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Abstract:  In the present study ruled surfaces generated by Darboux and instantaneous Pfaff 
vectors of Salkowski curves in Euclidean 3-space are considered. Some geometric properties 
of these surfaces such as striction curves, surface normal vectors, tangent and asymptotic 
planes, distribution parameters, Gaussian and mean curvatures and fundamental forms are 
investigated. Some results and interpretations of these surfaces are obtained. 
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INTRODUCTION 
 

Curves and surfaces are one of the fundamental elements in the field of differential geometry 
and have important applications in many areas such as mathematical modelling, physics, 
engineering and computer graphics. In particular, the direction vector defined along a curve and the 
ruled surfaces constructed by this vector occupy a remarkable place in geometric analysis. In this 
context, ruled surfaces are defined as surfaces swept by a direction vector moving along a line, and 
the study of these surfaces offers a wide field of study in both theoretical and applied mathematics. 
Many authors have conducted various studies on ruled surfaces [1-12].  

Salkowski curves are a special class of curves with constant curvature and varying torsion 
properties [13]. These curves have attracted attention in the geometry literature due to their different 
characteristics. The defining feature of Salkowski curves is that their curvature remains constant 
while their torsion varies. This feature distinguishes them from other types of curves and enables 
their use in the construction of various geometric surfaces. Monterde [14] introduced Frenet frame 
of Salkowski curves. In another paper we studied ruled surfaces obtained from Frenet vectors of 
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Salkowski curves in Euclidean 3-space [15]. Some other papers on Salkowski curves in Euclidean 
3-space are available from various sources [16-19].  

In addition, one of the frames created at any point of the curve, and the most well-known 
one, is Frenet frame [20-22]. In the Frenet frame it is considered that the frame rotates at every 
moment t  around a fixed axis. This axis is called Darboux axis, and the unit vector in the direction 
of this axis is referred to as instantaneous Pfaff vector [23]. Darboux vector is a vector containing 
the curvature and torsion of a curve and, thank to this vector, the geometric structure of the curve 
can be analysed in more detail. Ruled surfaces obtained from the Darboux vector defined along a 
curve offer a rich field of study in terms of both mathematical aesthetics and application [24-26]. 
These surfaces have important applications in many fields such as differential geometry, elasticity 
theory and structural engineering. 

In this study ruled surfaces generated from Darboux and instantaneous Pfaff vectors of 
Salkowski curves are discussed. First, the basic properties of Salkowski curves and their Darboux 
and instantaneous Pfaff vectors are given; then the geometric properties of ruled surfaces generated 
from these vectors are examined. The aim of the study is to reveal the geometric characteristics of 
these special surfaces and to shed light on their potential applications. 
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Figure 1.  Salkowski curve in Euclidean 3-space 1for 
5

m  
 

 (from left to right: front, left and top 
views) 
 
RULED SURFACES GENERATED BY DARBOUX VECTOR OF SALKOWSKI CURVES IN 
EUCLIDEAN 3-SPACE 
 

Throughout this section we denote  Salkowski curves by  t , their Darboux vector by 
 W t , and  ruled surface generated by  W t  along  t   by  ,W Wt v .  

Theorem 1.   ,W Wt v  is parameterised as follows (Figure 2): 
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Proof:  According to the definition of ruled surface, we write: 

     , .W W Wt v t v W t                   (8) 

By using  (1) and (2) in (8), we get (7). 
 
Theorem 2.  The normal vector  w t  of  ,W Wt v  is 
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Figure 2.  Ruled surface generated by Darboux vector of Salkowski curve (for m=1/5) (top figures: 
front view; middle figures: top view; bottom figures: bottom view) 
(The images on the right are transparent versions of the ones on the left. See striction curve in 
Theorem 5.) 
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Proof:  According to the calculation of normal vector of a surface, we write 
     

t vWw W Wt t t    ,          (10) 

where  
tW t  is the derivative of  ,W Wt v  with respect to t , and  

vWW t  is the derivative of 

 ,W Wt v  with respect to Wv . From (4), (5) and (8), we get 
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Also from (2) and (8), we get 
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So by using  (11) and (12) in (10), we obtain (9). 
 
Theorem 3. The tangent plane to  ,W Wt v  formed by a fixed point  ,  ,  M x y z  and a variable 
point  0 0 0, ,D x y z  is 
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Proof:  The tangent plane of a surface is calculated with the following equation: 

 , 0WDM t .           (13) 

From (9) and (13), the proof is completed. 
 
Theorem 4.  The parameter Wv  to the striction curve of  ,W Wt v  is 
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From (2) and (5), we get 
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Also, from (16) and (17), we have 
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By using (18) and (19) in (15), we obtain (14). 
 
Theorem 5.  The striction curve  W t  of  ,W Wt v  is parameterised as follows (Figure 2): 
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Proof:  We obtain the striction curve   W t  of   ,W Wt v  by substituting Wv  into (7). 
 
Corollary 1.  The striction and base (Salkowski) curves of  ,W Wt v  never coincide.  
 
Theorem 6.  The asymptotic plane to  ,W Wt v  formed by a variable point  0 0 0, ,D x y z  and a 
fixed point  ,  ,  M x y z  is  
     0 0 0sin cos 0.x x t y y t z z m       
 
Proof:  From (2) and (5), the normal vector at infinity of   ,W Wt v  is 
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           (20) 
 
The asymptotic plane of a surface is given by 

 , 0.WDM t               (21) 
 
From (20) and (21), the proof is completed. 
 
Theorem 7.  The distribution parameter  WP t  of  ,W Wt v  is 

  0WP t . 
 
Proof:  The distribution parameter of a surface is found by 
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From (4) and (16), we get  

     , 0.t tt W t W t             (23) 

So, from (22) and (23), the proof is completed. 
 
Corollary 2.   ,W Wt v  is a developable surface. 
 
Theorem 8.  The Gaussian curvature  WK t  of  ,W Wt v  is 

  0WK t . 
 
Proof:  The Gaussian curvature of a surface is found by the following equation: 
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From (23) and (24), the theorem is proved. 
 
Theorem 9.  The first fundamental form WI  of   ,W Wt v  is   
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Proof:  The first fundamental form of a surface is found by 
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By using (27) in (25), the proof is completed. 
 
Theorem 10.  The second fundamental form WII  of  ,W Wt v  is 
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Proof:  The second fundamental form of a surface is found by  

2 22 ,W W W W W WII l dt m dtdv n dv              (28) 
where 

           , ,     , ,     , .
tt tv v vW W WW W w W W w W W wl t t m t t n t t                  (29) 

 
From (11) and (12), we get  

 

 

 

   
2

cos ,sin ,0
tvWW

nt t t
m

  

and 
   0,0,0 .

v vW WW t   



 
Maejo Int. J. Sci. Technol. 2025, 19(02), 107-121  
 

 

114

By using these vectors in (29), the following expressions are obtained:  
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If (30) is substituted in (28), then the proof is completed. 
 
Theorem 11.  The third fundamental form WIII  of  ,W Wt v  is 

       
   

6 22 2 2 2 2
6

6 6
2

4 4

4 cos sin cos

4        + cos sin .

W W

W W

nIII m nt nt nt nv dt
m

n nnt nt dtdv dv
m m

  


 

 
Proof:  The third fundamental form WIII  of a surface is found by 

2 22 ,W W W W W WIII e dt f dtdv g dv            (31) 
where 
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If (33) is substituted in (31), then the theorem is proved. 
 
Theorem 12.  The mean curvature  WH t  of   ,W Wt v  is 
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Proof:  The mean curvature of a surface is found by the following equation:  

   2
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From (27) and (33), we get 
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If the last expressions are substituted in (34), the theorem is proved.   
 
RULED SURFACES GENERATED BY INSTANTANEOUS PFAFF VECTOR OF SALKOWSKI 
CURVES IN EUCLIDEAN 3-SPACE 
 

Throughout this section, we denote Salkowski curves by  t , their instantaneous Pfaff 
vector by  C t , and ruled surface generated by  C t  along  t  by  ,C Ct v . 
 
Theorem 13.   ,C Ct v  is parameterised as follows (Figure 3): 
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Proof:  According to the definition of ruled surface, we write: 

     , .C C Ct v t v C t               (36) 
 
By using  (1) and (3) in (36), we get (35). 
 
Theorem 14.  The normal vector  C t  of   ,C Ct v  is 
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Proof:  From (4), (6) and (36),  we get 
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and from (3) and (36), we get 
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            (39)  

So by considering the expression (10) and using (38) and (39), we obtain (37). 
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Figure 3.  Ruled surfaces generated by instantaneous Pfaff vector of Salkowski curve (for m=1/5) 
(top figures: right view; middle figures: left view: bottom figures: bottom view) 
(The images on the right are transparent versions of the ones on the left. See striction curve in 
Theorem 17.) 
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Theorem 15.  The tangent plane to  ,C Ct v  formed by a fixed point  ,  ,  M x y z  and a variable 

point  0 0 0, ,D x y z  is 
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Proof:  By considering the expressions (13) and (37), the proof is completed. 
 
Theorem 16.  The parameter Cv  of the striction curve of  ,C Ct v  is 
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Proof:  From (3) and (6), we have 
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Also, from (41) and (42), we obtain 
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             (43) 

        2, .t tC t C t C t C t n              (44) 
 
If (13), (43) and (44)  are considered, then we have (40). 
 
Theorem 17.  The striction curve  C t  of  ,C Ct v  is parameterised as follows (Figure 3): 
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Proof:  We obtain the striction curve   C t  of   ,C Ct v  by substituting Cv  into (36). 
 
Corollary 3.  The striction and base (Salkowski) curves of  ,C Ct v  never coincide.  
 
Theorem 18.  The asymptotic plane to  ,C Ct v  formed by a variable point  0 0 0, ,D x y z  and a 
fixed point  ,  ,  M x y z  is 

     0 0 0sin cos 0.x x t y y t z z m       
 
Proof:  From (2) and (5), the normal vector at infinity of   ,C Ct v  is 
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From (21) and (45), the proof is completed. 
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Theorem 19.  The distribution parameter  CP t  of   ,C Ct v  is 

  0.CP t  
 
Proof:  From (5) and (41), we get 

     , 0.t tt C t C t             (46) 

So, by considering (22) and (46), the proof is completed. 
 
Corollary 4.   ,C Ct v  is a developable surface. 
 
Theorem 20.  The Gaussian curvature  CK t  of   ,C Ct v  is 

  0CK t  . 
 
Proof:  If (24) and (46) are considered, the proof is completed. 
 
Theorem 21.  The first fundamental form CI  of   ,C Ct v  is 
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Proof:  The first fundamental form of a surface is found by 
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By using (49) in (47), the proof is completed. 
 
Theorem 22.  The second fundamental form CII  of  ,C Ct v  is 
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Proof:  The second fundamental form of a surface is found by  
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and 
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By using these vectors in (51), the following expressions are got: 
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By using (52) in (50), the proof is completed. 
 
Theorem 23.  The third fundamental form CIII  of   ,C Ct v  is 
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Proof:  The third fundamental form of a surface is found by 
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If these vectors are used in (54),  we have 
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Bu using (55) in (53), the proof is completed. 
 
Theorem 24.  The mean curvature  CH t  of  ,C Ct v  is 
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Proof:  From (49) and (55), we get 
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and 

 
3

2 3 21 cos .C C C CE G F n nt v
m

    
 

 

If the last two expressions are considered in (34), the proof is completed.   
 
CONCLUSIONS 
 

In the present paper we have introduced ruled surfaces generated on Salkowski curves in 
Euclidean 3-space by their Darboux and instantaneous Pfaff vectors. We have studied some 
geometric properties of these surfaces such as fundamental forms and Gaussian and mean 
curvatures and concluded that they are developable. Similar studies can be done with anti-
Salkowski curves or Salkowski curves in the Minkowski 3-space. 
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