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Abstract:  Regression analysis plays a significant role in statistics by identifying the 
relationship between variables. However, when the assumptions of ordinary least squares are 
violated, non-parametric regression becomes a preferable approach. In the field of non-
parametric regression, Nadaraya-Watson (NW) kernel regression estimators have gained 
popularity in recent decades. The adaptive NW kernel regression estimator is considered one 
of the best and most effective estimators for non-parametric regression due to its varying 
bandwidth. The effective utilisation of the bandwidth factor is a key aspect of kernel 
regression. This article proposes the use of probability-weighted moments (PWMs) to 
enhance the bandwidth factor of the kernel regression estimator. The novelty of this approach 
lies in replacing traditional measures of central tendency and dispersion with PWMs to 
introduce a new family of NW kernel regression estimators that are more robust to outliers. 
Monte Carlo simulation studies are conducted to compare the performance of existing and 
proposed kernel regression estimators. The simulations use a data set of COVID-19 cases 
from Africa, highlighting the severity of the current pandemic. The results of the simulations 
demonstrate that the proposed family of estimators is more robust than existing estimators. 

 
Keywords:  probability weighted moments, non-parametric regression estimators, NW kernel 
estimator, measures of central tendency, percentage relative efficiency 

_______________________________________________________________________________________ 
 
INTRODUCTION  
 

Before the development of non-parametric statistics, scientists in various fields preferred to 
use parametric tests for analysis as they were more predictive than non-parametric statistics, 
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especially in regression analysis. This is why science and engineering tend to use parametric 
statistics because they are predictive. However, parametric statistics are not applicable when 
ordinary least square assumptions are not fulfilled. In cases where the data are scattered delicately, 
non-parametric statistics provide a better solution.  

The demand for kernel regression estimators is growing rapidly, but it requires more flexible 
estimators that offer greater accuracy for analysing and inferring results. The method introduced by 
Nadaraya and Watson [1] in non-parametric regression is primarily based on empirical data with a 
very large sample size. The descriptive variable’s observation is measured by a smoothing 
parameter. The Nadaraya-Watson (NW) kernel estimator is one of the leading non-parametric 
regression estimation methods. This estimator provides a precise measurement of observations and 
the regression curve based on the observed data. 

Mathematically, for the given data { ௜ܺ, ௜ܻ}௜ୀଵ
௡ , consider the regression model ܻ = (ݔ)݉ +  ߝ

with observation errors ߝ௜ and unknown regression function ݉, where the response random variable 
ܻ  depends on an independent random variable ܺ , and ߝ  is a random variable with mean 0 and 

variance ߪଶ. It is widely known that ݉(ݔ) = ∫ ௬௙(௫,௬)
௙(௫)

 is a conditional mean curve that depends  ݕ݀

on the joint density function of ܺ and ܻ (݂(ݔ,  and it can ,((ݔ)݂) ܺ and the marginal function of ((ݕ
be estimated by employing the kernel probability density ൫ܭ(. )൯ for all values of ܺ as 

                                                      ෝ݉థ଴(ݔ) =
∑ ௬೔

೙
೔సభ ௄ቀ

ೣష೉೔
೓ ቁ

∑ ௄ቀ
ೣష೉೔

೓ ቁ೙
೔సభ

    .                                                           (1) 

The NW kernel estimators in Eq. (1) depend on a parameter (ℎ) known as the bandwidth. 
This parameter controls the extent of curve smoothing. This idea is further elaborated by Wand and 
Jones [2] for a large bandwidth ℎ that can be fixed or varying and estimated as a smooth density 
function.  

The selection of the optimal bandwidth is important. The mean integrated square error is 
minimised by using the optimal bandwidth, which can be found by integrating the mean square 
error (MSE). Friedman and Stuetzle [3] suggested a method of finding the parameters of a non-
parametric regression model without knowing the bandwidth ℎ. There are different methods for the 
selection of the bandwidth ℎ described by many authors such as Duin [4], Rudemo [5], Silverman 
[6], Wand and Jones [2], Härdle et al. [7] and Slaoui [8]. The flexible bandwidth is suggested rather 
than a fixed bandwidth in the situation of a long-tailed curve.  

Abramson [9] suggested a method of inverse square root for selecting the variable kernel 
density bandwidth, which decreases bias more effectively than the fixed bandwidth estimator. 
Silverman [6] discussed the assumptions of kernel weights and the properties of the estimator such 
as mean and variance. 

Demir and Toktamis [10] implemented an adaptive NW kernel regression estimator for 
estimating the regression function. Their simulation studies demonstrated that the NW estimator 
yielded improved results when using the arithmetic mean instead of the geometric mean to evaluate 
the local bandwidth factor. Aljuhani and Al-Turk [11] proposed using the range of the probability 
density function to modify the bandwidth factor ℎ.  

In the adaptive NW kernel estimator, Ali [12] introduced some modifications. He proposed 
incorporating trimmed mean, median and harmonic mean in the bandwidth factor of the NW 
estimator instead of arithmetic mean and geometric mean. Based on the results of a simulation 
study, he concluded that using these measures in the bandwidth factor ℎ of the modified estimator, 
especially the harmonic mean, improved the estimator's performance. To support his argument, he 
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evaluated the MSE in a simulation study and found that the MSE of the proposed estimators 
decreased with these innovations. The suggested bandwidth factors by Ali [12] are listed in Table 1.  

These kernel regression estimators have been suggested in the last few decades, inspired by 
the NW kernel regression model. The generalised form of the NW kernel regression function 
ෝ݉థ௧(ݔ) is given by 

ෝ݉థ௧(ݔ) =
∑ ೤೔

೏(ೣ೔)
೙
೔సభ ௄൬

ೣష೉೔
೏(ೣ೔)൰

∑ ௄൬
ೣష೉೔
೏(ೣ೔)൰೙

೔సభ
   for  ݐ =  1,2, … ,7         (2) 

 
Many authors have extended this idea. The detailed expression of Eq. (2) and its extensions 

are given below in Table 1, where the local bandwidth factors ݀(ݔ௜)  can be determined by 
employing different types of ߣ's. 
            
           Table 1.  Some family members of ෝ݉థ௧(ݔ) 

 
ෝ݉థ௧(ݔ) ݀(ݔ௜) ߣ Author 

ෝ݉థଵ(ݔ) ݀(ݔଵ) =
ℎ
 ߣ

 

ߣ =
1

ට መ݂ௗ(ݔ)
  

Abramson [9] 

ෝ݉థଶ(ݔ) ݀(ݔଶ) = ℎீߣெ ீߣெ = ቈ
(௜ݔ̅)݂
ܯܩ

቉
ିఉ

 Silverman [6] 

ෝ݉థଷ(ݔ) ݀(ݔଷ) = ℎߣ஺ெ ߣ஺ெ = ቈ
(௜ݔ̅)݂
ܯܣ

቉
ିఉ

 Demir and Toktamis [10] 

ෝ݉థସ(ݔ) ݀(ݔସ) = ℎߣோ ோߣ  = ቈ
(௜ݔ̅)݂

ܴ
቉

ିఉ

 Aljuhani and Al-Turk [11] 

ෝ݉థହ(ݔ) ݀(ݔହ) = ℎ்ߣ௥ ்ߣ௥ = ቈ
(௜ݔ̅)݂

ݎܶ
቉

ିఉ

 

 

Ali [12] 

ෝ݉థ଺(ݔ) ݀(ݔ଺) = ℎߣெ஽ ߣெ஽ = ቈ
(௜ݔ̅)݂
ܦܯ

቉
ିఉ

 

ෝ݉థ଻(ݔ) ݀(ݔ଻) = ℎߣுெ ுெߣ  = ቈ
(௜ݔ̅)݂
ܯܪ

቉
ିఉ

 

 

Taking inspiration from Ali [12], we introduce the concept of probability weighted moments 
(PWMs) to the bandwidth factor of the NW estimator as PWMs are more robust in the presence of 
outliers. 

In most cases the data do not fulfill the conditions of normality when they are collected 
through experiments or different procedures. In such cases non-parametric kernel regression 
becomes more effective. The kernel regression estimators (NW and its adaptive version) provide a 
robust solution in such situations. The NW estimator uses a fixed bandwidth while the adaptive 
version relies on a varying bandwidth.  

In this manuscript some new versions of the NW kernel regression estimator are proposed 
by utilising PWMs. The NW kernel regression approach is a good choice when ordinary least 
square assumptions fail. By using these PWMs instead of traditional measures of central tendency 
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and dispersion, the estimator is tuned more efficiently and has proven to be more robust against data 
with outliers.  

The PWMs were suggested by Greenwood et al. [13] and were generally used to estimate 
parameters. According to the classical approach of PWMs (1)ܺ]ܧ −  F is the ,([௦ܨܺ]ܧ ௠] or(ܨ
cumulative distribution function of a random variable ܺ, where the values of ݉ and ݏ should be 
small, non-negative integers. Usually, they can be either 0, 1 or 2, depending on the parameters 
being estimated. Meintanis and Ushakov [14] developed a probability-weighted empirical 
characteristic function for weighted distributions. Caeiro and Mateus [15] defined some new 
estimators for the parameters of the Pareto distribution based on PWMs. Rasmussen [16] proposed a 
generalised method of PWMs as an extended class of PWMs with no restrictions on the selection of 
݉ and ݏ. The purpose of implementing PWMs in this article is based on the special characteristics 
of PWMs as outlined below: 

 PWMs are less sensitive to outliers in the data set. 
 PWMs can effectively summarise and describe the observed data set. 
 PWMs are used for non-parametric estimation of the observed data sample.  

There are several approaches for estimation as mentioned earlier. However, the significance 
and novelty of the current paper lie in utilising PWMs in the bandwidth factor of the NW kernel 
regression function, which is less sensitive to outliers. By using PWMs, a new family of estimators 
is obtained. 

PROPOSED KERNEL REGRESSION ESTIMATORS  
 
PWMs  
 

Outliers can introduce significant bias in regression analysis, particularly affecting 
bandwidth-dependent estimators. Therefore, estimators are more reliable when they can 
accommodate the entire data set including outliers, and when their results are not influenced by the 
presence of outliers. PWMs are more robust in the presence of extreme observations as they are less 
sensitive to outliers and provide more effective estimates. 

Population PWMs are represented by ߙ  and ߚ  while sample PWMs ܽ́௣  and ሖܾ௣  are given 
below: 

ܽ́௣ ≡ ݊ିଵ ∑
ቀ೙షೕ

೛ ቁ ௫ೕ

ቀ೙షభ
೛ ቁ

௡
௝ୀଵ   for  ݌ = 0,1, … , ݊ − 1, 

ሖܾ௣ ≡ ݊ିଵ ∑
ቀೕషభ

೛ ቁ ௫ೕ

ቀ೙షభ
೛ ቁ

௡
௝ୀଵ   for  ݌ = 0,1, … , ݊ − 1, 

ܽ́௣ ≡

⎩
⎪
⎪
⎨

⎪
⎪
⎧ ݊ିଵ ∑ ௝ݔ

௡
௝ୀଵ            for   ݌ = 0 

݊ିଵ ∑ (௡ି௝) ௫ೕ

(௡ିଵ)
௡
௝ୀଵ    for    ݌ = 1

݊ିଵ ∑
ቀ೙షೕ

మ ቁ ௫ೕ

൫೙షభ
మ ൯

௡
௝ୀଵ     for    ݌ = 2

 ݊ିଵ ∑
ቀ೙షೕ

య ቁ ௫ೕ

൫೙షభ
య ൯

௡
௝ୀଵ     for     ݌ = 3

   ,   ሖܾ௣ ≡

⎩
⎪
⎪
⎨

⎪
⎪
⎧ ݊ିଵ ∑ ௝ݔ

௡
௝ୀଵ          for  ݌ = 0

݊ିଵ ∑ (௝ିଵ) ௫ೕ

(௡ିଵ)
௡
௝ୀଵ   for   ݌ = 1

݊ିଵ ∑
ቀೕషభ

మ ቁ ௫ೕ

൫೙షభ
మ ൯

௡
௝ୀଵ   for   ݌ = 2

݊ିଵ ∑
ቀೕషభ

య ቁ ௫ೕ

൫೙షభ
య ൯

௡
௝ୀଵ   for   ݌ = 3

 

The presence of outliers in the data is a well-known problem in estimation. Outliers 
significantly influence the results, making it difficult for researchers to derive valuable conclusions 
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from such data. The NW and adaptive NW kernel regression estimators become more appealing in 
such situations as they play a key role in handling these problems. PWMs are also more effective 
for outliers. Therefore, incorporating PWMs in the bandwidth factor of the NW kernel regression 
estimator remarkably improves the performance of the estimator. For more detailed information 
about robustness and PWMs, interested readers are referred to the Rasmussen [16] and Shahzad et 
al. [17]. 

 
Family of NW Kernel Regression Estimators Utilising PWMs 
 

A new family of NW kernel regression estimators is introduced here by incorporating 
concepts from Ali [12]. The proposed family of NW estimators is defined by modifying the 
bandwidth factor as follows: 

 
(௔଴ݔ)݀ = ℎߣ௚௔́   where  ߣ௚௔́ =  ቂ௙(௫೔)

௔́బ
ቃ

ିఈ
 

(௔ଵݔ)݀ = ℎߣ௚௕ሖ    where  ߣ௚௕ሖ  =  ቂ௙(௫೔)
௔́భ

ቃ
ିఈ

 

(௔ଶݔ)݀ = ℎߣ௚௖́   where  ߣ௚௖́ =  ቂ௙(௫೔)
௔́మ

ቃ
ିఈ

 

(௔ଷݔ)݀ = ℎߣ௚ௗሖ    where  ߣ௚ௗሖ  =  ቂ௙(௫೔)
௔́య

ቃ
ିఈ

. 

Similarly, 

(௕଴ݔ)݀ = ℎߣ௩௔́   where  ߣ௩௔́ =  ቂ௙(௫೔)
௕ሖబ

ቃ
ିఉ

, 

(௕ଵݔ)݀ = ℎߣ௩௕ሖ    where  ߣ௩௕ሖ  =  ቂ௙(௫೔)
௕ሖభ

ቃ
ିఉ

, 

(௕ଶݔ)݀ = ℎߣ௩௖́   where  ߣ௩௖́ =  ቂ௙(௫೔)
௕ሖమ

ቃ
ିఉ

, 

(௕ଷݔ)݀ = ℎߣ௩ௗሖ    where  ߣ௩ௗሖ  =  ቂ௙(௫೔)
௕ሖ య

ቃ
ିఉ

. 
 
Hence the proposed estimators are expressed in their particular forms in equations (3-10):  
 

ෝ݉௚௔(ݔ) =
∑ ೤೔

೓ഊ೒ೌ́ 
೙
೔సభ ௄ቆ

ೣష೉೔
೓ഊ೒ೌ́ 

ቇ

∑  భ
೓ഊ೒ೌ́ 

೙
೔సభ ௄ቆ

ೣష೉೔
೓ഊ೒ೌ́ 

ቇ
       (3) 

ෝ݉௚௕(ݔ) =
∑ ೤೔

೓ഊ೒ሖ್  
೙
೔సభ ௄ቆ

ೣష೉೔
೓ഊ೒ሖ್  

ቇ

∑  భ
೓ഊ೒ሖ್  

೙
೔సభ ௄ቆ

ೣష೉೔
೓ഊ೒ሖ್  

ቇ
       (4) 

ෝ݉௚௖(ݔ) =
∑ ೤೔

೓ഊ೒೎́ 
೙
೔సభ ௄ቆ

ೣష೉೔
೓ഊ೒೎́ 

ቇ

∑  భ
೓ഊ೒೎́ 

೙
೔సభ ௄ቆ

ೣష೉೔
೓ഊ೒೎́ 

ቇ
       (5) 

ෝ݉௚ௗ(ݔ) =
∑ ೤೔

೓ഊ೒೏ሖ  
೙
೔సభ ௄ቆ

ೣష೉೔
೓ഊ೒೏ሖ  

ቇ

∑  భ
೓ഊ೒೏ሖ  

೙
೔సభ ௄ቆ

ೣష೉೔
೓ഊ೒೏ሖ  

ቇ
       (6) 

ෝ݉௩௔(ݔ) =
∑ ೤೔

೓ഊೡೌ́ 
೙
೔సభ ௄൬

ೣష೉೔
೓ഊೡೌ́ 

൰

∑  భ
೓ഊೡೌ́ 

೙
೔సభ ௄൬

ೣష೉೔
೓ഊೡೌ́ 

൰
      (7) 



 
Maejo Int. J. Sci. Technol. 2025, 19(02), 160-170  
 

 

165

ෝ݉௩௕(ݔ) =
∑ ೤೔

೓ഊೡሖ್  
೙
೔సభ ௄ቆ

ೣష೉೔
೓ഊೡሖ್  

ቇ

∑  భ
೓ഊೡ್ 

೙
೔సభ ௄ቆ

ೣష೉೔
೓ഊೡሖ್  

ቇ
       (8) 

ෝ݉௩௖(ݔ) =
∑ ೤೔

೓ഊೡ೎́ 
೙
೔సభ ௄൬

ೣష೉೔
೓ഊೡ೎́ 

൰

∑  భ
೓ഊೡ೎́ 

೙
೔సభ ௄൬

ೣష೉೔
೓ഊೡ೎́ 

൰
     (9) 

      ෝ݉௩ௗ(ݔ) =
∑ ೤೔

೓ഊೡ೏ሖ  
೙
೔సభ ௄ቆ

ೣష೉೔
೓ഊೡ೏ሖ  

ቇ

∑  భ
೓ഊೡ೏ሖ  

೙
೔సభ ௄ቆ

ೣష೉೔
೓ഊೡ೏ሖ  

ቇ
                                                 (10) 

 
Let us write all the proposed estimators of equations (3-10) in the following generalised 

form: 

ෝ݉ ௟௧(ݔ) =
∑ ೤೔

೓ഊ೗೟ሖ  
೙
೔సభ ௄ቆ

ೣష೉೔
೓ഊ೗೟ሖ  

ቇ

∑  భ
೓ഊ೗೟ሖ  

೙
೔సభ ௄ቆ

ೣష೉೔
೓ഊ೗೟ሖ  

ቇ
;  ሖ݈ = ݃, ݐ  and ݒ = ܽ, ܾ, ܿ, ݀. 

The bias and variance of ෝ݉ ௟௧(ݔ) are 
 

൫ܤ ෝ݉ ௟௧(ݔ)൯ = ൫௛ఒ೗೟ሖ  ൯
మ

ଶ
Ω௨ ቀ݉௟௧

ᇱᇱ(ݔ) + ଶ௠೗೟
ᇲ (௫)௚೗೟

ᇲ (௫)
௚೗೟(௫)

ቁ + ܱ(ℎߣ௟௧ሖ  )ଶ                      (11) 

ܸ൫ ෝ݉ ௟௧(ݔ)൯ = ቀ ఙమఙೠ
మ

௚೗೟(௫)
ቁ ൬ ଵ

௡௛ఒ೗೟ሖ  
൰ + ܱ ൬ ଵ

௡௛ఒ೗೟ሖ  
൰                                    (12) 

 
where ݃௟௧(ݔ)  is the probability distribution function of covariates ଵܺ, ܺଶ, … , ܺ௡  and Ω௨ =
∫ Further, MSE and mean integrated square error (MISE) of ෝ݉  .ݔ݀(ݔ)ܭଶݔ ௟௧(ݔ) are    

൫ܧܵܯ ෝ݉ ௟௧(ݔ)൯ = ൫ܤ] ෝ݉ ௟௧(ݔ)൯]ଶ + ܸ൫ ෝ݉ ௟௧(ݔ)൯, 

= ൫௛ఒ೗೟ሖ  ൯
ర

ସ
Ω௨

ଶ ቀ݉௟௧
ᇱᇱ(ݔ) + ଶ௠೗೟

ᇲ (௫)௚೗೟
ᇲ (௫)

௚೗೟(௫)
ቁ

ଶ
+ ቀ ఙమఙೠ

మ

௚೗೟(௫)
ቁ ൬ ଵ

௡௛ఒ೗೟ሖ  
൰  

                                                                + ܱ(ℎߣ௟௧ሖ  )ସ + ܱ ൬ ଵ
௡௛ఒ೗೟ሖ  

൰
                  (13) 

൫ܧܵܫܯ ෝ݉ ௟௧(ݔ)൯ = ൫௛ఒ೗೟ሖ  ൯
ర

ସ
Ω௨

ଶ ∫ ቀ݉௟௧
ᇱᇱ (ݔ) + ଶ௠೗೟

ᇲ (௫)௚೗೟
ᇲ (௫)

௚೗೟(௫)
ቁ

ଶ
                          ݔ݀

                                             + ൬ ఙమఙೠ
మ

௡௛ఒ೗೟ሖ  
൰ ∫ ቀ ଵ

௚೗೟(௫)
ቁ ݔ݀ + ܱ(ℎߣ௟௧ሖ  )ସ + ܱ ൬ ଵ

௡௛ఒ೗೟ሖ  
൰

                      (14) 

 
SIMULATION STUDY (UTILISATION OF COVID-19 DATA) 
 

There are seven continents in the world. Population-wise, Africa is the second-largest 
continent, with a population of approximately 1.34 billion people, which accounts for around 17.2% 
of the total world population. An inspection revealed that a significant portion of the population on 
this continent were infected with COVID-19. Given the presence of outliers of the data, it is suitable 
for the proposed NW kernel estimators based on PWMs as described. In analysing the simulation, 
we used four different variables: total number of deaths, total number of cases per million (1M) 
population, total number of deaths per million population, and total number of population of the 
African region. 

We obtained secondary data on Africa from a website Worldometer [18] and tailored it for 
our simulation study. Details of the COVID-19 data set are also available [19-21]. We considered 
two data sets named population-1 and population-2. In population-1, ܺ represents the total number 
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of cases per million population affected by COVID-19 from February 22, 2020, to August 23, 2020, 
while the variable ܻ represents the total number of deaths per million population during the same 
period. Similarly, in population-2, ܺ  indicates the total population of African countries, and ܻ 
indicates the total number of deaths due to COVID-19 in African territories during the specified 
time frame:   

Population-1 
ܺ = Sum of cases/1M population in Africa 
ܻ = Sum of deaths/1M population in Africa 
Population-2 
ܺ = Sum of population in Africa 
ܻ = Sum of deaths in Africa 
 
 Per cent relative efficiencies (PREs) and MSE are the tools used to assess the performance 

of estimators in the simulation. The MSE is calculated as shown in Eq. (15), where ݕො௜ represents 
estimated values based on all NW versions:  

 
ܧܵܯ = ଵ

௡
∑ ௜ݕ) − ො௜)ଶ௡ݕ

௜ୀଵ          (15) 
 

The asymptotic MSE (AMSE) is determined by simulating this procedure 1000 times as given in 
Eq. (16): 

ܧܵܯܣ = ଵ
ଵ଴଴଴

∑ ଵ଴଴଴ܧܵܯ
௜ୀଵ               (16) 

 
After that, for population-1 and population-2, AMSE-based PREs of the previous versions 
ቀ ෝ݉థ௧(ݔ)ቁ and the proposed version ൫ ෝ݉ ௟௧(ݔ)൯ of the estimators with respect to classical estimator 

ቀ ෝ݉థ଴(ݔ)ቁ are calculated as given in Eq. (17): 

ܧܴܲ =
஺ெௌாቀ௠ෝ ഝబ(௫)ቁ

஺ெௌாቀ௠ෝ ഝ೟(௫)  ୭୰  ௠ෝ ೗೟(௫)ቁ
× 100                                       (17) 

 
The results of the PRE values related to the two considered populations are listed in Tables 2-5. 
 
           Table 2.  PREs for population-1 for Alpha (ߙ) 

 
ෝ݉  ℎ =  0.5 ℎ =  0.75 ℎ =  1 

ෝ݉థ଴(ݔ) 100 100 100 
ෝ݉థଵ(ݔ) 103.5463 103.6362 103.3158 
ෝ݉థଶ(ݔ) 103.3734 103.7533 103.4131 
ෝ݉థଷ(ݔ) 103.6731 103.7531 103.9193 
ෝ݉థସ(ݔ) 103.7739 103.6534 103.1135 
ෝ݉థହ(ݔ) 103.6102 103.5901 103.5492 
ෝ݉థ଺(ݔ) 103.2736 103.4536 103.4134 
ෝ݉థ଻(ݔ) 103.4373 103.9540 103.1232 
ෝ݉௚௔(ݔ) 116.1735 116.9534 116.6133 
ෝ݉௚௕(ݔ) 116.2425 116.4195 116.3742 
ෝ݉௚௖(ݔ) 116.8374 116.2143 116.2690 
ෝ݉௚ௗ(ݔ) 116.9375 116.1142 116.3691 
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             Table 3.  PREs for population-1 for Beta (ߚ) 
 

ෝ݉  ℎ =  0.5 ℎ =  0.75 ℎ =  1 
ෝ݉థ଴(ݔ) 100 100 100 
ෝ݉థଵ(ݔ) 104.4462 104.6362 104.2158 
ෝ݉థଶ(ݔ) 104.2733 104.8544 104.3131 
ෝ݉థଷ(ݔ) 104.6821 104.9536 104.8139 
ෝ݉థସ(ݔ) 104.7739 104.6535 104.2135 
ෝ݉థହ(ݔ) 104.6132 104.2902 104.4492 
ෝ݉థ଺(ݔ) 104.2699 104.1533 104.4143 
ෝ݉థ଻(ݔ) 104.4801 104.7321 104.5736 
ෝ݉௩௔(ݔ) 118.3734 118.9535 118.5133 
ෝ݉௩௕(ݔ) 118.3575 118.3195 118.6742 
ෝ݉௩௖(ݔ) 118.8291 118.2144 118.1690 
ෝ݉௩ௗ(ݔ) 118.8560 118.1143 118.0691 

 

            Table 4.  PREs for population-2 for Alpha (ߙ) 
    

ෝ݉  ℎ =  0.5 ℎ =  0.75 ℎ =  1 
ෝ݉థ଴(ݔ) 100 100 100 
ෝ݉థଵ(ݔ) 107.3331 107.3328  107.3322 
ෝ݉థଶ(ݔ) 107.3348 107.3342 107.3330 
ෝ݉థଷ(ݔ) 107.3345 107.3339 107.3326 
ෝ݉థସ(ݔ) 107.3328 107.3322 107.3310 
ෝ݉థହ(ݔ) 107.3335 107.3329 107.3316 
ෝ݉థ଺(ݔ) 107.3330 107.3332 107.3320 
ෝ݉థ଻(ݔ) 107.2141 107.2135 107.2123 
ෝ݉௚௔(ݔ) 520.4999 520.6964 520.3548 
ෝ݉௚௕(ݔ) 520.9187 520.5152 520.1504 
ෝ݉௚௖(ݔ) 520.4842 520.6806 520.4505 
ෝ݉௚ௗ(ݔ) 520.5613 520.4578 520.5392 
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             Table 5.  PREs for population-2 for Beta (ߚ)     
ෝ݉  ℎ =  0.5 ℎ =  0.75 ℎ =  1 

ෝ݉థ଴(ݔ) 100 100 100 
ෝ݉థଵ(ݔ) 108.4232 108.4229 108.4221 
ෝ݉థଶ(ݔ) 108.4249 108.4243 108.4230 
ෝ݉థଷ(ݔ) 108.4248 108.4238 108.4225 
ෝ݉థସ(ݔ) 108.4227 108.4221 108.4211 
ෝ݉థହ(ݔ) 108.4234 108.4228 108.4214 
ෝ݉థ଺(ݔ) 108.4237 108.4231 108.4221 
ෝ݉థ଻(ݔ) 108.4242 108.4234 108.4223 
ෝ݉௩௔(ݔ) 535.4998 535.4965 535.4547 
ෝ݉௩௕(ݔ) 535.5187 535.5153 535.4503 
ෝ݉௩௖(ݔ) 535.4843 535.4805 535.4504 
ෝ݉௩ௗ(ݔ) 535.4614 535.4577 535.4391 

 

Discussion 
 

The proposed and previous versions of the NW kernel estimators are compared in terms of 
the PRE values. According to the simulated results in Tables 2-5, it is clear that the PREs for the 
proposed estimators are higher than those of the existing estimators. Therefore, the increase in the 
value of PRE means a decrease in the value of the MSE. These results are evidence that the 
proposed estimators perform significantly well. The proposed estimators demonstrate a clear 
convergence in performance. However, Tables 2 and 5 with ℎ = 0.5, as well as Tables 2, 3 and 4 
with ℎ = 0.75, show that the first estimator is preferred in such cases. 

   Further, except for the classical NW estimator, i.e. ෝ݉థ଴(ݔ) from Tables 2, 3 and 4, we 
found that the performance of all estimators has been affected (generally enhanced) by increasing 
the value of the bandwidth ℎ. It is worth noting that the performance of all estimators in population-
2 for Beta (Table 5) is completely enhanced by increasing the value of ℎ from 0.5 to 0.75 to 1, 
where the best performance of the estimators is recorded at ℎ = 1. In this context the lower and 
upper values of PRE for two populations for Alpha and Beta associated with the proposed and 
existing estimators are identified from Tables 2-5 and expressed as an interval shown in Table 6. 
From this Table, it is noted that all proposed estimators ෝ݉ ௟௧(ݔ) achieve excellent performance 
compared to all the existing estimators, and the values of PRE associated with Beta are always 
higher than those corresponding to Alpha.  

Finally, the PRE values associated with the estimators can be stated as follows:    
൫ݏܧܴܲ ෝ݉ ௟௧(ݔ)൯ > ݏܧܴܲ ቀ ෝ݉థ௧(ݔ)ቁ > ݏܧܴܲ ቀ ෝ݉థ଴(ݔ)ቁ. 

 
Hence the proposed family of NW kernel estimators significantly outperforms ෝ݉థ௧(ݔ)  and is 
strongly recommended for use. 
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            Table 6.  Lower and upper PREs for population-1 and population-2   
 
Population ෝ݉  ℎ For Alpha (ߙ) For Beta (ߚ) 

1 

ෝ݉ ௟௧(ݔ) 
0.5 [116.2690-116.6133] [118.0691-118.6742] 

0.75 [116.1142-116.9534] [118.1143-118.9535] 
1 [116.1735-116.9375] [118.3575-118.8560] 

ෝ݉థ௧(ݔ) 
0.5 [103.1135-103.9193] [104.2135-104.8139] 

0.75 [103.4536-103.9540] [104.1533-104.9536] 
1 [103.2736-103.7739] [104.2699-104.7739] 

2 

ෝ݉ ௟௧(ݔ) 
0.5 [520.1504-520.5392] [535.4391-535.4547] 

0.75 [520.4578-520.6964] [535.4577-535.5153] 
1 [520.4842-520.9187] [535.4614-535.5187] 

ෝ݉థ௧(ݔ) 
0.5 [107.2123-107.3330] [108.4211-108.4230] 

0.75 [107.2135-107.3342] [108.4221-108.4243] 
1 [107.2141-107.3348] [108.4227-108.4249] 

 
CONCLUSIONS 
 

In this work it is concluded that implementing PWMs in the bandwidth factor of the NW 
kernel function provides a new family of NW kernel regression estimators that significantly boost 
the performance of the estimators in the presence of outliers. As PWMs are not as influenced by 
outliers and are comparatively less sensitive than traditional measures of central tendency and 
dispersion, they perform better. Simulation results illustrate that the PREs of the proposed 
estimators are significantly greater than those of existing estimators. Additionally, the increase in 
the value of PRE of the proposed estimators means a decrease in the value of the MSE, indicating 
the robustness of the proposed family of kernel estimators in the presence of outliers. The obtained 
method is computationally tractable, more consistent and comprehensive, making it more useful and 
applicable for such conditions. As concrete directions for future studies, this work can be adapted 
for multivariate regression or time series data and extended in light of Ali et al. [22]. 
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