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Abstract:  We propose the neutrosophic Poisson moment exponential distribution 
(NPMExD) as an extension of the Poisson moment exponential distribution (PMExD) 
originally developed by Ahsan-ul Haq. We detail the application of neutrosophic logic to the 
PMExD framework, enhancing its capability to handle uncertainty and indeterminacy. The 
study explores various statistical and mathematical properties of the NPMExD, including the 
survival function, moment generating function, hazard rate function, order statistics 
distribution, cumulative hazard function, index of dispersion, and related measures. Parameter 
estimation is performed using the maximum likelihood estimation method, followed by a 
comprehensive simulation study to assess the estimator performance. Finally, the practical 
efficacy of the proposed distribution is demonstrated through the analysis of two real-world 
data sets: remission times (in weeks) for 20 leukemia patients and 59 months of actual tax 
revenue (monthly) data from Egypt. The results indicate that the NPMExD provides a 
superior fit compared to the neutrosophic discrete Ramos–Louzada distribution for these data 
sets. 
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INTRODUCTION 
 

Traditional statistical methods typically rely on precise numerical values for data collection 
and analysis. However, in many real-world applications it is often impractical or impossible to 
obtain exact measurements of statistical parameters. To address this limitation, estimation and 
approximation techniques are employed. Real-world data frequently involve elements of 
incompleteness, ambiguity and inconsistency, prompting the development of advanced 
methodologies such as fuzzy, intuitionistic and neutrosophic distributions. These frameworks 
extend classical probability theory by incorporating notions of indeterminacy and subjective 
uncertainty. Such models offer enhanced flexibility and improved accuracy in representing complex 
systems, making them highly applicable in fields such as artificial intelligence, decision-making, 
and risk analysis. To overcome the constraints of traditional probability models in dealing with 
uncertainty and ambiguity, a range of new probability distributions have been introduced. One 
notable advancement is the shift from classical statistics to neutrosophic statistics [1, 2]. The choice 
of method for this transition depends on the specific nature of uncertainty present in the data. In 
recent years substantial progress has been made in leveraging fuzzy logic and neutrosophic theory 
to effectively model imprecise and uncertain data. 

Smarandache [3, 4] introduced a framework for representing logical statements within a 
three-dimensional neutrosophic space, where each dimension corresponds to the degrees of truth, 
indeterminacy and falsehood. Building on this concept, several researchers have explored the use of 
neutrosophic distributions to assess uncertainty in real-world scenarios. Their findings suggest that 
neutrosophic approaches often outperform traditional statistical methods in capturing and modelling 
ambiguity and incomplete information. Neutrosophic logic has found widespread application across 
a variety of fields including decision-making [5], personnel selection and green credit rating 
systems [6], machine learning, intelligent disease diagnosis, communication services, pattern 
recognition, social network analysis [7], e-learning systems, physics and more. Within the domain 
of neutrosophic statistics, researchers have proposed several statistical distributions such as the 
neutrosophic Poisson and neutrosophic exponential distributions [8]. Additional distributions 
including the neutrosophic Weibull, neutrosophic uniform and neutrosophic gamma distributions 
have also been introduced in the literature [9]. A specialised neutrosophic Beta distribution has been 
developed for modelling interval-valued data [10], while the application of a control chart based on 
the neutrosophic Maxwell distribution has also been investigated [11]. 

To address uncertainty and indeterminacy more effectively, several neutrosophic extensions 
of classical probability distributions have been proposed by incorporating neutrosophic logic. 
Notable examples include the neutrosophic binomial and neutrosophic normal distributions, which 
enhance their classical counterparts through the integration of indeterminacy components [12]. The 
neutrosophic Weibull distribution [13] and the neutrosophic family Weibull distribution are 
generalisations of the traditional Weibull model, adapted to account for uncertainty within 
neutrosophic frameworks. Further developments include the neutrosophic Rayleigh distribution, 
which has been applied in various engineering contexts [14], and the neutrosophic log-logistic 
distribution [15]. Other contributions to the field include the neutrosophic Kumaraswamy 
distribution [16], the neutrosophic generalised exponential distribution [17], and the neutrosophic 
exponentiated inverse Rayleigh distribution [18]. In response to the challenges posed by the 
COVID-19 pandemic, researchers have also proposed the neutrosophic Burr-III distribution for 
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modelling pandemic-related data [19], as well as the neutrosophic quasi-X Lindley distribution, 
which has demonstrated applicability in the analysis of COVID-19 data sets [20]. 

These distributions provide enhanced flexibility in addressing challenges that classical 
statistical models may fail to capture, particularly in the presence of uncertainty and anomalous 
data. Furthermore, researchers have extended the application of neutrosophic logic to time series 
analysis, exploring predictive and modelling techniques such as neutrosophic moving averages, 
neutrosophic logarithmic models and neutrosophic linear models [21]. 

The Poisson moment exponential distribution (PMExD) [22] is a discrete probability 
distribution formed by combining the Poisson and moment exponential distributions to meet the 
demand for a more adaptable distribution in statistical data analysis with probability mass function 
(PMF) given by 

,ݔ)ܲ (ߚ =
ݔ) + ௫ߚ(1

ߚ) + 1)௫ାଶ  , ݔ = 0,1,2 … . , ߚ > 0 

and the corresponding cumulative distribution function (CDF) given by 
 

,ݔ)ܨ (ߚ = 1 − ఉೣశభ (ఉାଶା௫)
(ଵାఉ)ೣశమ . 

 
Figure 1 shows the PMF of the PMExD for selected parameter values β=7, 3, 15, 0.6, 

demonstrating that the distribution can exhibit various shapes including decreasing and increasing-
decreasing patterns. 

 

 
Figure 1.  PMF plots of PMExD 

 
This model is well-suited for analysing count data characterised by high variability. Count 

data models are fundamental in both applied and theoretical domains including healthcare, 
engineering, insurance, transportation and numerous other fields. They are essential for 
understanding and predicting the frequency of events in these contexts. In the present study we 
incorporate neutrosophic logic into the Poisson moment exponential distribution to enhance its 
capacity to handle uncertainty and indeterminacy inherent in real-world data. 

The survival function (SF) of the PMExD is given by 
 

;ݔ)ܨܵ (ߚ = ఉೣశభ(ఉାଶା௫)
(ଵାఉ)ೣశమ . 
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Figure 2 presents the SF of the PMExD for selected parameter values β = 7, 3, 15, 0.6, revealing 
that the distribution exhibits a range of decreasing behaviours depending on the parameters. 

 

 
Figure 2.  SF plots of PMExD 

 
A summary of the authors’ contributions to this study is as follows. 

 By adding neutrosophic logic, we develop and expand the PMExD into the neutrosophic 
Poisson moment exponential distribution (NPMExD). 

 We examine and evaluate the NPMExD’s mathematical and statistical characteristics such 
as its hazard rate function, moment generating function, cumulative hazard rate function, 
index of dispersion, distribution of order statistics, and the survival function. 

 We estimate parameters and assess the suggested distribution’s performance by applying the 
maximum likelihood estimation (MLE) technique.  

 We perform a simulation study to evaluate the NPMExD’s applicability and efficiency 
compared to alternative distributions. 

 We use two real data sets to demonstrate the NPMExD’s advantages over the discrete 
Ramos-Louzada distribution. 

 
NPMExD  
 

The PMF of NPMExD is given by 

,ேݔ)ܲ (ߚ = ݔ)ܲ − ,ܫ (ߚ = (ଵା(௫ିூ))ఉ(ೣష಺)

(ఉାଵ)(ೣష಺)శమ  , ݔ) − (ܫ = 0,1,2, … . , ߚ > 0. 

It is easy to show that the above equation satisfies the conditions of being a PMF, where ܲ(ݔே,  is (ߚ
positive and 

෍
൫1 + ݔ) − (௫ିூ)ߚ൯(ܫ

ߚ) + 1)(௫ିூ)ାଶ =
1

ߚ) + 1)ଶ +
ߚ2

ߚ) + 1)ଷ +
ଶߚ3

ߚ) + 1)ସ + ⋯
ஶ

௫ୀூ

 

                                                   =
1

ߚ) + 1)ଶ ൤1 +
ߚ2

ߚ + 1 +
ߚ3

ߚ) + 1)ଶ + ⋯ ൨      

          = ଵ
(ఉାଵ)మ ቂ(ఉାଵ)మ

ఉିఉାଵ
ቃ = 1. 
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Figure 3 displays plots of the PMF of the NPMExD for the given values of the distribution 
parameter β and the indeterminacy factor I. These plots illustrate how changes in β and I affect the 
shape and behaviour of the distribution. It is noted that for I = 0.2, β = 0.5, the PMF is decreasing, 
while for other choices considered here the distribution is increasing-decreasing. 

 

 
Figure 3.  PMF plots of NPMExD 

 
Theorem 1.  The CDF of the NPMExD is defined by 

,ேݔ)ܨ (ߚ = 1 − (ఉାଶା௫ିூ)ఉೣష಺శభ

(ଵାఉ)(ೣష಺శమ) . 

Proof.  To prove this theorem, the CDF (ݔ)ܨ is given as 

,ேݔ)ܨ (ߚ = ܲ(ܺ ≤ (ݔ = ෍ ,ேݐ)ܲ (ߚ
௫

௞ୀூ

=  ෍
(1 + (݇ − ௞ିூߚ((ܫ

ߚ) + 1)(௞ିூ)ାଶ

௫

௞ୀூ

. 

For ݆ =  ݇ − = ݇ the summation starts from 0 when ,ܫ   ,Thus  .ܫ 

,ேݔ)ܨ (ߚ = ∑ (ଵା௝)ఉೕ

(ఉାଵ)ೕశమ
௫ିூ
௝ୀ଴ = ∑ ఉೕ

(ఉାଵ)ೕశమ
௫ିூ
௝ୀ଴ + ∑ ௝ఉೕ

(ఉାଵ)ೕశమ
௫ିூ
௝ୀ଴ . 

By using ∑ ௝௫ିூݎ
௝ୀ଴ = ଵି௥(ೣష಺)శభ

ଵି௥
 and ∑ ௝௡ݎ݆

௝ୀ଴ = ௥(ଵି(௡ାଵ)௥೙ା௡௥೙శభ)
(ଵି௥)మ ,   where ݎ = ఉ

ఉାଵ
 ,  we 

have 
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,ேݔ)ܨ (ߚ =
1

ߚ + 1 ቆ1 − ൬
ߚ

ߚ + 1൰
(௫ିூ)ାଵ

ቇ

+
ߚ

ߚ + 1 ቆ1 − ൫(ݔ − (ܫ + 1൯ ൬
ߚ

ߚ + 1൰
(௫ିூ)

+ ݔ) − (ܫ ൬
ߚ

ߚ + 1൰
(௫ିூ)ାଵ

ቇ

= 1 −
ߚ) + 2 + ݔ − ௫ିூାଵߚ(ܫ

(1 + (௫ିூାଶ)(ߚ . 

 
Figure 4 shows the CDF plots of the NPMExD for different values of β and  I. 
 

 
Figure 4.  CDF plots of NPMExD 

 
SOME PROPERTIES OF NPMExD 
 

Several statistical characteristics of the NPMExD are described in this section, including the 
mean, index of dispersion (IOD), variance, moment generating function (MGF), reliability function, 
cumulative hazard function (CHF), hazard rate function (HRF) and order statistics. These attributes 
offer important insights into the behaviour and features of the distribution. 
 
Mean, Variance and IOD 

 
The mean of the NPMExD  is 

(ேܺ)ܧ = ෍ ݔ
ݔ)) − (ܫ + (௫ିூ)ߚ(1

ߚ) + 1)(௫ିூାଶ)

ஶ

௫ୀூ

 

                                         =
ܫ

ߚ) + 1)ଶ +
ܫ)ߚ2 + 1)
ߚ) + 1)ଷ +

ܫ)ଶߚ3 + 2)
ߚ) + 1)ସ + ⋯ = ܫ +  .ߚ2

 
Similarly, we can find the second moment ܧ(ܺଶ ) = + ߚ3)ߚ2   1) + + 2 ܫ   and then ,ܫߚ4 

the variance of the NPMExD is defined as  
ܸ(ܺே) = ൫ܺேܧ

ଶ൯ − ଶ[(ேܺ)ܧ] = ଶߚ2  + = ߚ2  + ߚ)ߚ2   1). 
 
The IOD is well known as the ratio of the variance to the mean, serves as a metric for 

assessing whether a given distribution is suitable for the data sets characterised by either under- 
dispersion or over-dispersion. For the NPMExD  the IOD is given by 

 
(ேܺ)ܦܱܫ = ௏(௑ಿ)

ா(௑ಿ)
= ଶఉ(ఉ ା ଵ)

ூାଶఉ
. 

Some values of the mean, variance and IOD of the NPMExD for ܫ =  0.2, 0.9  with 0.1 ≤
≥ ߚ   1.5  are presented in Table 1. It can be noted that the mean, variance and IOD values are 
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increasing with all values of  ߚ  for ܫ =  0.2, 0.9, while the variance is not affected by the value of 
 .ܫ 

 
Table 1.  Mean, variance and IOD of  NPMExD  for  I=0.2 and 0.9 

ࡵ = ૙. ૛ ܫ = 0.9 

 (ேܺ)ܦܱܫ (ேܺ)ܸ (ேܺ)ܧ (ேܺ)ܦܱܫ (ேܺ)ܸ (ேܺ)ܧ ࢼ
0.1 0.4 0.22 0.550 1.1 0.22 0.200 
0.2 0.6 0.48 0.800 1.3 0.48 0.369 
0.3 0.8 0.78 0.975 1.5 0.78 0.520 
0.4 1.0 1.12 1.120 1.7 1.12 0.659 
0.5 1.2 1.50 1.250 1.9 1.50 0.789 
0.6 1.4 1.92 1.371 2.1 1.92 0.914 
0.7 1.6 2.38 1.488 2.3 2.38 1.035 
0.8 1.8 2.88 1.600 2.5 2.88 1.152 
0.9 2.0 3.42 1.600 2.7 3.42 1.267 
1.0 2.2 4.00 1.710 2.9 4.00 1.379 
1.1 2.4 4.62 1.925 3.1 4.62 1.490 
1.2 2.6 5.28 2.031 3.3 5.28 1.600 
1.3 2.8 5.98 2.136 3.5 5.98 1.709 
1.4 3.0 6.72 2.240 3.7 6.72 1.816 
1.5 3.2 7.50 2.344 3.9 7.50 1.923 

 
MGF 

 
The MGF is a crucial tool in identifying and analysing probability distributions. 
 

Theorem 2.  For the NPMExD, the MGF is given by 
 

௑ಿܯ
(ݐ) = ௑ಿܯ

௧ூ݁(ݐ) = ௘೟಺

(ଵାఉି௘೟ఉ)మ. 
  
Proof.  The MGF is defined as 

(ݐ)௑ܯ = ෍ ݁௧௫
ஶ

௫ୀூ

ቆ
൫1 + ݔ) − ௫ିூߚ൯(ܫ

ߚ) + 1)(௫ିூ)ାଶ ቇ. 

 
Let  ݇ = − ݔ  = ݔ so ;ܫ   ݇ + = ݇ and ܫ   0, 1, 2, . ...  Then 

(ݐ)௑ܯ = ෍ ݁௧(௞ାூ) ቆ
(1 + ௞ߚ(݇

ߚ) + 1)௞ାଶቇ
ஶ

௞ୀ଴

= ݁௧ூ ൬
1

ߚ) + 1)ଶ൰ ෍
(1 + ݇) ൬ ݁௧ߚ

ߚ + 1൰
௞

ߚ) + 1)௞

ஶ

௞ୀ଴

 

                                         = ݁௧ூ ൬
1

ߚ) + 1)ଶ൰ ෍(1 + ,௞ݖ(݇
ஶ

௞ୀ଴

ݖ        =
݁௧ߚ

ߚ + 1 

 = ݁௧ூ ൬
1

ߚ) + 1)ଶ൰ ൭෍ ௞ݖ
ஶ

௞ୀ଴

+ ෍ ௞ݖ݇
ஶ

௞ୀ଴

൱ = ݁௧ூ ൬
1

ߚ) + 1)ଶ൰ ൬
1

1 − ݖ +
1

(1 −  ଶ൰(ݖ

= ݁௧ூ ൬
1

ߚ) + 1)ଶ൰ ൬
1

(1 − ଶ൰(ݖ = ݁௧ூ ൬
1

ߚ) + 1)ଶ൰

⎝

⎛ 1

൬1 − ݁௧ߚ
ߚ + 1൰

ଶ

⎠

⎞ =
݁௧ூ

ߚ) + 1 − ݁௧ߚ)ଶ. 
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The proof is completed by using ∑ ௞ݖ = ଵ
௭ିଵ

ஶ
௞ୀ଴   for |ݖ| < 1 and  

෍ ௞ݖ݇
ஶ

௞ୀ଴

= ݖ
݀

ݖ݀
൭෍ ௞ݖ

ஶ

௞ୀ଴

൱ = ݖ 
݀

ݖ݀ ൬
1

1 − ൰ݖ =
ݖ

(1 − ଶ(ݖ  . 

. 
Reliability Function 

 
The probability that a system or component continues to operate or ’survive‘ after specific 

amount of time t is known as the SF (survival function) or reliability function. The SF is defined as 
(ݔ)ܨܵ  =  ܲ(ܺ ≥  and for the NPMExD, it is given by (ݔ 

 

,ேݔ)ܨܵ (ߚ =
ߚ)(௫ିூ)ߚ + 1 + ݔ − (ܫ

(1 + ௫ିூାଵ(ߚ . 
 
For different values of β and I (ߚ =  5, = ܫ  0.2 and ߚ =  19, = ܫ  0.9),  Figure 5 shows 

the plots of SF of the NPMExD. The graph illustrates that the reliability function is equal to one at 
time ݐ =  0  and gradually decreases towards zero as time increases. This behaviour is quite 
reasonable and expected for any item under normal usage conditions. Also, the shape of the curve 
depends on the value of  ߚ and ܫ. 

 
Figure 5.  Plots of Sf of NPMExD  

 
HRF 

 
The hazard function evaluates the probability that an object will malfunction or cease to 

exist after a specific amount of time based on its survival up to that point. The HRF is 
mathematically defined as the ratio of the PMF to the SF. The HRF of NPMExD  is given as 

 

,ேݔ)ܨܴܪ (ߚ =
,ேݔ)ܲ (ߚ

,ேݔ)ܨܵ (ߚ =
ݔ − ܫ + 1

ߚ) + 1 + ݔ − 1)(ܫ +  .(ߚ
 

Figure 6 presents plots of the HRF for the NPMExD with varying values of β and I, as ߚ =
 5, = ܫ  0.2  and ߚ =  19, = ܫ  0.5.   From the graph, we can see that the HRF is increasing, 
indicating that the items are more likely to fail as they age. This increasing hazard is often 
associated with the later stages of the item’s life cycle. While the graph may seem unrealistic at first 
glance, it is important to note that increasing hazard rates are commonly observed in many real-
world scenarios.  
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Figure 6. HRF plots of NPMExD  

 
We used the method of Gleser [23] to ascertain the form of the HRF, which is described as 

follows. 
 

Lemma 1.  Based on Gleser [23], let X be a non-negative continuous random variable with twice 

differentiable PMF ݂(ݔ),  and ℜ(ݔ; (ߚ   =  − ௙/(௫;ఉ)
௙(௫;ఉ)

 .   
 

 Let  ℜ/(ݔ; (ߚ   >  0 (ℜ/(ݔ; (ߚ   <  0) for all x;  then the HRF is increasing (decreasing). 
 Suppose that there exists ݔ଴  >  0  such that  ℜ/(ݔ; (ߚ  <  0, ∋ ݔ∀  (0, ,(଴ݔ ℜ/(ݔ; (ߚ   =  0 

and  ℜ/(ݔ; (ݔ)݂ Then if  ݈݅݉௫→଴ା .(଴, 0ݔ) ∋ x∀ ,0 < (ߚ   =  ∞, the HRF has a bathtub shape. 
Now for the NPMExD we have 

 

ℜ(ݔ; (ߚ  =
log ߚ (1 − ܫ + (ݔ + log(ߚ + 1) ܫ) − ݔ − 1) + 1

ܫ − ݔ − 1 , 
 

and it follows that  ℜ/(ݔ; (ߚ  = ଵ
(௫ିூାଵ)మ   > 0. Hence the HRF of the NPMExD  is  

increasing. 
 
CHF 

 
The CHF of NPMExD  is 

,ேݔ)ܨܪܥ (ߚ = − ln൫ܵ(ݔே, ൯(ߚ = − ln ቆ
ߚ)(௫ିூ)ߚ + 1 + ݔ − (ܫ

(1 + ௫ିூାଵ(ߚ ቇ . 
 

The CHF plots of the NPMExD in Figure 7 for ߚ = 5, ܫ = 0.2 and ߚ = 19, ܫ = 0.9 indicate that the 
CHF is increasing in both cases. 
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Figure 7.  CHF plots of NPMExD  

 
ORDER STATISTICS 
 

Let ଵܺ, ܺଶ, . . . , ܺ௡  be a random sample of size n, which follows the NPMExD, and 
(ܺଵ:௡), (ܺଶ:௡), . . . , ܺ(௡:௡) be the order statistics of the sample. The cumulative distribution function of 

the rth order statistic is given by 

,ேݔ)(௥:௡)ܨ (ߚ = ෍ ቀ
݊
ቁݎ )௥ܨ

௡

௥ୀ௞

,ேݔ 1)(ߚ − ,ேݔ)ܨ  ௡ି௥((ߚ

                            = ෍ ቀ
݊
ቁݎ ቆ1 −

ߚ) + 2 + ݔ) − ௫ିூାଵߚ((ܫ

ߚ) + 1)(௫ିூ)ାଶ ቇ
௥

ቆ
ߚ) + 2 + ݔ) − ௫ିூାଵߚ((ܫ

ߚ) + 1)(௫ିூ)ାଶ ቇ
௡ି௥௡

௥ୀ௞

 

=
1

ߚ) + 1)௡((௫ିூ)ାଶ) ෍ ቀ
݊
ቁݎ ߚ)) + 2 + ݔ) − ௫ିூାଵ)௡ି௥ߚ((ܫ

௡

௥ୀ௞

 

 
and the corresponding PMF is 
 

(݂௥:௡)(ݔே, (ߚ = ,ேݔ)(௥:௡)ܨ (ߚ − ேݔ)(௥:௡)ܨ − 1,  (ߚ

= ቀ
݊
ቁݎ (1 − ߚ)௫ିூߚ + 1)ூି௫ିଵ(ߚ − ܫ + ݔ + 1))௞(−ߚ௫ିூ(ߚ + 1)ூି௫ିଵ(ߚ − ܫ + ݔ + 1))௡ି௞ 

   ×  ଶܨଵ

⎝

⎛1, ݇ − ݊; ݇ + 1;
ߚ − ߚ)ூି௫ାଵߚ + 1)௫ିூ − ൬ ߚ

ߚ + 1൰
ூି௫

− ܫ + ݔ + 1

ߚ − ܫ + ݔ + 1
⎠

⎞ 

               +(1 − ߚ)ூା௫ାଵିߚ + 1)ூି௫ିଶ(ߚ − ܫ + ݔ + 2)௞+(ିߚூା௫ାଵ(ߚ + 1)ூି௫ିଶ(ߚ − ܫ + ݔ + 2)௡ି௞  
              ×  ଶܨଵ(1, ݇ − ݊; ݇ + 1; Ψ) 

where 

Ψ =
ߚ − ߚ) + 1)௫ିூߚூି௫ିଵ − ߚ) + 1)௫ିூߚூି௫ାଵ − 2 ൬ ߚ

ߚ + 1൰
ூି௫

− ܫ + ݔ + 2

ߚ − ܫ + ݔ + 2  

and  2F1 (ܽ, ܾ; ܿ; (ݖ = ∑ ௔ೖ௕ೖ௭ೖ

௞!௖ೖ

ஶ
௞ୀ଴ . 
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PARAMETER ESTIMATION 
 
In statistical modelling and inference, parameter estimation is fundamental to understanding 

and quantifying relationships within the data. Among the various estimation techniques, MLE is a 
cornerstone method, widely recognised for its robustness and effectiveness in estimating the 
unknown parameters of a statistical model. Here we adopt the MLE approach for estimating the 
unknown parameter β of the NPMExD. Let ଵܺ, ܺଶ, . . . , ܺ௡ be a random sample of size n drawn from 
the respective distribution with an unknown parameter β. Therefore, the likelihood function is 

 

,ேݔ)݈ (ߚ = ෑ
௜ݔ) − ܫ + ௫೔ିூߚ(1

ߚ) + 1)௫೔ିூାଶ ,
௡

௜ୀଵ

 

and its log is given by 

log ݈(ݔே, (ߚ = ෍[log(ݔ௜ − ܫ + 1) + ௜ݔ) − (ܫ log − ߚ ௜ݔ) − ܫ + 2) log(ߚ + 1)].
௡

௜ୀଵ

 

 
The first and second partial derivatives of the log ݈(ݔே,  relative to β are given respectively by (ߚ
 

߲
ߚ߲ log ݈(ݔே, (ߚ = ෍ ൤

௜ݔ − ܫ
ߚ −

௜ݔ − ܫ + 2
ߚ + 1 ൨ ,

௡

௜ୀଵ

 

߲ଶ

ଶߚ߲ log ݈(ݔே, (ߚ  = ෍ ൤−(ݔ௜ − (ܫ
1

ଶߚ + ௜ݔ) − ܫ + 2)
1

ߚ) + 1)ଶ൨ .
௡

௜ୀଵ

 

 
By setting the first derivative to zero, డ

డఉ
log ݈(ݔே, (ߚ = 0,  we get the MLE of β as  ߚመ = ௑തିூ

ଶ
. 

A simulation study is a powerful analytical tool widely used across various domains of 
statistics. It involves developing a computational model or algorithm to replicate a real-world 
process or system, enabling the generation of synthetic data under controlled conditions. Simulation 
provides a flexible framework for analysing complex systems that may be challenging to investigate 
through purely analytical or empirical methods. By simulating a system’s behaviour under diverse 
scenarios, researchers can gain valuable insights into the dynamics, interactions and emergent 
properties of the system. In this section we perform a simulation study to evaluate the performance 
of the MLE for the NPMExD. We generate 1,000 samples of varying sizes, i.e. n  =  25, 50, 75, 
100, 125, 150, 200, 250, 300, 350, 400, for ߚ =  0.2, 0.5, 0.7, 0.9  from the NPMExD with 
indeterminacy ܫ =  0.02. To assess the properties of the optimal estimator, we use the average bias, 
mean squared error (MSE) and mean absolute error (MAE) as evaluation metrics and the results are 
presented in Table 2.  

Based on Table 2, we can see that the MSE and MAE values are decreasing as the sample 
size is increasing for a fixed value of β. For illustration, with β = 0.7, n = 25, 400, the MSE values 
are 0.07475 and 0,03834 respectively. Also, the MSE and MAE values depend on the parameter 
value. As an example, for n = 100, the MSE values are 0.05266 and 0.05050 for β = 0.2 and 0.7 
respectively.  
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Table 2.  MLE, bias, MSE and MAE of   ߚመ  of NPMExD parameter for β = 0.2, 0.5, 0.7, 0.9 and I = 
0.02 
 
n ࢼ = ૙. ૛ ࢼ = ૙. ૞ 
 MLE Bias MSE MAE MLE Bias MSE MAE 
25 0.42044 0.22044  0.06994  1.17886 0.50532 0.00532 0.02169 0.17996 
50 0.39854 0.19854 0.06209 1.08643  0.50541 0.00541 0.02056 0.17991 
75 0.38265 0.18265 0.05756 1.02724 0.50769 0.00769 0.01517 0.15135 
100 0.37162 0.17162 0.05266 0.96934 0.50294 0.00294 0.01354 0.14511 
150 0.37345 0.17345 0.05245 0.96799 0.50103 0.00103 0.01123 0.12971 
200 0.37175 0.17175 0.05244 0.96548 0.50057 0.00057 0.00861 0.11528 
250 0.37314 0.17314 0.05212 0.96276 0.49960 0.00040 0.00742 0.10932 
300 0.36362 0.16362 0.04895 0.91764 0.50108 0.00108 0.00698 0.10289 
350 0.37545 0.17545 0.04863 0.91695 0.50746 0.00746 0.00659 0.10051 
400 0.36251 0.16251 0.04850 0.91549 0.50354 0.00354 0.00612 0.09739 
n ࢼ = ૙. ૠ ࢼ = ૙. ૢ 
25 0.57744 0.12256 0.07475 0.33189 0.65957 0.24043 0.19511 0.43542 
50 0.57474 0.12526 0.06075  0.31113 0.67166 0.22834 0.16526 0.40842 
75 0.57645 0.12355 0.05479 0.30011 0.71577 0.18423 0.15704 0.39200 
100 0.57419 0.12581 0.05050 0.29019 0.72189 0.17812 0.14693 0.37912 
150 0.57825 0.12175 0.04547 0.27631 0.72781 0.17219 0.13598 0.36441 
200 0.58036 0.11964 0.04549 0.27642 0.72309 0.17691 0.13252 0.35984 
250 0.58691 0.11309 0.04173 0.26556 0.72922 0.17078 0.13040 0.35870 
300 0.58382 0.11618 0.04079 0.26390 0.74431 0.15569 0.12728 0.35204 
350 0.58727 0.11273 0.04034 0.26225 0.75985 0.14015 0.12701 0.35021 
400 0.59336 0.10664 0.03834 0.25528 0.74905 0.15095 0.12317 0.34562 

 

APPLICATIONS 
 
Here two data sets are analysed to demonstrate the applicability and flexibility of the newly 

introduced NPMExD in comparison to established probability distributions. We focus on the 
neutrosophic discrete Ramos-Louzada distribution (NDRL) [24] for this comparison with the 
NPMExD when the indeterminacy index I = 0.01. The determination of the optimal fit model relies 
on several model selection criteria including the log-likelihood value (LogLik.), the Kolmogorov-
Smirnov (KS) test and information criteria such as Akaike information criterion (AIC), corrected 
Akaike information criterion (CAIC), Hannan-Quinn information criterion (HQIC), and the 
Bayesian information criterion (BIC). A model is considered superior in fitting the data if it has the 
minimum values of AIC, BIC, HQIC, CAIC and KS statistics as compared to other competitors. 
The probability mass function of the NDRL is given by 

 

௒݂(ݕ − (ܫ = ቐ
(1 − ଶ(1(ߴ + 2 log ߴ + ݕ) − log)(ܫ (௬ିூ)ߴ(ଶ(ߴ

(1 + 2 log 1)(ߴ − (ߴ + ேߴ (log ଶ(ߴ

݁ݏ݅ݓݎℎ݁ݐ݋    ,                                                         0
 , ݕ ݂݅ = ,ܫ ܫ + 1, ܫ + 2, … 

 
Quantile-quantile (Q-Q) and probability-probability (P-P) plots are valuable tools for 

evaluating the goodness-of-fit of the NPMExD to real data. These plots compare the empirical 
distribution of the observed data with the theoretical distribution, providing visual insight into the 
model’s suitability. Additionally, the total time on test (TTT) plot is instrumental in model 
selection, as it reveals the underlying behaviour of failure rates in the data. A straight line on the 
TTT plot suggests a constant failure rate, a convex shape indicates a decreasing failure rate, while a 
concave shape suggests an increasing failure rate. A bathtub-shaped curve is characterised by an 
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initial decrease followed by an increase, whereas a concave-convex pattern indicates an inverted 
bathtub-shaped failure rate.  
Data I: The data set used for analysis comprises the remission times measured in weeks for 20 
leukemia patients who were randomly assigned to a specific treatment. It is taken from Lawless 
[25], and the data set is: 1,3,3,6,7,7,10,12,14,15,18,19,22,26,28,29,34,40,48,49. The statistical 
properties for the data are given in Table 3, which shows that the data are skewed to the right with a 
standard deviation of 14.7.  
Data II: This data set includes the monthly actual tax revenue in Egypt from January 2006 to 
November 2010. The data were analysed for the five-parameter Lomax distribution [26, 27] for  
Type II exponentiated half logistic-Gompertz Topp-Leone-G family of distributions. The actual tax 
revenue values were presented in millions of Egyptian pounds (1000 million) as: 5.90, 20.4, 14.9, 
16.2, 17.2, 7.80, 6.10, 9.20, 10.2, 9.60, 13.3, 8.50, 21.6, 18.5, 5.10, 6.70, 17.0, 8.60, 9.70, 39.2, 
35.7, 15.7, 9.70, 10.0, 4.10, 36.0, 8.50, 8.00, 9.20, 26.2, 21.9, 16.7, 21.3, 35.4, 14.3, 8.50, 10.6, 
19.1, 20.5, 7.10, 7.70, 18.1, 16.5, 11.9, 7.0, 8.60, 12.5, 10.3, 11.2, 6.10, 8.40, 11.0, 11.6, 11.9, 5.20, 
6.80, 8.90, 7.10, 10.8.  

The summary statistics for both data sets presented in Table 3 include mean, standard 
deviation, median, mean absolute deviation, minimum, maximum, range, skewness, kurtosis and 
standard error. The P-P and Q-Q plots for the NPMExD based on the leukemia patient’s data are 
illustrated in Figure 8, while Figure 9 presents the TTT and density plots for the NPMExD using the 
first data of leukemia patients. For the tax revenue data, the P-P and Q-Q plots for the NPMExD are 
given in Figure 10 and the TTT plot is presented in Figure 11. The results of estimates and goodness 
of fit are given in Table 4.  

 
Table 3. Summary statistics for remission times of leukemia patients and tax revenue data 
 
Data n Mean SD1 Median MAD2 Min Max Range Skew3 Kur4 SE5 
I 20 19.55 14.7 16.5 14.83 1 49 48 0.60 -0.85 3.29 
II 59 13.49 8.05 10.6 5.34 4.1 39.2 35.1 1.57 2.08 1.05 
1 = standard deviation, 2 = mean absolute deviation, 3 = skewness, 4 = kurtosis, 5 = standard error 
 
Table 4.  MLEs and goodness-of-fit measures for fitted models regarding data sets  
 Model Estimate LogLik AIC BIC CAIC HQIC KS 
Data I NPMExD ߚመ =0.9725 -35.485 72.97 73.966 74.966 73.164 0.298 
 NDRL ߴመ =0.6386 -40.001 82.01 83.010 84.010 82.209 0.377 
Data II NPMExD ߚመ = 0.6694 -85.33 172.66 174.74 175.74 173.47 0.420 
 NDRL ߴመ = 0.5998 -111.32 224.64 226.71 227.71 225.45 0.447 
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P-P plot Q-Q plot 

Figure 8.  P-P and Q-Q plots of NPMExD based on data I  
 

  
TTT plot Box plot 

                               Figure 9.  TTT and box plots of NPMExD based on data I  
 

  
TTT plot Q-Q plot 

Figure 10.  P-P and Q-Q plots of NPMExD based on data II  
 

   
TTT plot Box plot 

Figure 11.  TTT and box plots of NPMExD based on data II  



 
Maejo Int. J. Sci. Technol. 2025, 19(02), 133-149  
 

 

147

The comparison of the NPMExD and NDRL models suggests that the NPMExD 
demonstrates superior performance, as evidenced by the smaller values of the AIC, BIC, HQIC, 
CAIC and KS statistics. This implies that the NPMExD exhibits a better fit to the data and provides 
a more accurate representation of the underlying phenomena compared to the NDRL model. The 
reduced AIC, BIC, HQIC and CAIC indicate that the NPMExD model achieves a better goodness of 
fit, while the smaller KS statistic suggests that it better captures the distributional differences 
between the observed and predicted values. Thus, based on these metrics, the NPMExD emerges as 
the preferred choice for modelling the data over the NDRL model. 

 
CONCLUSIONS 

 
 The practical applicability and superiority of the proposed NPMExD has been demonstrated 

through empirical analysis of a real-world data set, where it exhibits enhanced performance 
compared to the neutrosophic discrete Rayleigh distribution. These findings underscore the 
improved modelling capabilities and potential utility of the NPMExD. Future research may focus on 
extending the NPMExD framework to derive novel distributions, with parameter estimation refined 
through advanced methodologies such as ranked set sampling [28, 29]. Also, the suggested NPMExD 
can be further modified using the ideas presented by Lathamaheswari et al. [30] and Khan and Gulistan [31]. 
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