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Abstract: Regression analysis plays a significant role in statistics by identifying the
relationship between variables. However, when the assumptions of ordinary least squares are
violated, non-parametric regression becomes a preferable approach. In the field of non-
parametric regression, Nadaraya-Watson (NW) kernel regression estimators have gained
popularity in recent decades. The adaptive NW kernel regression estimator is considered one
of the best and most effective estimators for non-parametric regression due to its varying
bandwidth. The effective utilisation of the bandwidth factor is a key aspect of kernel
regression. This article proposes the use of probability-weighted moments (PWMs) to
enhance the bandwidth factor of the kernel regression estimator. The novelty of this approach
lies in replacing traditional measures of central tendency and dispersion with PWMs to
introduce a new family of NW kernel regression estimators that are more robust to outliers.
Monte Carlo simulation studies are conducted to compare the performance of existing and
proposed kernel regression estimators. The simulations use a data set of COVID-19 cases
from Africa, highlighting the severity of the current pandemic. The results of the simulations
demonstrate that the proposed family of estimators is more robust than existing estimators.

Keywords: probability weighted moments, non-parametric regression estimators, NW kernel
estimator, measures of central tendency, percentage relative efficiency

INTRODUCTION

Before the development of non-parametric statistics, scientists in various fields preferred to
use parametric tests for analysis as they were more predictive than non-parametric statistics,
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especially in regression analysis. This is why science and engineering tend to use parametric
statistics because they are predictive. However, parametric statistics are not applicable when
ordinary least square assumptions are not fulfilled. In cases where the data are scattered delicately,
non-parametric statistics provide a better solution.

The demand for kernel regression estimators is growing rapidly, but it requires more flexible
estimators that offer greater accuracy for analysing and inferring results. The method introduced by
Nadaraya and Watson [1] in non-parametric regression is primarily based on empirical data with a
very large sample size. The descriptive variable’s observation is measured by a smoothing
parameter. The Nadaraya-Watson (NW) kernel estimator is one of the leading non-parametric
regression estimation methods. This estimator provides a precise measurement of observations and
the regression curve based on the observed data.

Mathematically, for the given data {X;, Y;}I-,, consider the regression model ¥ = m(x) + ¢
with observation errors &; and unknown regression function m, where the response random variable

Y depends on an independent random variable X, and € is a random variable with mean 0 and
variance o2. It is widely known that m(x) = % dy is a conditional mean curve that depends
on the joint density function of X and Y (f(x,y)) and the marginal function of X (f(x)), and it can

be estimated by employing the kernel probability density (K (. )) for all values of X as
S vik(5)

Mo (x) = Tx—xl) €y

i=1
The NW kernel estimators in Eq. (1) depend on a parameter (h) known as the bandwidth.

This parameter controls the extent of curve smoothing. This idea is further elaborated by Wand and
Jones [2] for a large bandwidth h that can be fixed or varying and estimated as a smooth density
function.

The selection of the optimal bandwidth is important. The mean integrated square error is
minimised by using the optimal bandwidth, which can be found by integrating the mean square
error (MSE). Friedman and Stuetzle [3] suggested a method of finding the parameters of a non-
parametric regression model without knowing the bandwidth h. There are different methods for the
selection of the bandwidth h described by many authors such as Duin [4], Rudemo [5], Silverman
[6], Wand and Jones [2], Hérdle et al. [7] and Slaoui [8]. The flexible bandwidth is suggested rather
than a fixed bandwidth in the situation of a long-tailed curve.

Abramson [9] suggested a method of inverse square root for selecting the variable kernel
density bandwidth, which decreases bias more effectively than the fixed bandwidth estimator.
Silverman [6] discussed the assumptions of kernel weights and the properties of the estimator such
as mean and variance.

Demir and Toktamis [10] implemented an adaptive NW kernel regression estimator for
estimating the regression function. Their simulation studies demonstrated that the NW estimator
yielded improved results when using the arithmetic mean instead of the geometric mean to evaluate
the local bandwidth factor. Aljuhani and Al-Turk [11] proposed using the range of the probability
density function to modify the bandwidth factor h.

In the adaptive NW kernel estimator, Ali [12] introduced some modifications. He proposed
incorporating trimmed mean, median and harmonic mean in the bandwidth factor of the NW
estimator instead of arithmetic mean and geometric mean. Based on the results of a simulation
study, he concluded that using these measures in the bandwidth factor h of the modified estimator,
especially the harmonic mean, improved the estimator's performance. To support his argument, he
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evaluated the MSE in a simulation study and found that the MSE of the proposed estimators
decreased with these innovations. The suggested bandwidth factors by Ali [12] are listed in Table 1.

These kernel regression estimators have been suggested in the last few decades, inspired by
the NW kernel regression model. The generalised form of the NW kernel regression function
My (X) is given by

m (x)—w for t = 1,2,...,7 0
ot - n K(x_xi) = 1,z7,...,

axp)

Many authors have extended this idea. The detailed expression of Eq. (2) and its extensions
are given below in Table 1, where the local bandwidth factors d(x;) can be determined by
employing different types of A's.

Table 1. Some family members of i (x)

Mg () d(x;) A Author
1

r’ﬁ¢1(x) d(x,) = % A= \% Abramson [9]
Mg () d(x;) = higy Aoy = ol Silverman [6]

GM
M3 () d(x3) = hluy My = f:;\;‘) Demir and Toktamis [10]
M g () d(x,) = hlg g = [f @] Aljuhani and Al-Turk [11]

, Ali[12

Pl G =y g =[] e

Tr

= B
m¢6(x) d(x6) = hAMD AMD [@
M7 () d(x;) = hdyy [f )|

Taking inspiration from Ali [12], we introduce the concept of probability weighted moments
(PWMs) to the bandwidth factor of the NW estimator as PWMs are more robust in the presence of
outliers.

In most cases the data do not fulfill the conditions of normality when they are collected
through experiments or different procedures. In such cases non-parametric kernel regression
becomes more effective. The kernel regression estimators (NW and its adaptive version) provide a
robust solution in such situations. The NW estimator uses a fixed bandwidth while the adaptive
version relies on a varying bandwidth.

In this manuscript some new versions of the NW kernel regression estimator are proposed
by utilising PWMs. The NW kernel regression approach is a good choice when ordinary least
square assumptions fail. By using these PWMs instead of traditional measures of central tendency
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and dispersion, the estimator is tuned more efficiently and has proven to be more robust against data
with outliers.

The PWMs were suggested by Greenwood et al. [13] and were generally used to estimate
parameters. According to the classical approach of PWMs (E[X(1 — F)™] or E[XF*]), F is the
cumulative distribution function of a random variable X, where the values of m and s should be
small, non-negative integers. Usually, they can be either 0, 1 or 2, depending on the parameters
being estimated. Meintanis and Ushakov [14] developed a probability-weighted empirical
characteristic function for weighted distributions. Caeiro and Mateus [15] defined some new
estimators for the parameters of the Pareto distribution based on PWMs. Rasmussen [16] proposed a
generalised method of PWMs as an extended class of PWMs with no restrictions on the selection of
m and s. The purpose of implementing PWMs in this article is based on the special characteristics
of PWMs as outlined below:

e PWNMs are less sensitive to outliers in the data set.
e PWNMs can effectively summarise and describe the observed data set.
e PWNMs are used for non-parametric estimation of the observed data sample.

There are several approaches for estimation as mentioned earlier. However, the significance
and novelty of the current paper lie in utilising PWMs in the bandwidth factor of the NW kernel
regression function, which is less sensitive to outliers. By using PWMs, a new family of estimators
is obtained.

PROPOSED KERNEL REGRESSION ESTIMATORS
PWMs

Outliers can introduce significant bias in regression analysis, particularly affecting
bandwidth-dependent estimators. Therefore, estimators are more reliable when they can
accommodate the entire data set including outliers, and when their results are not influenced by the
presence of outliers. PWMs are more robust in the presence of extreme observations as they are less
sensitive to outliers and provide more effective estimates.

Population PWMs are represented by a and f while sample PWMs 4, and Bp are given

below:
A L
a, =n =1 1) for p=01,..,n—1,
p
j-1
b,=n"t ;121((n )1;’ for p=0,1,..,n—1,
p
(nt Z;lzl X; for p=0 (n~1 Zr} 1%j forp=0
-1 (n—j) x;j _ -1 (-Dx _
n ;‘lel)’ for p=1 n ;‘1(—’f p=1
C,l = _ n—j X R B = _ j-
p < n 1 ;121((31_)1)1 for p= 2 14 < n 1 ;l 1((31 )1)1 for p= 2
2
() (5)s
— 3 J _ -1 3 )% —
| n 1 ya =9 for p=3 |7 = ) for p=3

The presence of outliers in the data is a well-known problem in estimation. Outliers
significantly influence the results, making it difficult for researchers to derive valuable conclusions
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from such data. The NW and adaptive NW kernel regression estimators become more appealing in
such situations as they play a key role in handling these problems. PWMs are also more effective
for outliers. Therefore, incorporating PWMs in the bandwidth factor of the NW kernel regression
estimator remarkably improves the performance of the estimator. For more detailed information
about robustness and PWMs, interested readers are referred to the Rasmussen [16] and Shahzad et
al. [17].

Family of NW Kernel Regression Estimators Utilising PWMs

A new family of NW kernel regression estimators is introduced here by incorporating
concepts from Ali [12]. The proposed family of NW estimators is defined by modifying the
bandwidth factor as follows:

d(xq0) = higg where Aja = %;:l) -a
o
d(xq1) = hdg, where Agp = %’?)
o a
d(xgz) = hAgc where Aje = %’ZI)
g
d(xq3) = hdg, where Ajg = %’:1)
Similarly,
d(xpo) = hdy, where Mg = :f ;’;i): _ﬁ’
d(xp) = hly, — where Ty = |22 d
d(xpy) = Ay, where T = [£22] d
d(xp3) = hd,y where Ajg = % _ﬁ_

Mga(x) = ' (Hi> 3)

Mgp(x) = — K(x—m) (4)

)

mgd(x)=zn - K<x_xi> (6)

fﬁva(x)= " 1 K(x—)%i) (7)
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My (X) = R K<x—Xi> (8)

Mye(x) = n 1 K(x—xi) )

7 (10
i)

Let us write all the proposed estimators of equations (3-10) in the following generalised
form:

: Z=g,v and t =a,b,c,d.

My (x) =

The bias and variance of 7. (x) are

B( () = P 0, (miy o) + D) 1 0z, (1
2ol 1 1
V(mlt (X)) (glt(x)) (nh)‘[t) +0 (nh)‘[t) (12)

where g;(x) is the probability distribution function of covariates X;,X,,.., X, and Q, =
[ x2K(x)dx. Further, MSE and mean integrated square error (MISE) of /i, (x) are

MSE (i, (x)) = [B(y (x))]? + v(mux)),
(h)‘lt) Q2 ( " (x) + zmlt(x)glt(x)) + (ﬁ) (L)

9ex) 91/ \nhdy, (13)
+ 0(hag)* + 0( v )
It
MISE (i, (x)) = W”) 02 [ (mp (o) + %) ax (14)
g~oy 4
+ (nh)t[t) f (glt( )) dx + O(hllt) +0 ( h)‘lt)

SIMULATION STUDY (UTILISATION OF COVID-19 DATA)

There are seven continents in the world. Population-wise, Africa is the second-largest
continent, with a population of approximately 1.34 billion people, which accounts for around 17.2%
of the total world population. An inspection revealed that a significant portion of the population on
this continent were infected with COVID-19. Given the presence of outliers of the data, it is suitable
for the proposed NW kernel estimators based on PWMs as described. In analysing the simulation,
we used four different variables: total number of deaths, total number of cases per million (1M)
population, total number of deaths per million population, and total number of population of the
African region.

We obtained secondary data on Africa from a website Worldometer [18] and tailored it for
our simulation study. Details of the COVID-19 data set are also available [19-21]. We considered
two data sets named population-1 and population-2. In population-1, X represents the total number
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of cases per million population affected by COVID-19 from February 22, 2020, to August 23, 2020,
while the variable Y represents the total number of deaths per million population during the same
period. Similarly, in population-2, X indicates the total population of African countries, and Y
indicates the total number of deaths due to COVID-19 in African territories during the specified
time frame:

Population-1

X = Sum of cases/1M population in Africa

Y = Sum of deaths/1M population in Africa

Population-2

X = Sum of population in Africa

Y = Sum of deaths in Africa

Per cent relative efficiencies (PREs) and MSE are the tools used to assess the performance
of estimators in the simulation. The MSE is calculated as shown in Eq. (15), where y; represents
estimated values based on all NW versions:

1 ~
MSE =~ ¥, (vi — 9)* (15)
The asymptotic MSE (AMSE) is determined by simulating this procedure 1000 times as given in
Eq. (16):

1
AMSE = ——¥190° MSE (16)

After that, for population-1 and population-2, AMSE-based PREs of the previous versions
(r’ﬁqbt(x)) and the proposed version (7, (x)) of the estimators with respect to classical estimator

(ﬁ(w (x)) are calculated as given in Eq. (17):

PRE — AMSE(T?l¢0(x))
AMSE(r?ld,t(x) or rﬁlt(x))

x 100 (17)

The results of the PRE values related to the two considered populations are listed in Tables 2-5.

Table 2. PREs for population-1 for Alpha (a)

m h =05 h = 0.75 h=1
Mo (x) 100 100 100
Mg (x) 103.3158 103.6362 103.5463
M (x) 103.4131 103.7533 103.3734
M3 (x) 103.9193 103.7531 103.6731
M pa () 103.1135 103.6534 103.7739
M s (x) 103.5492 103.5901 103.6102
M6 (x) 103.4134 103.4536 103.2736
M7 (x) 103.1232 103.9540 103.4373
Mgq(x) 116.6133 116.9534 116.1735
Mg (x) 116.3742 116.4195 116.2425
Mige () 116.2690 116.2143 116.8374

Mgq () 116.3691 116.1142 116.9375
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Table 3. PREs for population-1 for Beta (8)

m h =05 h = 0.75 h =1
fﬁqbo(x) 100 100 100
fﬁqbl(x) 104.2158 104.6362 104.4462
fﬁqbz(x) 104.3131 104.8544 104.2733
r’ﬁ¢3(x) 104.8139 104.9536 104.6821
r’ﬁ¢4(x) 104.2135 104.6535 104.7739
fﬁ(ps(x) 104.4492 104.2902 104.6132
fﬁ¢6(x) 104.4143 104.1533 104.2699
r’ﬁ¢7(x) 104.5736 104.7321 104.4801
My () 118.5133 118.9535 118.3734
My, (X) 118.6742 118.3195 118.3575
e () 118.1690 118.2144 118.8291
My (X) 118.0691 118.1143 118.8560

Table 4. PREs for population-2 for Alpha («)

m h =05 h = 0.75 h =1
fﬁqbo(x) 100 100 100
fﬁqbl(x) 107.3322 107.3328 107.3331
fﬁqbz(x) 107.3330 107.3342 107.3348
r’ﬁ¢3(x) 107.3326 107.3339 107.3345
r’ﬁ¢4(x) 107.3310 107.3322 107.3328
fﬁqbs(x) 107.3316 107.3329 107.3335
fﬁ¢6(x) 107.3320 107.3332 107.3330
r’ﬁ¢7(x) 107.2123 107.2135 107.2141
Mgq(x) 520.3548 520.6964 520.4999
Mg (x) 520.1504 520.5152 520.9187
Mge () 520.4505 520.6806 520.4842
Mgq () 520.5392 520.4578 520.5613

167
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Table 5. PREs for population-2 for Beta (8)

m h = 0.5 h = 0.75 h=1
Mo (x) 100 100 100
g1 (%) 108.4221 108.4229 108.4232
Mo (x) 108.4230 108.4243 108.4249
g3 (%) 108.4225 108.4238 108.4248
gy (%) 108.4211 108.4221 108.4227
g5 (x) 108.4214 108.4228 108.4234
Mgy (X) 108.4221 108.4231 108.4237
g7 (%) 108.4223 108.4234 108.4242
My (%) 535.4547 535.4965 535.4998
Ay (x) 535.4503 535.5153 535.5187
lye (%) 535.4504 535.4805 535.4843
lyg () 535.4391 535.4577 535.4614

Discussion

The proposed and previous versions of the NW kernel estimators are compared in terms of
the PRE values. According to the simulated results in Tables 2-5, it is clear that the PREs for the
proposed estimators are higher than those of the existing estimators. Therefore, the increase in the
value of PRE means a decrease in the value of the MSE. These results are evidence that the
proposed estimators perform significantly well. The proposed estimators demonstrate a clear
convergence in performance. However, Tables 2 and 5 with h = 0.5, as well as Tables 2, 3 and 4
with h = 0.75, show that the first estimator is preferred in such cases.

Further, except for the classical NW estimator, i.e. r’ﬁ¢0(x) from Tables 2, 3 and 4, we
found that the performance of all estimators has been affected (generally enhanced) by increasing
the value of the bandwidth h. It is worth noting that the performance of all estimators in population-
2 for Beta (Table 5) is completely enhanced by increasing the value of h from 0.5 to 0.75 to 1,
where the best performance of the estimators is recorded at h = 1. In this context the lower and
upper values of PRE for two populations for Alpha and Beta associated with the proposed and
existing estimators are identified from Tables 2-5 and expressed as an interval shown in Table 6.
From this Table, it is noted that all proposed estimators i, (x) achieve excellent performance
compared to all the existing estimators, and the values of PRE associated with Beta are always
higher than those corresponding to Alpha.

Finally, the PRE values associated with the estimators can be stated as follows:

PREs(; (x)) > PRES (g (x)) > PRES (g0(x)).

Hence the proposed family of NW kernel estimators significantly outperforms g (x) and is

strongly recommended for use.
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Table 6. Lower and upper PREs for population-1 and population-2

169

Population m h For Alpha (a) For Beta ()
0.5 [116.2690-116.6133] [118.0691-118.6742]
iy () 0.75 [116.1142-116.9534] [118.1143-118.9535]
| 1 [116.1735-116.9375] [118.3575-118.8560]
0.5 [103.1135-103.9193] [104.2135-104.8139]
Mge(x)  0.75 [103.4536-103.9540] [104.1533-104.9536]
1 [103.2736-103.7739] [104.2699-104.7739]
0.5 [520.1504-520.5392] [535.4391-535.4547]
iy () 0.75 [520.4578-520.6964] [535.4577-535.5153]
5 1 [520.4842-520.9187] [535.4614-535.5187]
0.5 [107.2123-107.3330] [108.4211-108.4230]
Mg (x)  0.75 [107.2135-107.3342] [108.4221-108.4243]
1 [107.2141-107.3348] [108.4227-108.4249]

CONCLUSIONS

In this work it is concluded that implementing PWMSs in the bandwidth factor of the NW
kernel function provides a new family of NW kernel regression estimators that significantly boost
the performance of the estimators in the presence of outliers. As PWMs are not as influenced by
outliers and are comparatively less sensitive than traditional measures of central tendency and
dispersion, they perform better. Simulation results illustrate that the PREs of the proposed
estimators are significantly greater than those of existing estimators. Additionally, the increase in
the value of PRE of the proposed estimators means a decrease in the value of the MSE, indicating
the robustness of the proposed family of kernel estimators in the presence of outliers. The obtained
method 1s computationally tractable, more consistent and comprehensive, making it more useful and
applicable for such conditions. As concrete directions for future studies, this work can be adapted
for multivariate regression or time series data and extended in light of Ali et al. [22].
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