ ൯ = ܸ(࣡) − ൜ܾ௤

ଶାଵ,௝
௜ , ܾ௤

ଶ,௝
௞ା௠ିଵൠ, 

൫ܽ௞ܴܮ
௝ ܾ௤ିଶ௧ିଷ,௝

௞ ൯ = ܸ(࣡) − ൜ܾ௤
ଶାଶ,௝
௞ ൠ, 

൫ܽ௞ܴܮ
௝ ܾ௤,௝

௞ା௠ିଵ൯ = ܸ(࣡) − ൜ܾ௤
ଶିଵ,௝
௞ା௠ିଵൠ, 

൫ܽ௞ܴܮ
௝ ܿ௞

௝൯ = ܸ(࣡) 
೜ܾ)ܴܮ

మ,௝
௞ ܾ೜

మାଵ,௝
௞ ) = {ܽ௞

௝ , ܽ௞ାଵ
௝ , ௟ܾ,௝

௞ , ܾ௭,௝
௞ାଵ, ܾ௫,௝

௞ା௠ିଵ, ܿ௞
௝ , ܿ௞ାଵ

௝ ; 1 ≤ ݈ ≤ ;ݍ 1 ≤ ݖ ≤ ௤
ଶ

+ 1; ௤
ଶ

≤ ݔ ≤  .{ݍ

For ݍ ≥ 4, 
೜ܾ)ܴܮ

మିଵ,௝
௞ ܾ೜

మ,௝
௞ ) = ܸ(࣡) − {ܽ௞ାଵ

௝ , ܾ௭,௝
௞ , ܿ௞ାଵ

௝ ; 1 ≤ ݖ ≤ ௤
ଶ
}, 

ܴܮ ൬ܾ೜
మାଵ,௝
௞ ܾ೜

మାଶ,௝
௞ ൰ = ܸ(࣡) − {ܽ௞

௝ , ܾ௫,௝
௞ , ܿ௞

௝; ௤
ଶ

+ 1 ≤ ݔ ≤  ;{ݍ
 
and for ݍ ≥ 6 and 1 ≤ ℎ ≤ ௤ିସ

ଶ
, 

൫ܾ௛,௝ܴܮ
௞ ܾ௛ାଵ,௝

௞ ൯ = ܸ(࣡) − {ܾ೜
మା௛ାଶ,௝
௞ }, 

ܴܮ ൬ܾ௤
ଶା௛ାଵ,௝
௞ ܾ௤

ଶା௛ାଶ,௝
௞ ൰ = ܸ(࣡) − ൛ܾ௛,௝

௞ ൟ. 
 

The cardinalities of all the aforesaid LRNs are listed in Table 2. According to this, 
|(݁)ܴܮ| ≥ ݍ2 + 6 ∀ ݁ ∈     .(࣡)ܧ

2. We have |ܴܮ(ܾ೜
మ,௝
௞ ܾ೜

మାଵ,௝
௞ )| ≤ ݁ for each (݁)ܴܮ ∈ ࣡  (refer to Table 2). Let us consider ܼ =

⋃௠,௣
௞ୀଵ,௝ୀଵ ೜ܾ)ܴܮ

మ,௝
௞ ܾ೜

మାଵ,௝
௞ )) = ܸ(࣡) − {ܽ௢} with |ܼ| = ݍ)݌݉ + 2).  Now  

(݁)ܴܮ| ∩ ܼ| = (݁)ܴܮ| ∩ (ܸ(࣡) − {ܽ௢})| 
=  |(݁)ܴܮ|

ܽܽܽܽܽ ≥ ݍ2) +  (1)  ݕܾ ܽܽ(6
=  .|(∗݁)ܴܮ|

Hence the proof is complete.  
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                   Table 2.  Cardinalities of LRN sets of p-level helm graph 

LR Cardinality 

௤ܾ)ܴܮ
ଶ,௝
௞ ܾ௤

ଶାଵ,௝
௞ ߙ ( = ݍ2 + 6 

௢ܽ௞ܽ)ܴܮ
௝ ) |ܸ(࣡)| − 2 ≥  ߙ

೜ܾ)ܴܮ
మିଵ,௝
௞ ܾ೜

మ,௝
௞ ೜ܾ)ܴܮ ,(

మାଵ,௝
௞ ܾ೜

మାଶ,௝
௞ ) |ܸ(࣡)| − (

ݍ + 2
2 ) ≥  ߙ

௞ܽ)ܴܮ
௝ ܾ௤ିଶ௧ିଷ,௝

௞ ௞ܽ)ܴܮ ,(
௝ ܾ௤,௝

௞ା௠ିଵ) |ܸ(࣡)| − 1 ≥  ߙ

௛,௝ܾ)ܴܮ
௞ ܾ௛ାଵ,௝

௞ ೜ܾ)ܴܮ ,(
మା௛ାଵ,௝
௞ ܾ೜

మା௛ାଶ,௝
௞ ) |ܸ(࣡)| − 1 ≥  ߙ

௞ܽ)ܴܮ
௝ ܿ௞

௝) ܸ(࣡) 

 

Theorem 4.  For ݉ ≥ ݍ ,3 ≥ 1 and ݌ ≥ 1, if ࣡ ≅ ௠,௤ܪ
௣  is a generalised ݌-level helm network, then 

 

݀݅݉௟௙(࣡) = ቐ
ݍ)݌݉ + 2)

ݍ2 + 6 , if ݍ ≅ (2݀݋݉)0

1, if ݍ ≅ .(2݀݋݉)1
 

 
Proof:  Let us consider the following cases. 

Case 1. When ݍ ≅ :݃ then we define  ,(2݀݋݉)0 ܸ(࣡) → [0,1] with the conditions of 0 < ߙ ≤
ଵ

ଶ௤ା଺
, 1 ≤ ݇, ݆, ݈ ≤ ݉, ,݌ ݍ − 1 and ݇ ≅   :as follows (2݀݋݉)1

(ݒ)݃ =

⎩
⎪
⎨

⎪
⎧

1
ݍ2 + 6 + ,ߙ if ݒ ∈ {ܽ௞

௝ , ௟ܾ,௝
௞ }

1
ݍ2 + 6 − ,ߙ if ݒ ∈ {ܽ௞ାଵ

௝ , ௟ܾାଵ,௝
௞ାଵ }

0, if ݒ = ܽ௢

 . 

 
Since |ܴܮ(݁)| ≥ ݍ2) + 6)  for each ݁ ∈ (࣡)ܧ  (by Lemma 4), therefore ݃(ܴܮ(݁)) =

∑௩∈௅ோ(௘) ≤ (ݒ)݃ ݍ) + 3)( ଵ
ଶ௤ା଺

+ ߙ + ଵ
ଶ௤ା଺

− (ߙ = 1,  which implies that ݃  is an LRF. Now we 

define another mapping ߰: ܸ(࣡) → [0,1] such that   

(ݒ)߰ = ቐ
1

ݍ2 + 6 , if ݒ ∈ ܼ

0, if ݒ ∈ ܼ
 , 

 
where ܼ =∪ :(݁)ܴܮ} |(݁)ܴܮ| = ݍ2 + 6ܽ and ܽ݁ ∈ ࣡}.  Consider ߰(ܴܮ(݁)) = ∑௩∈௅ோ(௘) (ݒ)߰ =

∑௩∈௅ோ(௘)∩௓
ଵ

ଶ௤ା଺
 = (݁)ܴܮ| ∩ ܼ| ଵ

ଶ௤ା଺
= |(݁)ܴܮ| ଵ

ଶ௤ା଺
≥ 1.  This shows that ߰  is an LRF. Let us 

consider that if ݂: ܸ(࣡) → [0,1]  such that ݂(ݒ) < (ݒ)݃  and ݂(ݒ) < (ݒ)߰  for each ݒ ∈ ࣡ , then 
((݁)ܴܮ)݂ < 1, for |ܴܮ(݁)| = ݍ2 + 6 ⇒ ݂ is not an LRF. Consequently, both the LRFs ݃ and ߰ are 
minimal LRFs.  

Now we discuss the following two possibilities.  
(i)  If ݉ is even, then |݃| = (௠௣(௤ାଶ)

ଶ
)( ଵ

ଶ௤ା଺
+ (ߙ + (௠௣(௤ାଶ)

ଶ
)( ଵ

ଶ௤ା଺
− (ߙ = ௠௣(௤ାଶ)

ଶ௤ା଺
= |߰|. 
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(ii)  If ݉ is odd, then |݃| = (௠௣(௤ାଶ)
ଶ௤ା଺

) + ( ଵ
ଶ௤ା଺

+ ݌(ߙ > |߰|.  Thus,  
௠௣(௤ାଶ)

ଶ௤ା଺
≤ ݀݅݉௟௙(࣡). 

Moreover, by Lemma 4, ∀  ݁ ∈ ࣡ |(݁)ܴܮ| , ≥ ݍ2 + 6  and |ܴܮ(݁) ∩ ܼ| ≥ ݍ2 + 6 , where ܼ =∪
:(݁)ܴܮ} |(݁)ܴܮ| = ݍ2 + 6} for ݁ ∈    Therefore Lemma 1 shows that .(࣡)ܧ

݀݅݉௟௙(࣡) ≤ |௓|
ଶ௞ାସ

= ௠௣(௤ାଶ)
ଶ௤ା଺

. 
 
Now from the above two equations, ݀݅݉௟௙(࣡) = ௠௣(௤ାଶ)

ଶ௤ା଺
. 

Case 2.  When ݍ ≅  then ࣡ is a bipartite network with no cycle of odd length. Thus, by  ,(2݀݋݉)1
Lemma 2, ݀݅݉௟௙(࣡) = 1. 

Consequently, from both of the cases, the proof is complete.  
 

APPLICATION: EMERGENCY EVACUATION OPTIMISATION 
 

In this section we present an application of the obtained results. To illustrate these findings, 
we consider an emergency escape route within a building. We focus on one floor that includes 
stores, restrooms, food corners, juice shops, ice cream stalls, lifts and escalators as depicted in 
Figures 3 and 4. This floor layout corresponds to the network ܬ଺,ଶ

ସ . From Theorem 3, the LFMD of 

଺,ଶܬ
ସ  is calculated as ଺଴

ଵଶ
= 5,  which indicates that complete evacuation in the event of an emergency 

will take approximately five minutes. 
This study demonstrates how computing the LFMD can greatly enhance the design and 

optimisation of network structures such as emergency exit plans. The findings provide valuable 
insights for improving network efficiency and guide decision-making in practical applications, 
particularly in safety and communication systems. 

 

  
Figure 3.  Emergency exit plan model (Left: simple model and Right: processing model with links 
(edges)) 
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(a) (b) 

 
Figure 4. (a) Emergency exit plan network (converted from Figure 3); (b) Corresponding vertices-
labelling 
 

CONCLUSIONS 
 

In this work LFMDs of two non-planar networks have been computed in the form of exact 
values rather than their lower and upper bounds. This study is summarised as follows:    

 Tables 1 and 2 show the cardinalities of LRNs of generalised ݊-level gear and ݌-level helm 
networks. 

 In the case of bipartite networks, both the non-planar networks have the same LFMD 
which is exactly 1 with no impact from the addition of pendant vertices. 

 In the case of non-bipartite networks, by taking the same number of levels ݊, the same 
number of vertices adjacent to the central vertex at each level (݉),  and the same 
subdivided vertices on each cycle edge ݇,  we have ݀݅݉௟௙(ܪ௠,௞

௡ ) − ݀݅݉௟௙(ܬ௠,௡
௞ ) =

௠௡
ଶ(௞ାଶ)(௞ାଷ)

> 0,   which implies that ݀݅݉௟௙(ܪ௠,௞
௡ ) > ݀݅݉௟௙(ܬ௠,௡

௞ ) . This shows that the 

addition of pendant vertices enhances the LFMD for the helm network. 
 For ݇ → ∞, the asymptotic behaviour shows that both the networks have the same LFMD. 

Thus, the numerical value of this error approaches 0 as ݇ approaches infinity. 
This study’s outcomes advance the theoretical understanding of fractional dimensions in 

symmetric networks while providing practical insights for network design and optimisation. The 
findings are particularly relevant to applications in communication networks, transportation systems 
and facility layout planning, where efficient node distinguishability is crucial.  
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