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Abstract: The multiplication operator M, f = u - f within the bicomplex Lorentz space
ngf% (Q, M, 9) is investigated. It is initially established that M,, is D-bounded if and only if the
function u is essentially D-bounded. Subsequently, it is proved that the collection of all D-
bounded multiplication operators on BC-Lorentz spaces forms a maximal abelian sub-algebra
within the Banach algebra of all bounded linear operators on ngf% (Q, M, 9). Additionally, a
necessary and sufficient condition for the compactness of M, is provided. Finally, by
introducing a condition for a multiplication operator to exhibit a closed range, the author
identifies some conditions equivalent to M,, being a Fredholm operator.
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INTRODUCTION

BC-valued functions arise naturally in various mathematical fields including probability
theory, mathematical analysis and functional analysis, and understanding their properties is crucial
for advancing these areas of study. Functional analysis traditionally deals with vector spaces over a
field, such as the complex numbers or the real numbers. However, by considering modules with
bicomplex scalars, where the scalars are elements of the bicomplex numbers, a broader framework
is introduced. This extension allows for the exploration of new mathematical structures and the
investigation of properties beyond the classical setting. One influential work that has contributed to
this area is a book by Alpay et al. [1]. It presents notable results, techniques and applications
pertaining to the study of modules with bicomplex scalars in the context of functional analysis.
These results shed light on the behaviour of modules with bicomplex scalars, reveal connections to
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other areas of mathematics, and potentially find applications in physics, engineering or other
disciplines.

The series of articles mentioned in the references highlight the systematic study of
topological bicomplex modules and various fundamental theorems related to them. Here is a
breakdown of the articles and their contributions.

Luna-Elizarraras et al. [2] investigated Hahn-Banach theorem for bicomplex modules and
hyperbolic modules. The study of topological bicomplex modules, exploring their topological
properties and investigating concepts such as convergence, continuity and compactness in this
context was done by Kumar and Saini [3]. Also, fundamental theorems including the principle of
uniform boundedness, open mapping theorem, interior mapping theorem and closed graph theorem
for bicomplex modules were studied. BC bounded linear operators and bicomplex functional
calculus were examined by Colombo et al. [4].

Saini et al. [5] extended the study of fundamental theorems to the setting of topological
bicomplex modules. They delved further into the study of topological hyperbolic modules,
topological bicomplex modules, exploring the properties of linear operators, continuity and related
topological concepts specific to these settings.

Bicomplex C*-algebras were studied by Kumar et al. [6]. The work covered bicomplex
operator algebras, spectral theory and topological properties of C*-algebras defined on bicomplex
vector space. Bicomplex linear operators on BC Hilbert spaces were investigated by Kumar and
Singh [7]. They also explored the properties of these operators.

The book authored by Luna-Elizarrards et al.[8] provides an in-depth exploration of
bicomplex analysis and geometry. It covers a wide range of topics including holomorphic functions,
integration, differential equations and geometric properties specific to the bicomplex domain.
Besides these, bicomplex Lebesgue spaces and some of their geometric and topological properties
were defined and studied [9-11]. Bicomplex sequence spaces L,(BC) were defined and examined
with various properties by Degirmen and Sagir [12] and Sagir et al. [13].

These references collectively represent significant contributions to the study of bicomplex
modules, functional analysis and related areas. They showcase the exploration of properties, the
development of new theorems and the application of functional analysis techniques in the context of
bicomplex numbers.

PRELIMINARIES ON BC

Now we give a summary of bicomplex numbers with some basic properties .The set of
bicomplex numbers BC which is a two-dimensional extension of the complex numbers is defined as
BC: = {W = wy + jw,| wy,w, € C(i)}
where i and j are imaginary units satisfying ij = ji, i? = j2 = —1. Here C(i) is the field of
complex numbers with the imaginary unit i. According to the ring structure, for any Z = z; +

Jjz5, W = wy + jw, in BC, the usual addition and multiplication are defined as

Z+W = (z;+wy)+j(z, +wy) and ZW = (zyw; — z,w,) + j(Z,wy + zwy).
In the sense of module structure, the set BC is a module in itself. The product of the imaginary units
i and j brings out a hyperbolic unit k such that k? = 1. The product operation of all units i,j and k
in the bicomplex numbers is commutative. Specifically, the following relations hold:

ij =k, jk=—i and ik = —j.
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Hyperbolic numbers D are two-dimensional extension of the real numbers that form a number
system known as the hyperbolic plane or hyperbolic plane algebra. They can be represented in the
form o = f; + kB,, where 8, and 8, are real numbers and k is the hyperbolic unit. For any two
hyperbolic numbers a = ; + k3, and y = 8, + kd,, addition and multiplication are defined as
follows:
a+y= (B +61)+k(B,+6;) and ay = (B16; + f,62) + k(B16, + 261).

The hyperbolic numbers form a ring. Unlike the complex numbers, the hyperbolic numbers do not
have a multiplicative inverse for all non-zero elements and they can also be considered a significant
subset of the bicomplex numbers BC.

Let W = w; + jw, € BC where wy, w, € C(i). By the notation of W with imaginary units i
and j, the conjugations are formed for bicomplex numbers as follows: W, =w; + Jjw,, W, =w, —
jw, and W3 = Wy — jw,, where w; and W, are the usual complex conjugates of wy,w, € C(i)
respectively [1, 8, 14].

For any bicomplex number W, the following three moduli: |W|? = W - W, = w? + w3 €
c@), Wi =w- Wy = (Iws]? — [w2|?) + j(2Re(w,w3)) € C() and [W|Z = W - W5 = (Jw,|? +
|w,|?) + k(—ZIm(wlw_z)) € DD, were written [1, 8, 14].

Furthermore, BC is a normed space with the norm [|W||gc = /|w1|? + |wy|? for any W =
w; + jw, in BC [2]. According to this, ||[WyW;llge < V2IIW; lgcllW; lIge for every Wy, W, € BC,
and finally BC is a modified Banach algebra [1, 14].

. k -k .
If the hyperbolic numbers e; and e, are defined as e; = % and e, = 17, then it is easy to

see that the set {e;, e,} is a linearly independent set in C(i)-vector space BC. The set {e;, e,} also
satisfies the following properties:

ef = ey, ef = ey, (91)3 =€, (92)3 =ey epte; =1 e -6 =0,
with |le;llgc = llesllge = V2/2. By using the set {e;, e,}, any W = w, + jw, € BC can be written
as a linear combination of e; and e, uniquely. That is, W = w; + jw, can be written as
W =w; +jw, = ez +e,2,, (D)

where z; = w; — iw, and z, = w; + iw, [1]. Here z; and z, are elements of C(i) and the formula
in (1) is called the idempotent representation of the bicomplex number W.
Besides the Euclidean-type norm ||| ¢, another norm named (ID-valued) hyperbolic-valued

norm |W|, of any bicomplex number W = e;z; + e,z, is defined as
Wk = eilzi| + e;]2,l.
For any hyperbolic number a = f8; + k3, € D, an idempotent representation can also be
written as D € BC. Thus, a = f; + k5, € D can be written as
a=eaq+ ey,
where a; = f; + f, and a, = ; — 3, are real numbers. If §; > 0 and 8, > 0 for any a = ; +

kB, € D, then we say that a is a positive hyperbolic number. Thus, the set of non-negative
hyperbolic numbers D* U {0} is defined by

D* U {0} = {a =By + kB,: 7 — B3 =2 0,8, = 0}
={a=e,a; +e,a,:a; 20,0, =0}
Now let @ and y be any two elements of D. A partially ordered relation " < " is defined on
Dbya=<y ©y—aeDtu{0} [1, 2]. If the idempotent representations of the hyperbolic
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numbers a and y are written as @ = e;a; + e;a, and y = e;y; + e,¥,, then a < y implies that
a; <y;and a, < y,. Bya <y, wemean a; < y; and a; < y5.

Any function f defined on D is called D-increasing if f(a) < f(y), D-decreasing if f (a) >
f(y), D-non-increasing if f(a) > f(y) and D-non-decreasing if f(a) < f(y), whenever a < y.
More details on hyperbolic numbers D and partial order "<" can be found in the literature [1
(Section 1.5), 8, 14].

Definition 1 [5]. Let A be a subset of D. A is called D-bounded from above if there is a hyperbolic
number § such that § > « for all @ € A. If A © D is D-bounded from above, then the D-supremum
of A is defined as the smallest member of the set of all upper bounds of A.

Similarly, A is called D-bounded from below if there is a hyperbolic number y such that a >
y forall @ € A. If A € D is both D-bounded from above and below, it is simply called D-bounded.

Remark 1 [1, Remark 1.5.2]. Let D D A be D-bounded from above and A;: = {A;:e,1; + e,1, €
A}, A= {A,:e,4, + e,1, € A}. Then the suppA is given by
suppA: = e supA; + e,supA,.

Similarly, for any D-bounded from below set A, the D-infimum of A is defined as

infpA = ejinfA; + eyinfA,.
Remark 2 [1]. A BC-module space or D-module space Y can be decomposed as

Y =e Y] +e,)Ys, (2)
where Y; = e,Y and Y, = e,Y are R-vector or C(i)-vector spaces. The spelling in (2) is called the
idempotent decomposition of the space Y.

Definition 2 [15]. Let 9t be a g-algebra on a set £2. A bicomplex-valued function u = p;e; + uye,
defined on 2 is called a BC-measure on I if uq, u, are complex measures on M. In particular, if
Uy, Uy are positive measures on M, i.e. the range of both uy, 1, being [0, o], then u is called a D-
measure on M, and if p,, u, are real measures on M, i.e. the range of both yy, u, being [0, o0), then
u is called a D*-measure on M.

It is assumed that 2 = (2,9M, ) is a o-finite complete measure space and fi, f, are
complex-valued (real-valued) measurable functions on (2. The function having idempotent
decomposition f = fie; + f,e, is called a BC-measurable function and |f|, = |file; + |fzle; is
called a D-valued measurable function on £2 [15].

For any BC-valued measurable function f = fie; + f,e,, it is easy to see that |f], =
|files + |f;le, is D-valued measurable. Also, for any two BC-valued measurable functions f and
g, 1t can be easily seen that their sum and multiplication functions are also BC-measurable functions
[15]. More results on D-topology, such as D-limit, D-continuity, D-Cauchy and D-convergence,
can be found in the literature [12, 16, 17] and the references therein.

Theorem 1. Let u = u,e; + uye,, v =v,e; + vye, and u,, = ute; + uje, be BC-measurable
functions and A € BC. Then:

* Real and imaginary parts of the functions u;,u,,v; and v, are R-valued measurable;

* Uy, Uy, V4 and v, are C-valued measurable;

*u+ v,u- v and Au are BC-valued measurable;

o supplun |k, infiplug |, imsupp|u, g, liminfplu, |, and limp|u, |, are D-valued measurable,
where they are defined.
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Proof. The proof of each item can be done by using the definition of measurable function and
similar techniques used in the literature [18, Appendix A].

Definition 3 [15]. Let (22,9, 9) be a measure space withd = 9,e; + 9,e,, F(2, M) indicating
the set of all MM-measurable functions on {2, and u € F(2, M) be a BC-valued function. Let E,, =

{x e 2:lu(x)|, >M}forany M = 0. IfA={M > 0:9(Ey,)) =0} ={M eD*:|lu(x)|, =M I —

a.e.}, then the essential D-supremum of u, denoted by essuppu or ||ul|2, is defined by |[u||2 =

essuppu = infp(A).

D —Distribution and D —Rearrangement Functions

Now suppose that (Q, I, 9) is a o-finite complete BC-measure space and F(, M) is the set
of all BC-measurable, BC-valued functions on ().
Definition 4 [19]. Letu = u,e; + u,e, be an element of F(£2, M) and 9 = 9,e; + 9,e, be a BC-
measure. Then the BC-distribution function D2¢: D* U {0} - D* U {0} of u is given by
DEC(A) =Dy, (Aes + Dy, (A2)ey
= 9;{x € Q: luy (x)| > A1}e; + 9,{x € Q: |u,(x)| > 1, }e, 3)
forall A = A,e; + A,e, = 0.
Definition 5 [19]. Let A € D* U {0} and u be in F(2, M). The D-decreasing rearrangement of u is
the function upc: D* U {0} - D* U {0} defined by
upc(t) = infpfa = 0: DE%(a) < t}
= inf{a, > 0:D,, (ay) < ti}e, + inf{a, > 0:D,,(ay) < ts}es
= uj(ter +uz(ty)e,
where infp@ = oo.
According to Ghosh and Mondal [15] and Eryilmaz [19], since
lull2 = infp{a = 0:9{x € Q: |[u(x)|, > a} = 0},

and [uy |, lluzlleo < lull®, one can write [|ull® = lluyllcoeq + lluzlloe;, and so
upc(0) = infp{a = 0: DB (a) = 0}
= infm){a > O:ﬁj{x € N: |uj(x)| > aj} =0,j= 1,2} = |[ull2. 4)

On the other hand, the D-decreasing property of D2¢(-) implies that
e (DEC(D)) = infpla = 0: DF%(a) < DEC(D)} = infpla = 0:a > t} = ¢,

or
Upc (D}?C(t)) = inf{a; > 0: D,,(a;) <Dy, (t)}e, + inf{a, > 0: D,,(a3) < Dy, (t))le,
=inf{a; = 0:a; >t }e; +inf{a, = 0:a, > ty}e, = tie; + tye, =,
and so upc(-) is the left D-inverse of the distribution function DEC(-). Now let upc(t) =1 =
Aeq + A,e, < oop. Then by Definition 5, there exists a sequence 4,, = /1511) e, + /1512)62 in D* such
that /1511) 124, /1512) l2,, Dy, 1(/1511)) < t, and D,, (/1512)) < t,. By using the techniques used in the

continuation of Castillo and Rafeiro [18, Definition 4.4] and the right continuity of the usual
distribution function, we get

DE(upc (D)) = DEC(A) = Dy, (A))ey + Dy, (A)e,

_ (1imDu1(/1§}))) e, + (limDuz (/1512))) e, < tie; + tye, = t.
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Therefore,
Upc (D{E‘(C(a)) < aand DE¢(upc(t)) < t. (5)

Definition 6 [19]. The function ugy: D* — D* U {0} is defined as
1 tl 1 tz
upe(t) = (t— j ui(S)dS> e+ (t— j uZ(S)dS> e; = uy (t)ey +us" (e,
170 270
where t = te; + tye, and upc = uje; + use,. This function upg(-) is called the D -maximal
function of u since it is the D-largest of all D-average values over ugc.

Remark 3. Even if the value of ug(t) att = 0 is not included in the definition above, the D-limit
as t;, t, approach zero from the right for t = t;e; + t,e, is defined for all rearrangements. In fact,

limp ugc(t) = limp (ui™(t)e; +uz"(tz)er) = lim ui™(¢)e; + lim uy*(tz)e;
tl,t2—>0+ tlrtZ_)O t1—>0 tz—)()

= u;(0)e; +u3(0)e; = upc(0) = llull2,
where the last equality is from (4).

Theorem 2 [18, Theorem 4.17]. Suppose that (X, A, 1) is a non-atomic measure space and let
& (X, A) denote the set of all complex-value A-measurable functions on X. Then

sup { [ Iredue me) = t} = [ r©as.
E 0

Theorem 3 [19]. Let u = uje; + uye,, v = v,e, + v,e, be two elements of F(2, M) and 9 =
Y,e; + 9,e, be a BC-measure with resonant measures 9; and 9,. Then

(u +v)ge(t) = uge(t) + vge(t)
forallt € D*.

Definition 7. Let 9 = 9,e; + 9,e, be a BC-measure, (2,9M,9) be a o-finite complete BC -
measurable space and (12, M) be the set of all measurable BC-valued functions on 2. For 0 < p <
0 and 0 < q < oo, the bicomplex Lorentz spaces, LBS = LB (2, M, 9), are the set of all
equivalence classes of BC -measurable functions u = u;e; + uye, € F(2,M) such that the
functional ||ull5% is D-finite, where

lullpg = ellugllyq + ezlluzlly g
and

oo dt 1/q
(4 tUry () = if0<p<,0<q<oo,
p l t
0

ksuptl/puf(t) if 0 <p<o,q=00
£>0

foralli = 1,2.

Remark 4. For the BC-Lorentz L%f% space, the case p = oo and 0 < g < o is not of any interest.
The reason for this is that |lu||&% < cop, means that f = 0 ¥-a.e on 2. The BC-Lorentz L} spaces
can be seen as generalisations of the ordinary BC-Lebesgue spaces L%(C, which are examined by
Toksoy and Sagir [11]. The reason for this is that if one writes g = p, then we can get LI;',“C = L%(C

¥
for 0 < p < co. In fact, by the definition of ||-||3% for 0 < p < o,
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Pac\? o1 Pt
Ilullé'?,‘%=61I|u1I|p,p+ezI|uzI|p,p=61 t”ul(t) ~ | te j tPu;(t) -
0
=e, (j (ul(t)) dt) + e, (j (w3 () dt)5

1

Q=

P P
= e, ( | |u1<x)|pdz91> +e, ( | |u2<x)|pdz92> = eylluglly + ealhuzll, = lull ac
Q Q
can be obtained. For p = oo, the result can be seen from (4) immediately.

Example 1. For any ¥)t-measurable set E of finite measure according to 99, and ¥,, we have
1 1 1

P\a - P\a 2 (PYA g e
35 = edltillng + ealltellg = e (7)" 9B + ea ()" 00890 = ()" 0cE)P

for 0 < p, q < o0 by Degirmen and Sagir [12, Definition 2.2]. If ¢ = oo, then
1

1 1 1 1
lxelIBS, = eysuptPui(t) + esuptPus(t) = e,9,(E)P + e,9,(E)P = 9(E)P
£>0 £>0

since e; - e, = 0 in D.

Theorem 4. The BC-Lorentz space (Lp ol || ) is a quasi-normed linear space.

Proof. 1t is easy by Castillo and Rafeiro [18, Theorem 6.4].

Remark 5. The functional |||} is a norm if and only if 1 < q < p < oo or, in trivial case, p =

BC

Definition 8. For any u € L,

the functional || II(p o i defined by

R = eyl llgpgy + e2lliallipys
where

o dt 1/q
{<gj (tl/pr*(t))q —) if 0 <p<o,0<qg<oo,

suptPui*(t) if 0 <p<oo,qg=o0
£>0

By using Theorem 3 and Minkowski inequality, it is easy to see that ||- II(p o satisfies the
triangle inequality for 1 < p < o0 and 1 < q < co. Therefore, |||, is a norm on L3S and hence
(Lp o I II(p q)) is a normed space if 1 <p < o0,1<q < oorp=oc0=q. Moreover, the norm

I|- II(p o and the quasi-norm ||-|| are D-equivalent, that is

55 < 118, < P 1115,

where the first inequality is an immediate consequence of the fact that upc(+) < uge(:), and the
second follows from the Hardy inequality.

Theorem 5 [19]. (Completeness) The BC-Lorentz space L3S with the quasi-norm ||-||5% i

complete for all 0 < p < 0,0 < g < 0. Nevertheless, if l <p <o, 1<g<oo,p=qg=1or

p = q = oo, then the normed space (LI;',‘%, I|- II(p q)) is a BC-Banach space.
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Theorem 6 [19]. Let S be the set of all simple integrable functions. Then the set G = {e;s; +
€,S,: 51,5, € S} is dense in LBE for 0 < p < coand 0 < g < oo.

MAIN RESULTS

Consider the vector space F(£)) comprising all BC-valued functions on a non-empty set Q.
Let u: Q0 - BC be a BC-measurable function on () such that u - f € F () whenever f € F(Q),
where u = u,e; +ujye, and f = fie; + f,e, . This gives rise to a linear transformation
M,: F(Q) = F(Q), defined as

M, (f) =u-f =uifie; t uzfre,,

where the product of functions is pointwise. If F(£1) is a topological BC-vector space and M, is
BC-continuous, then it is referred to as a multiplication operator induced by u. Multiplication
operators have been scrutinised on various function spaces [20-26]. In line with their arguments, |
ng, ”'”]?p(c,q) ’
1 < g < oo. I initially establish a characterisation of the boundedness of M,, in terms of u and

investigate multiplication operators on the BC-Lorentz spaces ( where 1 < p < oo,

demonstrate that the set of multiplication operators on (L[;'jg, ||-||I(Bp(c'q)), forl<p<owandl <q <
oo, forms a maximal abelian subalgebra of the Banach algebra of all bounded linear operators on
L3%. 1 employ this to characterise the invertibility of M, on L5%. The compact and Fredholm BC-

multiplication operators are also delineated in this paper.

Multiplication Operators on BC-Lorentz Spaces

This section establishes the conditions for the boundedness and invertibility of the BC-
multiplication operator M,,. These conditions are expressed in relation to the boundedness and
invertibility of the measurable BC-valued function u respectively.

Proposition 1. For any BC-measurable function u: 2 - BC, M,, is a BC-linear operator on F({2).

Theorem 7. The linear transformation M: f — u - f on the BC-Lorentz space (LB, |I-II(y,)) is

bounded for1 < p < 0,1 < g < o if and only if u is essentially D-bounded. Moreover, ||M, || =
ull.
Proof. Firstly, assume that u is essentially D-bounded and |[u||2 < oop. Since u- f = u;fie; +

Uy fre; for any f € L3S, we have

DE(}(D = Dy, (Ae; + Dy,f, (A2)e;
= 01{x € Qi |u; () fi ()| > A1}er + 9,{x € Q: |u,(x) f(x)| > A,}e,
= lluglleo1{x € Q: 1f; ()| > A4}es + lluzllod2{x € Qi [f2(x)] > 25}e;
= (lluyll o1 + ||u2||ooez)(Df1(/11)e1 + Dy, (/12)92) = ||u||gD}B(C(/1)
for any A = A;e; + A,e, > 0. Then D3%(A) < |lull3DFC(A) implies

(u- PNpc®) = i fi) (e + (uaf2)*(t)e; = inf]])){/1 = OiDE(,E(/D =< t}
< lullBinfp{2 = 0:DFC(2) <t}
= ||u||gf§(c(t) = ”ul”oofl*(tl)el + ”uZ”oon*(tZ)le

and (uyf1)"(t)) < lluglloofi (t1), (uafo)*(t2) < lluslloof5 (t;) for any t = tyeq + tye, = 0.
Therefore,

(- PNyc®) = )7 (tDes + (uafo)™ (t2)e;
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= (l 1 (u1f1)*(5)d5> e, + (l 2 (uzfz)*(s)d5> ez
thiJo t Jy
<Ml (5[ 00 Jer b sl ([ 05 e,
170 2

= (lhulleer + lluzllce) (7" (t)er + f77 (t2)ez) = llulls fae (8

can be written. Consequently, (uf1)""(¢1) < lluglleo i (81), (U2/2)7 (t2) < |luzlleof77 (22), and so
”M (f)”(p q) — elllulflll(p,q) + eZ||u2f2||(p,q)

D NE )**()qﬁi N )**()qﬁé
=€ )y sP(uif1)™ (s S €2 )y sP(uzf, S S
R 1 a % 1) 1 q %
=2 lluglloes (%jo <55f1**(s)> %) + lluzlle; (%jo (Sifz**(s)> %)
< (luglloey + ||u2||oo€2)(€1||f1||(p,q) + €2||f2||(p'q)) = [|u||® ”f”(pq) (6)

is obtained for 1 <p < oo and 1 < g < . If g = oo, then
|M,, (f)”(p o) = e1llurfillp,e) + €21tz foll o0
1 1

= e,supsP (uy f1)**(s) + e;sups? (u,f,)™* (s)
s>0 1 >0 1

< g lwersups? £ (s) + llullwersups? f5(s)
s>0 s>0

= (llurllwes + lluzllwes) (elsgopsl/”ff*(S) + ezsuPsl/pfz**(S)>
S

= ”u”g(elllflll(p,oo) + eZ”fZ”(p,oo)) = lull® ||f||(p o) (7)
is written. This means M,, is BC-bounded.
Conversely, suppose that M,, is BC-bounded on the BC-Lorentz space (qu, |- II(p q)) for
1<p<o,,1< g <oo. Ifuisnot essentially D-bounded, then for each N > 0, the set
Ey = {x € Q:|lu(x)|, > N}
has a D-positive measure. This means there exists N;, N, = 0 with N = N,e; + N,e, such that
lus(x)] > N; and |u,(x)| > N, for all x € Ey with 9(Ey) > 0. Since the decreasing D -

rearrangement of yg = Xg, €1 + Xgy€2 1S ()(EN)M(t) = X(O'ﬁl(EN))(tl)el + X(O'ﬁz(EN))(tz)ez, one
can get that [15]

el ) = exllxell, ) +e2lle

a) €2 q) ®.9

1 1

p

L) 9,(BP —(pj)aﬁ(EN)%.

14
=e (p—) 191(EN)p + e (p
Now to calculate the norm of M,, ()(EN), if we use the following inequality
(Mu(XEN))B(C ) = (u 'XEN)B(C(t) = (u1 'XEN) (t)e; + (uz ')(EN) (t2)e;

= inf{al > O:Dul-xEN(“l) < tl} e, +inf {0(2 > O:Duz-xEN(“Z) < tz}ez
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= inf{a; = 0:9;{x € Q: |u1(x))(EN(x)| > a.} <t e
+inf{a, > 0:9,{x € Q: |u2(x))(EN(x)| > a,} <t,le,

> mf{al > 0:9, {x € 1: |)(EN(x)| > N, } < tl}el

+ mf{az > 0:9, {x € N: |)(EN(x)| > } < tz}ez

= inf{Nyay = 0:9,{x € 2: |xg, ()| > 1} < t1}e;
+ inf{Nya, > 0:9,{x € 2: |)(EN(x)| > a,} <t,le,

= (N1e; + Nzez)()(EN)];(c(t) = N(XEN):B(C(O,

then we get
BC
||MU(XEN)||(p'q) = 6’1||u1 ) XEN”(p'q) + 6’2||u2 ) XEN”(p'q)
1 1
@1 o\ ds\? °° d
=€ (gj (SP(UU(EN) (S)> _S> + e, (gj (Sp(uz)(EN) (S)> S)
pJy S bJg

1

7 1
> (Nyey + Npe)||xzy |l o0 =N (pf;l)q I(Ey)P. (8)

Besides these, for g = oo, we have

10 Gl gy = e1lliszel oy + e2licorg

(p,) (p,) (p,)

1 1
= 915uP5p(u1XEN) (s) + ezsupsp(uz)(EN) (s)
s>0 >0
1 1
= N191SUPSP(XEN) (s) + Nzezsupsp()(EN) (s) €))
s>0 s>0

=N (elsupsp()(EN) (s)+ ezsupsp()(EN) (s)) = N”XEN”]Z(COO) = NI(Ep)P.
s>0 s>0 ’

Both (8) and (9) contradict the boundedness of M,,.
From (6) and (7), it can be seen that ||M,|| < ||[u||2. On the other hand, for any y = e;y; +
ey, >0, let G = {x € Q: [u(x)|x > llull2 — y}. Then
{x € Q: (lluilloo = ¥idxs(x) > 4} © {x € Q: lu; () xe ()| > 4}
can be written for i = 1,2. Therefore, DB¢ (1) < DBC (A1) forall A € D* U {0} and

(& -v)xe wxe
(Mu()(a))m(t) > (Ilull® =) (e ()
for all t € DY U {0}. As aresult, [|[M, ]| = |ull2 —y and ||[M,]| = ||ullZ.

Remark 6. In general, the multiplication operators on measurable function spaces are not injective.
For instance, let U = {x € 2:u(x) # 0} and V. =02 — U. Then u(V) > 0 and (yy - u)(x) = 0 for
all x € 2. This implies that M,,(y,) = 0 and Ker(M,,) # {0}. Hence M,, is not injective. On the
contrary, if M,, is injective, then u(V) must be zero. If (V) = 0 and u is a complete measure, then
M, (f) = 0 implies that (u-f)(x) =0 for all x €2 and so {x € Q: f(x) #0}cV and f =0
(u —a.e.) on (.

Proposition 2. The multiplication operator M, is injective on LBC(U,M,9) ={fxy: f €
L3S (Q, M, 9)}, where U = {x € Q: u(x) # 0}.
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Proof. Let fxy be an element of L3S (U, MM, 9) with M, (fxy) = 0. Then 0 = M, (fx,)(x) =
u(x) f(x)xy(x) for all x € Q. From this equality, we get f(x) - u(x) = 0 and so f(x) = 0 for all
x € U. This means fy; = 0 and Ker(M,,) = {0}.

Corollary 1. The multiplication operator M,, has a closed range on L[;',‘g(U , M, 9) if and only if M,
is bounded below on LES (U, M, 9).

Corollary 2. If 9 is a complete BC-measure and u # 0 (9 — a. e.), then the multiplication operator
M, on L3S (2,9, 9) has a closed range if and only if M,, is bounded below on L% (12, I, 9).
Theorem 8. The set of all multiplication operators on the BC-Lorentz space L%f% (2,M,9), for1 <
p <oo,1 < g < o,is a maximal abelian subalgebra of B (LI;',‘% (0, I, 19)) , the Banach algebra of
all BC-bounded BC-linear operators on L3S (12, M, 9).

Proof. LetM = {M,:u € LB¢(Q, M, 9)} be the set of all multiplication operators induced by the
elements of LBC(Q,MM,9) . Then it is easy to see that M is an abelian subalgebra of

B (LIB“C (Q, I, 19)) according to composition. Let T be an operator on L (Q, I, 9) satisfying T o
M, = M, o T for any u € LES(Q, M, 9), e: O - BC be the unit function with e(x) = e, + e, for all
x € Qand T(e) = v = vye; + vye,. Then for any BC-measurable set E € M, we get

T(xe) =T(e x5) =T (Myy(e)) = My, (T(e)) = My, (v) = v - x5 = My ().

Now assume that v & LEC(Q,9M,9). Then the set Fy = {x € Q: |v(x)|, > N} has positive D -
measure for each N = N,e; + N,e, = 0. Therefore, we get

I ) = I Gee I, = W (25 e

which contradicts the boundedness of T. Thus, v € LE¢(Q,9M,9) and T = M,, by Theorem 6, using
the density of simple functions in LE% (9, I, 9).

9 (», q)

Corollary 3. The multiplication operator M,, on LB% (2,9, 9) for 1 <p <o, 1 <g< oo is
invertible if and only if u is D-invertible in LE¢(Q2, M, 9).

Proof.  Suppose that u is D-invertible in LE®(Q, I, 9) with the inverse v. Then M,(M,f) =
M,(u-f)=f and M,(M,f) =M,(v-f)=f, which means M;' =M, = M- . If M;?!
exists, then it commutes with all multiplication operators on L%f% (Q, M, 9). This means M;* = M,
for some v € LEB¢(Q, M, 9) by Theorem 8 and v is the D-inverse of u.

Compact Multiplication Operators

A compact multiplication operator on L%f% (Q, M, 9) is an operator that arises from pointwise
multiplication of functions by certain measurable functions, typically D-bounded ones. These
operators map D-bounded sets to relatively D-compact sets, exhibiting desirable properties similar
to compact operators in functional analysis. In this subsection D-compact multiplication operators
are characterised.

Theorem 9. Let M, be a compact operator, Hys = {x € 2: [u(x)|; = 6} and LES(H,s) =
{fXHu,6:f € LBC (0, M, 9)} for any & = &1e; + S,e, > 0. Then LBC (H,,5) is a D-closed, invariant

subspace of LEC (2, M, 9) under M,, and the restriction of M,, to LES (H,, 5) is a compact operator.
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Proof. We first show that LEC (H,, ) is a subspace of LES (Q, 9, 9). Let f, g € LBC (H, 5) and
a,b € BC. Since f = fxy, , and § = gxy, , for any f, g € LB (Q, M, 9), we get

af +bg = af xu, s+ bgxu,, = (@f +bgxu, s
By the definition of M,,: LES (H,.5) = LEC (Q, M, 9), we have M, (f) =u-f=u- f X, s and so
L3S (H, 5) is an invariant subspace of L3S (Q, M, 9) under M,,.

D
Now let us show that the D-closure of LB (H, 5) satisfies LEC(H,s) < LES(H,s).

D
Suppose that § € LES(H,,5) . Then there exists a sequence §, in LES (H, 5) such that g, — g,
where g, = gnxn, ; for each n € N. Since g, is a D-Cauchy sequence in L%f% (Hu'g), it can be

written that for all € = &,e; + £;e, > 0, there exists an ny € N such that || g, — ngII(Bp(C'q) < ¢ for all
m,n > n,. Hence for all m,n > ny, we can find a § = §,e; + 6,e, > 0 such that §(g,, — gm) =

(Gn = gm)Xn, s and [81k(gn = gm)Bc () = (Gn — Im)Bc(OX[0,0(11,,5) ) (D) Then
1

P \a S
5”gn gm”(p q) — (p _ 1) ﬁ(Hu,S)pllgn - gm”[(Bp((,:q)

can be written. Therefore, {g,}nen is also a D -Cauchy sequence in L35 (Q,9M,9) . Since
L3S (Q, M, 9) is a Banach space, we can write that g, —» g for an element g € L3S (Q, M, ). Thus,

we have
BC
||gn)(Hu5 gXHu5||(pq < llgn — g”]?p(c,q)
and g, — §. Consequently § € Lp'q (Hu'a) and M,, | LBC (Hy, 5) 1s a compact operator.

Theorem 10. A multiplication operator M,, on L35 (2,9, 9) is D-compact for 1 < p < 0,1 <
q < o if and only if LEC (H, 5) is finite dimensional for each § = §;e; + 8, > 0, where H, 5 =
{x € Q:lu(x)|; = 6} and LBC (H,5) = {fXHu,6:f € LBC(Q, M, 9)}.

Proof. Assume that M,, is a compact operator. Then L[;',‘f%(u, &) is a D-closed and M, -invariant
subspace of LB% (Q, M, ) and so the restriction of M,, to L3S (u, §) is compact by Theorem 9. Now
take any x € Q and let x € Hy,s . Then |u(x)|, <6 , (MulL%(H“"S)(f))m ®O=@u-f

XHu,s):B(C(t) =0 and so My|sc(y, ) =0 for any f € L3S (Q,M,9) and t = tye; + tye, > 0. If
X € Hy 5, then |uy (x)| = 81, lu,(x)| = 8, and we have
(- f X ) O = 81| (F - Xy ) Oer + 82| (F - i 5) () e
= 8|(f * 2, ) @],
(1) for any A = Aje; + A,e, = 0. Therefore, 5(f - XHu6) () <

and (SDquH A =D

(u f 'XHu,a)B(C(t)' 5(f ')(Hura)m(t) = (u f ')(Hura)m(t) and
BC
||MU(fXHu,6)”(p'q) = e1||u1 ) fl ) XHu,&”

= 3151||f1 : XHu,5||

fXH

0.0) + e’2”“2 fa 'XHW;”

+ e’252||f2 'XHW;”

(X))
”IB(C

”fXHu )

9 9
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. . . ]:B(C . .
Thus, in either case M,,| LEC (1, 5) POSSESSES a D-closed range in Ly ¢ (Hu'g) and hence D-invertible.

Since M,, is a compact operator, it can be written that L%f% (Hu'g) is finite dimensional.

Conversely, suppose that LES (H,, ) is finite dimensional for each § > 0. Then LES (Hu;)

n
is finite dimensional for eachn € N. Let u,,: Q - BC be a sequence defined as u,(x) = u(x) if

|, ()|, = %, U, (x) = 0 otherwise. Since u is essentially D -bounded, all members of u, is

essentially D-bounded. Moreover, for any f € L3S (Q, M, ), we have

(u —u)f(/l) - ( 1(11) )fl(/ll)el + D(uﬁf) )fz(/lz)ez

Uz —U

and

(G = 0@ = (w2 = )) @er + (42 - w)fe) e
If x€ H,1, then |u(x)|, z% and so (u, —uw)f=0. Ifx ¢ H,1, then |u(x)|, < e Ly ez ~

U (x) =0 and so ((u,-— U)f);(c(t) < %ff(h)el + %fz*(tz)ez = ;fu;?(c(t) with  ((u, —
u)f);*(c ) =< %fﬁfﬁ (t) forallt = tye; + tye, > 0. Consequently,

(M, = MFI ) = G = FIIEE
= e -w)all vl (2 - sl =500

This last inequality means that M, D-converges to M, uniformly. Since L3§ (Hu,l) is finite-

n

dimensional, M, constitutes a finite-rank operator. Therefore M,  is a sequence of compact
operators. Uniform convergence reveals the result: M,, is a compact operator, which completes the
proof.

Corollary 4. If9; and 9, are non-atomic measures, then the only compact multiplication operator
on the BC-Lorentz space LB (2, M, 9) is the zero operator.

Corollary 5. If the set H, 5 contains only finitely many atoms for each § > 0, then M,, is a
compact multiplication operator on the BC-Lorentz space L%f% (02, Mm,9).

Fredholm Multiplication Operators

In this section we initially set forth a criterion for a multiplication operator to possess a
closed range. Subsequently, we leverage this criterion to delineate Fredholm multiplication
operators on L%f% (Q,M,9), where 1 < p,q < o and Y, and 9, are non-atomic measures. In this
context the operator M,, is considered Fredholm if its range R(M,,) is closed and dimN(M,,) and
codimR(M,,) are finite.

Theorem 11. Let M,, be a multiplication operator on L3¢ (2, M,9), where 1 <p < 00,1 < q <
and W = {x € 2:u(x) # 0}. Then M,, has a closed range if and only if there exists ay = y,e; +
Y2€2 > 0 such that |u(x) |, = |us(x)]e; + [u,(x)|e; =y (9 —a.e.) on W.

Proof. If there exists ay = y,e; + Y€, > 0 such that |u(x)|, =y (9 —a.e.) on W, then

||MquW||[(Bp((':q) =lu-f- ){W”(pq) erllus - f '){W”(p,q) +esllu; - f '){W”(p,q)
Al 'XW”(p,q) + ex2llf> 'XW”(p,q) = V”fXW”I(Bp(C,q)

v
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for all f € L3S (Q, M, 9). Therefore, M,, has a closed range.

Conversely, let L3S (W) = {faxw:f € L3S (Q, M, 9)}. If M,, has a closed range, then there
exists an & = g,e; + &,e, > 0 such that IIMquI(p o Z€elf II(p o for all f €Lpe(W). Now
assume that V = {x € W: |u(x)|, < 76’1 76’2} and 9(V) = e, 9, (V) + e;9,(V) > 0. In that
case a BC-measurable set E < V can be found such that y € L%f% (W). Then we have

DlliB)(gE(/l) = Dule(/h)el + Dusz(/lz)ez

= U1{x € Qi luyxp ()| > A1}e; + 0, {x € Qi luxz ()| > 22}e,
= S0, x € Qi e (0] > Ades + =0, {x € Qi 12 (0| > Aze, = 3 DEEQD)

and (u- yg)pc(t) < (8—16’ +£—Zez) ()(E)f‘B(C(t) which implies (u - yg)pc(t) < E()(E) c(t) for all
t =tye; +tye, > 0. Thus, ||Mu)(E||(p D = || XE II(p ¢ » Which is a contradiction. This implies
9(V) = 0 and completes the proof.

Theorem 12. Suppose that 9; and ¥, are non-atomic component measures of 9. Let u be an
essentially D-bounded BC-measurable function and M,, be a multiplication operator on the BC-
Lorentz space L%f% (2, M, 9) for 1 < p,q < oo. Then the following conditions are equivalent:

(1) R(M,,) is closed and codim R(M,,) < oo.

Q) Ju@)|x =6 (9 —a.e.) on Q for some § = e;5; + e,5, > 0.

(3) M,, is an invertible operator.

(4) M,, is a Fredholm operator.

Proof. (1 = 2) Assume that R(M,,) is closed and codimR(M,) < . Then by the preceding
theorem, there exists a & =e;8; +e,8, >0 such that |u(x)|, =8 (@ —a.e.) on W=
{x € Q:u(x) # 0}. Therefore, it suffices to demonstrate that 9(Q\W) = 0.
Now suppose that M,, is not surjective and let h = e;hy + e;hy € LBE(Q, M, ND\R(M,).
Since R(M,,) is closed, we can find a function g = e; g, + e,g, € Lgfq,(ﬂ, I, 9) such that
jﬂhlgldﬁl = el’jﬂhzgzdﬁz =€z (10)
and e [ uifi9:d0; + e, [ upf,9,d9, =0 for all f=efi +e,f, € LpG(QMI) , where
1/p+1/p'=1/q+1/q" = 1. From (10), for i = 1,2, the sets E;, = {x € Q: (h;g;)(x) = &;} must
have positive measure for some € = e;&; + e,&, > 0. Since 9, and ¥, are non-atomic component
measures of J, we can select disjoint sequences {E,(li)} of subsets of E¢; with 0 < ﬁi(Ey(li)) < oo for
€

i =1,2. If we choose g, =e,g, + ezg,(lz) = X;wg11 + X @926, then g, € L[;'jﬁcq,(ﬂ, Mm,9)
n n ’

and non-zero because

e1] hlgT(ll)dﬁl + ez] hzgr(lz)dﬁz = elj(l) hig:d9; + ezj(z) h,g,d9,
Q Q Ep E,

= e &9 (E,(ll)) + e,8,0, (E,(lz)) =€ (ﬁl(E,(ll)) + 9, (E,(lz))) > 0.

Moreover, x wfie1 + X @fzez is in Lpg(Q,M,9) for each f = e f; +e,f; € g (Q,M,9) .
n n

Therefore,

(M}, Gn, f) = {gn, My f) = e1] .97(11)(7«11f1)d191 + ez] géz)(uzfz)dﬁz
Q Q
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= e1j XE(1)91(u1f1)d191 + ez] )(E(Z)gz(uzfz)dﬁz
a " a "

= j Muf (el)(E(l) + ez){E(Z)) (g16’1 + gzez)dﬁ =0,
Q n n

where M;; is the conjugate operator of M,,. This implies {g,}is a sequence in N(M;)) and so the
sequence {g,} forms a linearly independent subset of N(M;,). This contradicts the fact that
dimN (M;;) =codimR(M,,) < co. Hence M,, is surjective and 9(Q\W) = 0. If 9(Q\W) > 0, then
there exists a subset V of Q\W with 0 < 9(V) < cop,. Then yy = ey xy + exxy € L3S (Q, M, 9)\
R(M,), which contradicts the fact that M,, is surjective. Therefore, 9(Q\W) = 0 and |[u(x)|, = &
a.e. on (.

The other implications are easy.

CONCLUSIONS

In this study I analysed multiplication operators acting on bicomplex Lorentz spaces, a
mathematical structure that extends classical Lorentz spaces to the bicomplex setting. By utilising
tools from functional analysis and operator theory, I derived necessary and sufficient conditions for
these operators to be compact and Fredholm. My findings reveal that the compactness of the
multiplication operators depends critically on the behaviour of the symbol functions within the
bicomplex framework while the Fredholm property is governed by both the invertibility conditions
and the interplay of bicomplex components.

These results contribute to a broader understanding of operator theory in bicomplex spaces,
offering insights that may prove useful for further theoretical developments or applications in
mathematical physics and engineering. Future research could explore the spectral properties of these
operators or extend the analysis to other classes of bicomplex function spaces.
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