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Abstract:  This study introduces a derivative concept that integrates the q-derivative and the 
Fréchet derivative, aiming to overcome the limitations associated with non-linear operators. 
The theoretical foundation for the newly defined quantum Fréchet derivative is presented, 
supported by definitions, properties and illustrative examples. In particular, this derivative 
maintains consistency with classical definitions in finite-dimensional cases, while offering 
generalisability for applications in infinite-dimensional spaces.  
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INTRODUCTION 
 

The solution of non-linear operator equations is one of the most actively researched topics in 
contemporary mathematics. The study of non-linear operators can be facilitated by examining their 
approximations through local linear operators. Therefore, the investigation of the differential calcu-
lus of non-linear operators in normed spaces is of significant importance. 

It is known that, for a function ݂: ܣ ⊆ ℝ → ℝ, with ݔ being any non-isolated point in ܣ°, 
the function ݂ is differentiable at ݔ if and only if the following equality holds [1]: 

 

lim
௫→௫బ

(ݔ)݂ − (ݔ)݂
ݔ − ݔ

= ݂ᇱ(ݔ).                                                               (1) 
 
The equation does not make sense for functions of the form ݂: ℝⁿ → ℝ (or more generally, for 
operators of the form ݂: ܺ → ܻ, where ܺ and ܻ are Banach spaces). The concept of derivative ex-
pressed for real-valued functions of real variables has been generalised to all normed spaces. This 
extension was carried out by the French mathematician Maurice Fréchet [2]. Therefore, for such 
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transformations, the concept of Fréchet derivative can be utilised. The most significant aspect of 
Fréchet differentiability is that it can be extended to infinite-dimensional spaces. Consider a trans-
formation ݂: ܣ ⊆ ܺ → ܻ, and let ݔ ∈  ݂ The necessary and sufficient condition for the function .°ܣ
to be Fréchet differentiable at the point ݔ is the existence of a linear transformation ܶ: ܺ → ܻ such 
that [1] 

lim
௫→௫బ

(ݔ)݂‖ − (ݔ)݂ − ݔ)ܶ − ‖(ݔ
ݔ‖ − ‖ݔ = 0.                                             (2) 

 
For a comprehensive survey on Fréchet differentiability, refer to Siddiqi and Nanda [3]. 

As can be seen, these derivative definitions rely on the concept of a limit. It is known that 
operators without limits exist. In the field known as limit analysis, by utilising quantum analysis 
developed by F.H. Jackson [4], quantum derivatives can be employed to obtain the derivatives of 
operators for which limits cannot be taken.  

It should be noted that the quantum derivative converges to the classical derivative as q ap-
proaches 1. Generally, ݍ is used within the range (0,1) [5]. For a comprehensive survey on ݍ-
calculus, refer to Ernst [6]. Numerous generalisations and variants of the quantum derivative, such 
as the (p,q)-derivative [7-9], the conformable derivative [10] and the Caputo q-derivative [11,12], 
have been extensively studied along with their various applications. 

The absence of a generally accepted derivative framework appropriate for non-linear opera-
tors without computable limits is a significant gap in the literature that this study seeks to fill. To 
enable wider applicability in normed vector spaces, the goal is to create a new derivative that com-
bines the limit-free nature of the q-derivative with the structural generality of the Fréchet derivative. 

In this paper an attempt has been made to address the long-standing issue of being unable to 
compute the derivative of operators that are non-linear and that do not admit computable limits, 
using the three derivative definitions found in the literature as a starting point. As known, the Fré-
chet derivative is a generalisation of the classical derivative. When the Fréchet derivative is taken 
and the operator is defined in real numbers, the result obtained is the same as that obtained through 
the classical derivative. Based on this information, in addressing the issue of being unable to com-
pute the derivative of non-linear operators, a solution has been sought by utilising the Fréchet deriv-
ative, a generalisation of the classical derivative, instead of the classical derivative. While the Fré-
chet derivative provides a solution to taking the derivative of non-linear operators, it falls short 
when dealing with operators without limits [13]. Hence in attempting to address this deficiency in 
the Fréchet derivative, the quantum derivative is applied to the Fréchet derivative [14-17]. If the 
anticipated result is achieved, a generalisation of the derivative will be obtained, introducing a novel 
form of derivative. This research is of significant importance in overcoming this crucial deficiency 
mentioned in the literature concerning derivatives. 

 
PRELIMINARIES 
 

In this section we present key definitions of the q-derivative and the Fréchet derivative, 
along with some of their useful properties.  
Definition 1.  A function ݂: ܣ ⊆ ܺ → ܻ is said to be Fréchet differentiable at ݔif ݔ is an interior 
point of ܣ and there exists ܶ ∈ ℒ(ܺ, ܻ) such that 
 

lim
௫→௫బ

(ݔ)݂‖ − (ݔ)݂ − ݔ)ܶ − ‖(ݔ
ݔ‖ − ‖ݔ = 0.                                            (3) 
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This linear function ܶ is called the Fréchet derivative of the function ݂ at ݔ [1]. If the point ݔ is 
not an interior point of the set  ܣ, the linear function ܶ may not be unique.  
Definition 2.  Let the operator ݂: ܣ ⊆ ܺ → ܻ be Fréchet differentiable at ݔ. Then for ݔ − ݔ = ℎ, 
 

; ݔ)݂݀ ℎ) =  ℎ                                                                    (4)(ݔ)݂ܦ 
 
The expression is called the Fréchet differential of ݂ at ݔ in the direction ℎ [1].  
Definition 3.  The quantum derivative of a function ݂: ܣ ⊆ ℝ → ℝ, denoted as ܦ݂, is defined in a 
manner similar to the classical analysis definition, with ݔ ≠ 0 and ݍ ∈ ℝ − {1}, as follows: 
 

(ݔ)݂ܦ =
݂݀(ݔ)

݀ݔ =
(ݔ)݂ − (ݔݍ)݂

(1 − ݔ(ݍ ,                                                    (5) 
 
which is defined as the ratio of two differentials. The quantum derivative of the function ݂ at ݔ = 0 
is defined to be equivalent to the classical derivative ݂ᇱ(0). According to this, the quantum deriva-
tive of a function ݂ is expressed as follows [5]: 
 

(ݔ)݂ܦ = ቐ
(ݔ)݂ − (ݔݍ)݂

(1 − ݔ(ݍ , ݔ ≠ 0 ∧ ݍ ≠ 1

݂ᇱ(ݔ), ݔ                 = 0 ∨ ݍ = 1
.                                         (6) 

 
Definition 4.  If ݂ is a transformation, then the quantum differential of ݂ is defined as 
 

݂݀(ݔ) = (ݔ)݂ −  (7)                                                           (ݔݍ)݂
Specifically, ݀ݔ = (1 −  .[5] ݔ(ݍ
 
QUANTUM FRÉCHET DERIVATIVE 
 

The classical derivative is inadequate in many functional analysis and applied mathematics 
applications when non-linear operators or functions whose limits cannot be directly calculated are 
involved.  Despite providing a strong generalisation to infinite-dimensional spaces, the Fréchet de-
rivative still primarily depends on the presence of limits. On the other hand, when classical differen-
tiability fails because there are no limits, quantum calculus, especially the ݍ-derivative, has shown 
promise. However historically, ݍ -calculus has mostly been used with functions between one-
dimensional spaces. 

We suggest a new type of derivative, the quantum Fréchet Derivative, which incorporates 
the limit-free structure of ݍ-derivatives into the general framework of Fréchet differentiability. This 
definition is motivated by the necessity to bridge these two frameworks, because existence of limit 
can be too restrictive in higher dimensions. Our construction can potentially broaden the application 
of quantum calculus to more abstract contexts while also addressing the differentiability of non-
linear operators in Banach spaces. Hence it is expected to be a useful tool for analysing complex 
systems where traditional calculus tools are insufficient, as well as a theoretical generalisation. 

In the sequel, we define a generalised form of the derivative by combining the quantum and 
Fréchet derivatives.  
Definition 5.  Let ܺ and ܻ be Banach spaces where {݁: ݅ ∈  represents the Hamel basis of ܺ, and {ܫ
൛ ݁: ݆ ∈  .ܻ ൟ represents the Schauder basis ofܬ

Given any transformation ݂: ܣ ⊆ ܺ → ܻ and for ߨ: ܻ → ℝ, we use the representation: 

݂ = ߨ ∘ ݂.                                                                             (8) 
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Additionally, for any ݔ ∈ ܺ and ݕ ∈ ܻ, if we have  ݔ = ∑ ݁∈ூݔ  and ݕ = ∑ ݕ ݁∈ , we will denote 
ݔ as ݔ = ݕ as ݕ ∈ூ and(ݔ) = ൫ݕ൯

∈
. 

Consider a mapping ݂: ܺ → ܻ, and for each ݅ ∈  the partial derivative with respect to the ,ܫ
quantum parameter ݍ is defined as follows: 

 
߲݂

߲ݑ
=

ݔ)݂ + ݍ) − (݁ݔ(1 − (ݔ)݂
ݍ) − ݔ(1

, ݍ) ≠ 1, ݔ ≠ 0).                        (9) 
 
In this case if we define ݂

  as ߨ composed of the partial derivative with respect to the quan-

tum parameter ݍ ൬ డ
డ௨

൰, then this partial derivative can be expressed as the sum over ݆ in the set ܬ: 

߲݂
߲ݑ

=  ݂


݁
∈

,                                                                (10) 

 
and the expression ൫ ݂

൯
(,)∈ூ×

 is referred to as the quantum Fréchet derivative of ݂ at the point  ݔ. 

Here, the expression డ
డ௨

 is also referred to as the partial quantum Fréchet derivative of ݂ at the 

point  ݔ. 
It should be noted that if, for every ݑ ∈ ܺ, the operator ܶ(݂, :(ݔ ܺ → ܻ defined as 
 

ܶ(݂, (ݑ)(ݔ =   ݂ ݑ ݁
∈ூ∈

,                                                         (11) 

is well-defined, then it is linear. 
Accordingly, the quantum Fréchet derivative can be conceptualised as follows: 
 

ℱ: ܥ
ଵ(ܺ, ܻ) ⟶ ℒ(ܺ, ℒ(ܺ, ܻ))                                  

݂ ⟼ ℱ(݂): ܺ ⟶ ℒ(ܺ, ܻ) 
ݔ                                            ⟼ ℱ(݂)(ݔ): ܺ ⟶ ܻ 

ݑ ⟼ ℱ(݂)(ݔ)(ݑ) ∈ ܻ          (12) 
 
where ܥ

ଵ(ܺ, ܻ) represents the set of quantum Fréchet differentiable functions from ܺ  to ܻ . For 
brevity, we will use the notation ℱ(݂)(ݔ) = ܶ(݂,  .(ݔ

Let us give some examples of the new definition.  
Example 1.  Let ݂: ℝଶ ⟶ ℝଶ  be a function and ݂(ݔଵ, (ଶݔ = ଵݔ)

ଷ + ,ଶݔ ଵݔ + ଶݔ
ଶ) be given. We 

now compute the quantum Fréchet derivative of the function ݂ at the point (ݔଵ,  :(ଶݔ
 

߲݂
߲ݑଵ

=
ݔ)݂ + ݍ) − (ଵ݁ଵݔ(1 − (ݔ)݂

ݍ) − ଵݔ(1
= ൫(ݍଶ + ݍ + ଵݔ(1

ଶ, 1൯ 

߲݂
߲ݑଶ

=
ݔ)݂ + ݍ) − (ଶ݁ଶݔ(1 − (ݔ)݂

ݍ) − ଶݔ(1
= (1, ݍ) +              (ଶݔ(1

 
These expressions yield the following quantum Fréchet derivative: 
 

ܶ(݂)(ݑ) = ቆ
߲݂

߲ݑଵ

߲݂
߲ݑଶ

ቇ ቀ
ଵݑ
ଶݑ

ቁ 

                                                   = ൬
ଶݍ) + ݍ + ଵݔ(1

ଶ 1
1 ݍ) + ଶݔ(1

൰ ቀ
ଵݑ
ଶݑ

ቁ. 
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Example 2.  Let ݂: ℝ ⟶ ℝ be a function and  ݂(ݔ) = ௫మାଵ
ଷ௫ାଶ

 be given. We now compute the quan-
tum Fréchet derivative of ݂ at the point ݔ: 
 

߲݂
߲ݑ =

ݔ)݂ + ݍ) − (݁ݔ(1 − (ݔ)݂
ݍ) − ݔ(1 =

ଶݔݍ3 − 3 + ݔݍ2 + ݔ2
ݔ3) + ݔݍ3)(2 + 2)  

 
This leads to the following expression: 
 

ܶ(݂)(ݑ) = ቆ
ଶݔݍ3 − 3 + ݔݍ2 + ݔ2

ݔ3) + ݔݍ3)(2 + 2) ቇ  .(ݑ)
 
This expression generalises the differentiability properties of operators with linear combina-

tions and states in which the derivatives of these operators are also linear combinations of their re-
spective derivatives. 

 
Theorem 1.  Let ݂, ݃ ∶ ܣ ⊆ ܺ → ܻ be functions where ܣ is a subset of ܺ mapping into ܻ, and ݔ ∈
,ߙ is a point. For any scalars ܣ ݂ߙ the operator ,ߚ +  is quantum Fréchet differentiable at the ݃ߚ
point ݔ.  In this case the following equality holds: 
 

ܶ(݂ߙ + (ݔ)(݃ߚ = ߙ ܶ(݂)(ݔ) + ߚ ܶ(݃)(ݔ)                                  (13) 
 
Proof.  Let ݂: ܣ ⊆ ܺ → ܻ and ݃: ܣ ⊆ ܺ → ܻ be functions where ܣ is a subset of ܺ mapping to ܻ 
space, and ݔ ∈ ,ߙ is a point. For any scalars ܣ  ,ߚ
 

ܶ(݂ߙ + (݃ߚ = ܶ(݂ߙ + ,݃ߚ (ݑ)(ݔ =  ൫ߙ ݂ + ݑ൯݃ߚ ݁
∈ூ∈

 

 =  ൫ߙ ݂ݑ ݁ + ݑ݃ߚ ݁൯
∈ூ∈

           

=   ߙ ݂ݑ ݁ +   ݃ߚ ݑ ݁
∈ூ∈∈ூ∈

 

 = ߙ   ݂ ݑ ݁ + ߚ   ݃ݑ ݁
∈ூ∈∈ூ∈

 

= ߙ  ݂ܶ(ݔ) + ߚ ܶ݃(ݔ). ∎                 
 
Theorem 2.  If f is a constant function from a set ܣ ⊆ ܺ into ܻ, then ݂ is quantum Fréchet differen-
tiable at each interior point ݔ of ܣ, and ܶ(݂)(ݔ) is the zero function from ܺ into ܻ (so that ܶ(݂) 
is constant).  
Proof.  Let ݂: ܣ ⊆ ܺ → ܻ be a constant function,  ∈ ܻ be a fixed point, and for each ݔ ∈  let ,ܣ
(ݔ)݂ =  Then  .

߲݂
߲ݑ

=
ݔ)݂ + ݍ) − (݁ݔ(1 − (ݔ)݂

ݍ) − ݔ(1
 

=
 − 

ݍ) − ݔ(1
                        

=
0

ݍ) − ݔ(1
                        

= 0                                        
As seen,  ܶ(݂)(ݔ) is the zero function from ܺ into ܻ. ∎ 
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Theorem 3.  If f is a linear function from a set ܣ ⊆ ܺ into ܻ, then ݂ is quantum Fréchet differentia-
ble at each interior point ݔ of ܣ, and ܶ(݂)(ݔ) is equal to ܶ(݂)(ݔ). 
 
Proof.  Let ݂: ܣ ⊆ ܺ → ܻ be a linear function. We now compute its quantum Fréchet derivative: 
 

߲݂
߲ݑ

=
ݔ)݂ + ݍ) − (݁ݔ(1 − (ݔ)݂

ݍ) − ݔ(1
 

                 =
(ݔ)݂ + ݍ) − ݂(݁)ݔ(1 − (ݔ)݂

ݍ) − ݔ(1
 

= ݂(݁).                              
 
As can be seen, a real number is obtained. Outputs of Fréchet derivative must be real numbers for 
each ܽ. Here we obtain the derivative of linear function as a real number. Thus, the quantum Fré-
chet derivative of a linear function is equivalent to the Fréchet derivative. ∎ 
 
Theorem 4.  If f is a polynomial function from a set ܣ ⊆ ܺ into ܻ, then ݂ is quantum Fréchet dif-
ferentiable at each interior point ݔ of A, and ܶ(݂)(ݔ) is equal to ܦ(݂)(ݔ). 
 
Proof.  Let ݂: ܣ ⊆ ܺ → ܻ be a polynomial function, where 
 

(ݔ)݂ = ܽݔ + ܽିଵݔିଵ + ⋯ + ܽଶݔଶ + ܽଵݔ + ܽ, ݊ ∈ ℕ, ܽ, ܽଵ, … , ܽ ∈ ℝ.  
߲݂

߲ݑ =
ܽݍⁿݔⁿ + ܽିଵݍⁿିଵݔⁿିଵ + ⋯ + ܽଶݍଶݔଶ + ܽଵݔݍ + ܽ

ݍ) − ݔ(1

−
(ܽݍⁿݔⁿ + ܽିଵݍⁿିଵݔⁿିଵ + ⋯ + ܽଶݍଶݔଶ + ܽଵݔݍ + ܽ)

ݍ) − ݔ(1     

=
ܽݔⁿ(ݍⁿ − 1) + ܽିଵݔⁿିଵ(ݍⁿିଵ − 1) + ⋯ + ܽଶݔଶ(ݍଶ − 1) + ܽଵݍ)ݔ − 1)

ݍ) − ݔ(1                             

       = ܽݔⁿିଵ(ݍⁿିଵ + ⁿିଶݍ + ⋯ + 1) + ܽିଵݔⁿିଶ(ݍⁿିଶ + ⁿିଷݍ + ⋯ + 1) + ⋯ + ܽଶݍ)ݔ + 1) + ܽଵ 
=                                                                                                                                                          (݂)ܦ

 
Hence ܶ(݂)(ݔ) is equal to ܦ(݂)(ݔ). ∎ 
 
Theorem 5.  If ݂: ܺ → ܻ is a transformation that is quantum Fréchet differentiable at the point ݔ ∈
ܺ, and ݃ ∈ ℒ(ܻ, ܼ),  then the composition ݃ ∘ ݂ is quantum Fréchet differentiable at ݔ ∈ ܺ, and the 
quantum Fréchet differential of ݃ ∘ ݂ at ݔ is given by 
 

ܶ(݃ ∘ ݂, (ݔ = ݃ ∘ ܶ(݂,  (14)                                                      .(ݔ
 
Proof. Let ܫ, ܬ  and ܭ  be pairwise disjoint sets. Consider bases for ܺ, ܻ  and ܼ  given by                   
{݁: ݅ ∈ ,{ܫ ൛ ݁: ݆ ∈ :ൟ and {݁ܬ ݇ ∈ ݑ respectively.  For {ܭ ∈ ܺ, 
 

ܶ(݃ ∘ ݂, (ݑ)(ݔ =  (݃ ∘ ݂)
 ݁ݑ

∈ூ∈

 

 
and for each ݆ ∈ )such that g ܬ ݁)=∑ ݃݁∈ , we have 
 

ቀ݃ ∘ ܶ(݂, ቁ(ݔ (ݑ) = ݃ ቌ  ݂ ݑ ݁
∈ூ∈

ቍ                                 

=   ݂ ݃൫ݑ ݁൯
∈ூ∈
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        =   ݂ ݑ  ݃݁
∈∈ூ∈

 

         =    ݂ ݃݁ݑ
∈

.
∈ூ∈

 

 
To establish the desired equality, it suffices to show that for each ݅ ∈ ݇ and ܫ ∈  ,ܭ
 

(݃ ∘ ݂)
 =  ݂ ݃ݑ

∈

. 

Now let us verify this equality.  We have 

(݃ ∘ ݂)
 = ߨ ∘

߲(݃ ∘ ݂)
߲ݑ                    

                                                          = ߨ ቆ
(݃ ∘ ݔ)(݂ + ݍ) − (݁ݔ(1 − (݃ ∘ (ݔ)(݂

ݍ) − ݔ(1
ቇ 

                                               = ߨ ൭݃ ቆ
ݔ)݂ + ݍ) − (ଵ݁ଵݔ(1 − (ݔ)݂

ݍ) − ଵݔ(1
ቇ൱ 

  = ߨ ቆ݃ ∘
߲݂

߲ݑ
ቇ 

            = ߨ ൮݃ ቌ ݂ ݁
∈

ቍ൲ 

         = ߨ ቌ ݂ ݃൫ ݁൯
∈

ቍ 

                 = ߨ ቌ ݂  ݃݁
∈∈

ቍ 

=  ݂݃
∈

.       

Thus, the equality holds. ∎ 
 

Let ݂: ℝⁿ → ℝ  be a transformation where ݔ = ,ଵݔ) … , (ݔ ∈ ℝⁿ  is a point, and ݂(ݔ) ∈
ℝ. For ܶ: ℝⁿ → ℝ as a linear transformation and ݍ ∈ ℝ − {1}, the transformation ܶ(݂)(ݑ) is 
defined as 

ܶ(݂)(ݑ) =

⎝

⎜⎜
⎛

߲ ଵ݂

߲ݑଵ
⋯

߲ ଵ݂

߲ݑ
⋮ ⋱ ⋮

߲ ݂

߲ݑଵ
⋯

߲ ݂

߲ݑ⎠

⎟⎟
⎞

൭
ଵݑ
⋮

ݑ

൱                                     (15) 

߲݂
߲ݑ

=
ݔ)݂ + ݍ) − (݁ݔ(1 − (ݔ)݂

ݍ) − ݔ(1
                                        (16) 

 
The transformation ܶ(݂) is referred to as the quantum Fréchet derivative of the transfor-

mation ݂. When the limit is taken as ݍ → 1, it is equivalent to the classical Fréchet derivative. Now 
let us see this with an example. 
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Example 3.  Let ݂: ℝ → ℝ be defined by ݂(ݔ) = -ଶ. We now compute the quantum Fréchet deݔ3
rivative of ݂ at the point ݔ =  is given by ,(݂)ݍܶ ଵ.  The quantum Fréchet derivative, denoted asݔ
 

(݂)ݍܶ =
߲݂

߲ݑଵ
=

ݔ)݂ + ݍ) − (ଵ݁ଵݔ(1 − (ݔ)݂
ݍ) − ଵݔ(1

. 
 
The derivative for the function ݂(ݔ) = ݔ ଶ atݔ3 =  :ଵ is calculatedݔ
 

߲݂
߲ݑଵ

= ݍ)3 +  .ଵݔ(1

Taking the limit as ݍ → 1, we get 
 

lim
→ଵ

ݔ)݂ + ݍ) − (ଵ݁ଵݔ(1 − (ݔ)݂
ݍ) − ଵݔ(1 =  .ଵݔ6

 
Next, we consider the Fréchet derivative of the same function. The Fréchet derivative is a 

linear operator ܶ such that: 

lim
௫→௫బ

(ݔ)݂‖ − (ݔ)݂ − ݔ)ܶ − ‖(ݔ
ݔ‖ − ‖ݔ = 0. 

 
For our function ݂(ݔ) = (ݔ)ܶ is given by (ݔ)ܶ ଶ, we find that the linear operatorݔ3 =  This .ݔݔ6
satisfies the condition for the Fréchet derivative. 

We also observe that for a constant function ݂(ݔ) = ܿ , the quantum Fréchet derivative 
yields  డ

డ௨
, consistent with the classical derivative. In conclusion, the quantum Fréchet derivative, 

in the limit as ݍ → 1, converges to the classical Fréchet derivative. 
As seen in the example above, the quantum Fréchet derivative generalises the classical Fré-

chet derivative. In the limit as  ݍ → 1, the proposed derivative recovers the classical form, thereby 
ensuring compatibility with existing methods. However, unlike classical derivatives, it remains 
well-defined even in cases where limits do not exist, thus broadening its applicability. 
 
Theorem 6.  Let ݂: ܺ → ܻ be a function between Banach spaces, where {݁: ݅ ∈ -is a normal Ha {ܫ
mel basis of the Banach space ܺ , and let ܶ  be the Fréchet derivative of ݂  at ݔ ∈ ܺ . Then 
lim
→ଵ

డ
డ௨

(ݔ) = ܶ(݁). 
 
Proof.  By the definition of the Fréchet derivative, 
 

lim
→

ݔ)݂‖ + ℎ) − (ݔ)݂ − ܶ(ℎ)‖
‖ℎ‖ = 0, 

 
that is, ݂(ݔ + ℎ) = (ݔ)݂ + ܶ(ℎ) + ‖(ℎ)ݎ‖ where ,(ℎ)ݎ =  notation. Now  with the little (‖ℎ‖)
consider the vector ݇ = ݍ) − ݁ݔ(1 . ‖݇‖ = ݍ)‖ − ‖݁ݔ(1 = ݍ)| − ‖݇‖ |‖݁‖, and thusݔ(1 → 0 

as ݍ → 1. This means that ݂(ݔ + ݇) = (ݔ)݂ + ܶ(݇) + ‖and ‖() (݇)ݎ
‖‖

→ 0.  It can be observed that 
 

ݔ)݂ + ݍ) − (݁ݔ(1 = (ݔ)݂ + ܶ൫(ݍ − ݁൯ݔ(1 + ݍ)൫ݎ −  ,݁൯ݔ(1
and 

߲݂
߲ݑ

(ݔ) =
ݔ)݂ + ݍ) − (݁ݔ(1 − (ݔ)݂

ݍ) − ݔ(1
 

=
ܶ൫(ݍ − ݁൯ݔ(1 + ݍ)൫ݎ − ݁൯ݔ(1

ݍ) − ݔ(1
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= ܶ(݁) +
ݍ)൫ݎ − ݁൯ݔ(1

ݍ) − ݔ(1
 

by the linearity of ܶ.  Since  
 

ብ
ݍ)൫ݎ − ݁൯ݔ(1

ݍ) − ݔ(1
ብ =

‖(݇)ݎ‖
ݍ)| − ‖|‖݁ݔ(1

=
‖(݇)ݎ‖

‖݇‖ → 0 
 
as  ݍ → 1, we have lim

→ଵ

డ
డ௨

(ݔ) = ܶ(݁). ∎ 
 
Since all values of a linear transformation defined on a vector space can be constructed sole-

ly based on its behaviour on the basis vectors, the theorem above demonstrates that, in the limit case 
as ݍ → 1, the quantum Fréchet derivative uniquely describes the operator corresponding to the clas-
sical Fréchet derivative. 

 
Theorem 7.  For ݂: ℝⁿ → ℝ, let ܶ(݂,  be the quantum Fréchet derivative of the operator ݂. For (ݔ
all ݅, ݆ ∈ {1, … , ݊}, the following holds for the derivatives ܶ(݂, ,) and ܶ൫݂ݔ  :൯ݔ
 

ܶ൫ ܶ(݂, ,(ݔ ൯ݔ = ܶ൫ ܶ൫݂, ,൯ݔ  ൯.                                                (17)ݔ
 
Proof.  For all  ݅, ݆ ∈ {1, … , ݊} where ݅ ≠ ݆, the quantum partial derivative with respect to ݑis given 
by 

߲݂
߲ݑ

=
ݔ)݂ + ݍ) − (݁ݔ(1 − (ݔ)݂

ݍ) − ݔ(1
=

,ଵݔ)݂ … , ,ݔݍ … , (ݔ − ,ଵݔ)݂ … , (ݔ
ݍ) − ݔ(1

. 
 
On the other hand,  

߲݂
߲ݑ

ቆ
߲݂

߲ݑ
ቇ =

ൣ݂൫ݔଵ, … , ,ݔݍ … , ,ݔݍ … , ൯ݔ − ݂൫ݔଵ, … , ,ݔݍ … , ൯൧ݔ
ݍ) − 1)ଶ௫௫ೕ

−
,ଵݔ)݂ … , ,ݔݍ … , (ݔ − ,ଵݔ)݂ , … , (ݔ

ݍ) − 1)ଶ௫௫ೕ
. 

Similarly, 
߲݂

߲ݑ
=

݂൫ݔ + ݍ) − ݔ(1 ݁൯ − (ݔ)݂
ݍ) − ݔ(1

=
,₁ݔ)݂ … , ,ݔݍ … , (ݔ − ,₁ݔ)݂ … , (ݔ

ݍ) − ݔ(1
 

and  
߲݂

߲ݑ
ቆ

߲݂
߲ݑ

ቇ =
ൣ݂൫ݔଵ, … , ,ݔݍ … , ,ݔݍ … , ൯ݔ − ,ଵݔ)݂ … , ,ݔݍ … , )൧ݔ

ݍ) − ݔݔ²(1

−
݂൫ݔଵ, , … , ,ݔݍ … , ൯ݔ − ,ଵݔ)݂ , … , (ݔ

ݍ) − ݔݔ²(1
. 

 
Since these derivatives are equal for each component, the equality ܶ൫ ܶ(݂, ,(ݔ ൯ݔ =

ܶ൫ ܶ൫݂, ,൯ݔ  ∎ .൯  holdsݔ
 

CONCLUSIONS  
 
          In order to address non-linear operators, this paper has presented the quantum  Fréchet deriva- 
tive which is not based on limits., a novel generalisation that gets around the drawbacks of both 
classical and Fréchet derivatives. Important theoretical characteristics have been established, and 
examples have shown that it is consistent with established techniques in classical situations. 
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Determining an integral counterpart for this derivative and looking into its numerical appli-
cations in the solution of operator equations in functional analysis or non-linear differential equa-
tions can be the main goals of future research. 
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