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Abstract: The multiplication operator ܯ௨݂ = ݑ ⋅ ݂  within the bicomplex Lorentz space 
,ܮ

९ℂ (Ω, ै,  ௨ is ॰-bounded if and only if theܯ is investigated. It is initially established that (ߴ
function ݑ is essentially ॰-bounded. Subsequently, it is proved that the collection of all ॰-
bounded multiplication operators on ९ℂ-Lorentz spaces forms a maximal abelian sub-algebra 
within the Banach algebra of all bounded linear operators on ܮ,

९ℂ (Ω, ै,  Additionally, a .(ߴ
necessary and sufficient condition for the compactness of ܯ௨  is provided. Finally, by 
introducing a condition for a multiplication operator to exhibit a closed range, the author 
identifies some conditions equivalent to ܯ௨ being a Fredholm operator. 

 
Keywords: bicomplex numbers, ९ℂ -valued functions, hyperbolic norm, ॰ -distribution 
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INTRODUCTION 
 

९ℂ-valued functions arise naturally in various mathematical fields including probability 
theory, mathematical analysis and functional analysis, and understanding their properties is crucial 
for advancing these areas of study. Functional analysis traditionally deals with vector spaces over a 
field, such as the complex numbers or the real numbers. However, by considering modules with 
bicomplex scalars, where the scalars are elements of the bicomplex numbers, a broader framework 
is introduced. This extension allows for the exploration of new mathematical structures and the 
investigation of properties beyond the classical setting. One influential work that has contributed to 
this area is a book by Alpay et al. [1]. It presents notable results, techniques and applications 
pertaining to the study of modules with bicomplex scalars in the context of functional analysis. 
These results shed light on the behaviour of modules with bicomplex scalars, reveal connections to 
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other areas of mathematics, and potentially find applications in physics, engineering or other 
disciplines. 

The series of articles mentioned in the references highlight the systematic study of 
topological bicomplex modules and various fundamental theorems related to them. Here is a 
breakdown of the articles and their contributions. 

Luna-Elizarrarás et al. [2] investigated Hahn-Banach theorem for bicomplex modules and 
hyperbolic modules. The study of topological bicomplex modules, exploring their topological 
properties and investigating concepts such as convergence, continuity and compactness in this 
context was done by Kumar and Saini [3]. Also, fundamental theorems including the principle of 
uniform boundedness, open mapping theorem, interior mapping theorem and closed graph theorem 
for bicomplex modules were studied. ९ℂ  bounded linear operators and bicomplex functional 
calculus were examined by Colombo et al. [4]. 

Saini et al. [5] extended the study of fundamental theorems to the setting of topological 
bicomplex modules. They delved further into the study of topological hyperbolic modules, 
topological bicomplex modules, exploring the properties of linear operators, continuity and related 
topological concepts specific to these settings. 

Bicomplex C*-algebras were studied by Kumar et al. [6]. The work covered bicomplex 
operator algebras, spectral theory and topological properties of C*-algebras defined on bicomplex 
vector space. Bicomplex linear operators on ९ℂ Hilbert spaces were investigated by Kumar and 
Singh [7]. They also explored the properties of these operators. 

The book authored by Luna-Elizarrarás et al.[8] provides an in-depth exploration of 
bicomplex analysis and geometry. It covers a wide range of topics including holomorphic functions, 
integration, differential equations and geometric properties specific to the bicomplex domain. 
Besides these, bicomplex Lebesgue spaces and some of their geometric and topological properties 
were defined and studied [9-11]. Bicomplex sequence spaces ݈(९ℂ) were defined and examined 
with various properties by Değirmen and Sağır [12] and Sağır et al. [13]. 

These references collectively represent significant contributions to the study of bicomplex 
modules, functional analysis and related areas. They showcase the exploration of properties, the 
development of new theorems and the application of functional analysis techniques in the context of 
bicomplex numbers. 
 
PRELIMINARIES ON ९ℂ 
 

Now we give a summary of bicomplex numbers with some basic properties .The set of 
bicomplex numbers ९ℂ which is a two-dimensional extension of the complex numbers is defined as  

९ℂ: = {ܹ = ଵݓ + ,ଵݓ  |ଶݓ݆ ଶݓ ∈ ℂ(݅)}  
where ݅  and ݆  are imaginary units satisfying ݆݅ = ݆݅ , ݅ଶ = ݆ଶ = −1 . Here ℂ(݅)  is the field of 
complex numbers with the imaginary unit ݅ . According to the ring structure, for any ܼ = ଵݖ +
,ଶݖ݆ ܹ = ଵݓ +   ଶ in ९ℂ, the usual addition and multiplication are defined asݓ݆

ܼ + ܹ = ଵݖ) + (ଵݓ + ଶݖ)݆ + ܹܼ  ଶ)  andݓ = ଵݓଵݖ) − (ଶݓଶݖ + ଵݓଶݖ)݆ +   .(ଶݓଵݖ
In the sense of module structure, the set ९ℂ is a module in itself. The product of the imaginary units 
݅ and ݆ brings out a hyperbolic unit ݇ such that ݇ଶ = 1. The product operation of all units ݅, ݆ and ݇ 
in the bicomplex numbers is commutative. Specifically, the following relations hold:  

݆݅ = ݇, ݆݇ = −݅   and  ݅݇ = −݆.  
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Hyperbolic numbers ॰ are two-dimensional extension of the real numbers that form a number 
system known as the hyperbolic plane or hyperbolic plane algebra. They can be represented in the 
form ߙ = ଵߚ +  ଶ are real numbers and ݇ is the hyperbolic unit. For any twoߚ ଵ andߚ ଶ, whereߚ݇
hyperbolic numbers ߙ = ଵߚ + ଶߚ݇  and ߛ = ଵߜ + ଶߜ݇ , addition and multiplication are defined as 
follows: 

ߙ + ߛ = ଵߚ) + (ଵߜ + ଶߚ)݇ + ߛߙ ଶ)  andߜ = ଵߜଵߚ) + (ଶߜଶߚ + ଶߜଵߚ)݇ +   .(ଵߜଶߚ
The hyperbolic numbers form a ring. Unlike the complex numbers, the hyperbolic numbers do not 
have a multiplicative inverse for all non-zero elements and they can also be considered a significant 
subset of the bicomplex numbers ९ℂ. 

Let ܹ = ଵݓ + ଶݓ݆ ∈ ९ℂ where ݓଵ, ଶݓ ∈ ℂ(݅). By the notation of ܹ with imaginary units ݅ 
and ݆, the conjugations are formed for bicomplex numbers as follows: ܹଵ = ଵݓ + ଶ, ܹଶݓ݆ = ଵݓ −
ଶݓ݆  and ܹଷ = ଵݓ − ଶݓ݆ , where ݓଵ  and ݓଶ  are the usual complex conjugates of ݓଵ, ଶݓ ∈ ℂ(݅) 
respectively [1, 8, 14]. 

For any bicomplex number ܹ, the following three moduli: |ܹ|
ଶ = ܹ ⋅ ܹଶ = ଵݓ

ଶ + ଶݓ
ଶ ∈

ℂ(݅), |ܹ|
ଶ = ܹ ⋅ ܹଵ = ଵ|ଶݓ|) − (ଶ|ଶݓ| + ݆൫2Re(ݓଵݓଶ)൯ ∈ ℂ(݆) and |ܹ|

ଶ = ܹ ⋅ ܹଷ = ଵ|ଶݓ|) +
(ଶ|ଶݓ| + ݇൫−2Im(ݓଵݓଶ)൯ ∈ ॰, were written [1, 8, 14]. 

Furthermore, ९ℂ is a normed space with the norm ‖ܹ‖९ℂ = ඥ|ݓଵ|ଶ + ܹ ଶ|ଶ for anyݓ| =
ଵݓ + ‖ ,ଶ in ९ℂ [2]. According to thisݓ݆ ଵܹ ଶܹ‖९ℂ ≤ √2‖ ଵܹ‖९ℂ‖ ଶܹ‖९ℂ  for every ଵܹ , ଶܹ ∈ ९ℂ, 
and finally ९ℂ is a modified Banach algebra [1, 14]. 

If the hyperbolic numbers ݁ଵ and ݁ଶ are defined as ݁ଵ = ଵା
ଶ

  and ݁ଶ = ଵି
ଶ

, then it is easy to 
see that the set {݁ଵ, ݁ଶ} is a linearly independent set in ℂ(݅)-vector space ९ℂ. The set {݁ଵ, ݁ଶ} also 
satisfies the following properties: 

݁ଵ
ଶ = ݁ଵ,   ݁ଶ

ଶ = ݁ଶ,   (݁ଵ)ଷ = ݁ଵ,   (݁ଶ)ଷ = ݁ଶ,   ݁ଵ + ݁ଶ = 1,   ݁ଵ ⋅ ݁ଶ = 0, 
with ‖݁ଵ‖९ℂ = ‖݁ଶ‖९ℂ = √2/2. By using the set {݁ଵ, ݁ଶ}, any ܹ = ଵݓ + ଶݓ݆ ∈ ९ℂ can be written 
as a linear combination of ݁ଵ and ݁ଶ uniquely. That is, ܹ = ଵݓ +   ଶ can be written asݓ݆

ܹ = ଵݓ + ଶݓ݆ = ݁ଵݖଵ + ݁ଶݖଶ, (1)  
where ݖଵ = ଵݓ − ଶݖ ଶ andݓ݅ = ଵݓ +  ଶ are elements of ℂ(݅) and the formulaݖ ଵ andݖ ଶ [1]. Hereݓ݅
in (1) is called the idempotent representation of the bicomplex number ܹ. 

Besides the Euclidean-type norm ‖⋅‖९ℂ, another norm named (॰-valued) hyperbolic-valued 
norm |ܹ|  of any bicomplex number ܹ = ݁ଵݖଵ + ݁ଶݖଶ is defined as   

|ܹ| = ݁ଵ|ݖଵ| + ݁ଶ|ݖଶ|.   
For any hyperbolic number ߙ = ଵߚ + ଶߚ݇ ∈ ॰, an idempotent representation can also be 

written as ॰ ⊂ ९ℂ. Thus, ߙ = ଵߚ + ଶߚ݇ ∈ ॰ can be written as  
ߙ = ݁ଵߙଵ + ݁ଶߙଶ,  

where ߙଵ = ଵߚ + ଶߚ  and ߙଶ = ଵߚ − ଶߚ  are real numbers. If ߚଵ > 0 and ߚଶ > 0 for any ߙ = ଵߚ +
ଶߚ݇ ∈ ॰ , then we say that ߙ  is a positive hyperbolic number. Thus, the set of non-negative 
hyperbolic numbers ॰ା ∪ {0} is defined by  

॰ା ∪ {0} = ߙ} = ଵߚ + :ଶߚ݇ ଵߚ
ଶ − ଶߚ

ଶ ≥ 0, ଵߚ ≥ 0} 
= ߙ} = ݁ଵߙଵ + ݁ଶߙଶ: ଵߙ ≥ 0, ଶߙ ≥ 0 }.  

Now let ߙ and ߛ be any two elements of ॰. A partially ordered relation " ⪯ " is defined on 
॰  by ߙ ⪯ ⇔  ߛ ߛ − ߙ ∈ ॰ା ∪ {0}  [1, 2]. If the idempotent representations of the hyperbolic 
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numbers ߙ  and ߛ  are written as ߙ = ݁ଵߙଵ + ݁ଶߙଶ  and ߛ = ݁ଵߛଵ + ݁ଶߛଶ , then ߙ ⪯ ߛ  implies that 
ଵߙ ≤ ଶߙ ଵ andߛ ≤ ߙ ଶ. Byߛ ≺ ଵߙ we mean ,ߛ < ଶߙ ଵ andߛ <    .ଶߛ

Any function ݂ defined on ॰ is called ॰-increasing if ݂(ߙ) ≺ (ߙ)݂ ॰-decreasing if ,(ߛ)݂ ≻
(ߙ)݂ ॰-non-increasing if ,(ߛ)݂ ⪰ (ߙ)݂ and ॰-non-decreasing if (ߛ)݂ ⪯ ߙ whenever ,(ߛ)݂ ≺ ߛ . 
More details on hyperbolic numbers ॰ and partial order "⪯" can be found in the literature [1 
(Section 1.5), 8, 14]. 
 
Definition 1 [5].  Let ܣ be a subset of ॰. ܣ is called ॰-bounded from above if there is a hyperbolic 
number ߜ such that ߜ ⪰ ߙ for all ߙ ∈ ܣ If .ܣ ⊂ ॰ is ॰-bounded from above, then the ॰-supremum 
of ܣ is defined as the smallest member of the set of all upper bounds of ܣ.  

Similarly, ܣ is called ॰-bounded from below if there is a hyperbolic number ߛ such that ߙ ⪰
ߙ for all ߛ ∈ ܣ If .ܣ ⊂ ॰ is both ॰-bounded from above and below, it is simply called ॰-bounded. 
 
Remark 1 [1, Remark 1.5.2].  Let ॰ ⊃ :ଵܣ be ॰-bounded from above and ܣ = :ଵߣ} ݁ଵߣଵ + ݁ଶߣଶ ∈
:ଶܣ ,{ܣ = :ଶߣ} ݁ଵߣଵ + ݁ଶߣଶ ∈   is given by ܣ॰ݑݏ Then the .{ܣ

:ܣ॰ݑݏ = ݁ଵܣݑݏଵ + ݁ଶܣݑݏଶ.  
Similarly, for any ॰-bounded from below set ܣ, the ॰-infimum of ܣ is defined as  

݅݊ ॰݂ܣ = ݁ଵ݂݅݊ܣଵ + ݁ଶ݂݅݊ܣଶ. 
 
Remark 2 [1].  A ९ℂ-module space or ॰-module space ܻ can be decomposed as  

ܻ = ݁ଵ ଵܻ + ݁ଶ ଶܻ, (2)  
where ଵܻ = ݁ଵܻ and ଶܻ = ݁ଶܻ are ℝ-vector or ℂ(i)-vector spaces. The spelling in (2) is called the 
idempotent decomposition of the space ܻ. 
 
Definition 2 [15].  Let ै be a ߪ-algebra on a set ߗ. A bicomplex-valued function ߤ = ଵ݁ଵߤ +  ଶ݁ଶߤ
defined on ߗ is called a ९ℂ-measure on ै if ߤଵ,  ଶ are complex measures on ै. In particular, ifߤ
,ଵߤ ,ଵߤ ଶ are positive measures on ै, i.e. the range of bothߤ ,ଶ being [0ߤ ∞], then ߤ is called a ॰-
measure on ै, and if ߤଵ, ,ଵߤ ଶ are real measures on ै,  i.e. the range of bothߤ ,ଶ being [0ߤ ∞), then 
  .ै is called a ॰ା-measure on ߤ

It is assumed that ߗ = ,ߗ) ै, (ߤ  is a ߪ -finite complete measure space and ଵ݂, ଶ݂  are 
complex-valued (real-valued) measurable functions on ߗ . The function having idempotent 
decomposition ݂ = ଵ݂݁ଵ +  ଶ݂݁ଶ is called a ९ℂ-measurable function and |݂| = | ଵ݂|݁ଵ +  | ଶ݂|݁ଶ is 
called a ॰-valued measurable function on [15] ߗ. 

For any ९ℂ-valued measurable function ݂ = ଵ݂݁ଵ +  ଶ݂݁ଶ , it is easy to see that |݂| =
| ଵ݂|݁ଵ +  | ଶ݂|݁ଶ is ॰-valued measurable. Also, for any two ९ℂ-valued measurable functions ݂ and 
݃, it can be easily seen that their sum and multiplication functions are also ९ℂ-measurable functions 
[15]. More results on ॰-topology, such as ॰-limit, ॰-continuity, ॰-Cauchy and ॰-convergence,  
can be found in the literature [12, 16, 17] and the references therein. 
 
Theorem 1. Let ݑ = ଵ݁ଵݑ + ,ଶ݁ଶݑ  ݒ = ଵ݁ଵݒ + ଶ݁ଶݒ   and ݑ = ଵݑ

݁ଵ + ଶݑ 
݁ଶ  be ९ℂ -measurable 

functions and ߣ ∈ ९ℂ. Then: 
• Real and imaginary parts of the functions ݑଵ,ݑଶ,ݒଵ and ݒଶ are ℝ-valued measurable; 
,ଵݑ • ,ଶݑ  ;ଶ are ℂ-valued measurableݒ ଵ andݒ
ݑ • + ݑ,ݒ ⋅  ;are ९ℂ-valued measurable ݑߣ and ݒ
݊݅ ,|ݑ|॰ݑݏ • ॰݂|ݑ|, ݈݅݉ݑݏ॰|ݑ|, ݈݅݉݅݊ ॰݂|ݑ| and ݈݅݉॰|ݑ| are ॰-valued measurable,  
where they are defined.   
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Proof.  The proof of each item can be done by using the definition of measurable function and 
similar techniques used in the literature [18, Appendix A].  
 
Definition 3 [15].   Let (ߗ, ै, ߴ be a measure space with (ߴ = ଵ݁ଵߴ + ,ߗ)ृ ,ଶ݁ଶߴ  ै) indicating 
the set of all ै-measurable functions on ߗ, and ݑ ∈ ,ߗ)ृ ै) be a ९ℂ-valued function. Let ܧெ =
ݔ} ∈ :ߗ |(ݔ)ݑ| ≻ ܯ for any {ܯ ⪰ 0. If ܣ = ܯ} ≻ 0: (ெܧ)ߴ = 0} = ܯ} ∈ ॰ା: |(ݔ)ݑ| ⪯ ߴ  ܯ −
ܽ. ݁. }, then the essential ॰-supremum of ݑ, denoted by ݁ݑݏݏ॰ݑ or ‖ݑ‖ஶ

॰ , is defined by ‖ݑ‖ஶ
॰ =

ݑ॰ݑݏݏ݁ = ݅݊ ॰݂(ܣ). 
 
॰ −Distribution and ॰ −Rearrangement Functions 
 

Now suppose that (Ω, ै, ,finite complete ९ℂ-measure space and ृ(Ω-ߪ is a (ߴ ै) is the set 
of all ९ℂ-measurable, ९ℂ-valued functions on Ω.  
Definition 4 [19].  Let ݑ = ଵ݁ଵݑ + ,ߗ)ृ ଶ݁ଶ be an element ofݑ  ै) and ߴ = ଵ݁ଵߴ + -ଶ݁ଶ be a ९ℂߴ 
measure. Then the ९ℂ-distribution function ܦ௨

९ℂ: ॰ା ∪ {0} → ॰ା ∪ {0} of ݑ is given by  
௨ܦ

९ℂ(ߣ) = ௨భܦ
ଵ݁(ଵߣ) + ௨మܦ

 ଶ݁(ଶߣ)
= ݔ}ଵߴ ∈ Ω: |(ݔ)ଵݑ| > ଵ}݁ଵߣ + ݔ}ଶߴ ∈ Ω: |(ݔ)ଶݑ| > ଶ}݁ଶߣ  (3) 

for all ߣ = ଵ݁ଵߣ + ଶ݁ଶߣ  ⪰ 0.   
Definition 5 [19].  Let ߣ ∈ ॰ା ∪ {0} and ݑ be in ृ(ߗ, ै). The ॰-decreasing rearrangement of ݑ is 
the function ݑ९ℂ

∗ : ॰ା ∪ {0} → ॰ା ∪ {0} defined by  
९ℂݑ

∗ (ݐ) = ݅݊ ॰݂{ߙ ⪰ 0: ௨ܦ
९ℂ(ߙ) ⪯  {ݐ

= ݂݅݊൛ߙଵ ≥ 0: ௨భܦ
(ଵߙ) ≤ ଵൟ݁ଵݐ + ݂݅݊൛ߙଶ ≥ 0: ௨మܦ

(ଶߙ) ≤  ଶൟ݁ଶݐ
= ଵݑ

ଵ݁(ଵݐ)∗ + ଶݑ
 ,ଶ݁(ଶݐ)∗

where ݅݊ ॰݂∅ = ∞.  
According to Ghosh and Mondal [15] and Eryilmaz [19], since  

ஶ‖ݑ‖
॰ = ݅݊ ॰݂{ߙ ⪰ 0: ݔ}ߴ ∈ :ߗ |(ݔ)ݑ| ≻ {ߙ = 0}, 

and ‖ݑଵ‖ஶ, ଶ‖ஶݑ‖ ⪯ ஶ‖ݑ‖
॰ ,  one can write ‖ݑ‖ஶ

॰ = ଵ‖ஶ݁ଵݑ‖ +   ଶ‖ஶ݁ଶ and soݑ‖
९ℂݑ

∗ (0) = ݅݊ ॰݂{ߙ ⪰ 0: ௨ܦ
९ℂ(ߙ) = 0} 

= ݅݊ ॰݂൛ߙ ⪰ 0: ݔ൛ߴ ∈ :ߗ หݑ(ݔ)ห > ൟߙ = 0, ݆ = 1,2ൟ = ஶ‖ݑ‖
॰ . (4)  

On the other hand, the ॰-decreasing property of ܦ௨
९ℂ(⋅) implies that  

९ℂݑ
∗ ቀܦ௨

९ℂ(ݐ)ቁ = ݅݊ ॰݂{ߙ ⪰ 0: ௨ܦ
९ℂ(ߙ) ⪯ ௨ܦ

९ℂ(ݐ)} = ݅݊ ॰݂{ߙ ⪰ 0: ߙ ≻ {ݐ =  ,ݐ
or 

९ℂݑ
∗ ቀܦ௨

९ℂ(ݐ)ቁ = ݂݅݊൛ߙଵ ≥ 0: ௨భܦ
(ଵߙ) ≤ ௨భܦ

ൟ݁ଵ(ଵݐ) + ݂݅݊൛ߙଶ ≥ 0: ௨మܦ
(ଶߙ) ≤ ௨మܦ

ൟ݁ଶ(ଶݐ)

= ଵߙ}݂݊݅ ≥ 0: ଵߙ > ଵ}݁ଵݐ + ଶߙ}݂݊݅ ≥ 0: ଶߙ > ଶ}݁ଶݐ = ଵ݁ଵݐ + ଶ݁ଶݐ =   ,ݐ
and so ݑ९ℂ

∗ (⋅)  is the left ॰-inverse of the distribution function ܦ௨
९ℂ(⋅) . Now let ݑ९ℂ

∗ (ݐ) = ߣ =
ଵ݁ଵߣ + ଶ݁ଶߣ ⪯ ∞॰. Then by Definition 5, there exists a sequence ߣ = ߣ

(ଵ)݁ଵ + ߣ
(ଶ)݁ଶ in ॰ା such 

that ߣ
(ଵ) ↓ ߣ ,ଵߣ

(ଶ) ↓ ߣ௨భቀܦ ,ଶߣ
(ଵ)ቁ ≤ ߣ௨మቀܦ ଵ andݐ

(ଶ)ቁ ≤ ଶݐ . By using the techniques used in the 
continuation of Castillo and Rafeiro [18, Definition 4.4] and the right continuity of the usual 
distribution function, we get  

௨ܦ
९ℂ൫ݑ९ℂ

∗ ൯(ݐ) = ௨ܦ
९ℂ(ߣ) = ௨భܦ

ଵ݁(ଵߣ) + ௨మܦ
 ଶ݁(ଶߣ)

= ൬limܦ௨భቀߣ
(ଵ)ቁ൰ ݁ଵ + ൬limܦ௨మቀߣ

(ଶ)ቁ൰ ݁ଶ ⪯ ଵ݁ଵݐ + ଶ݁ଶݐ =  .ݐ
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Therefore, 

९ℂݑ
∗ ቀܦ௨

९ℂ(ߙ)ቁ ⪯ ௨ܦ and ߙ
९ℂ൫ݑ९ℂ

∗ ൯(ݐ) ⪯  (5) .ݐ
 
Definition 6 [19].  The function ݑ९ℂ

∗∗ : ॰ା → ॰ା ∪ {0} is defined as  

९ℂݑ
∗∗ (ݐ) = ቆ

1
ଵݐ

න
௧భ


ଵݑ

ቇݏ݀(ݏ)∗ ݁ଵ + ቆ
1
ଶݐ

න
௧మ


ଶݑ

ቇݏ݀(ݏ)∗ ݁ଶ = ଵݑ
ଵ݁(ଵݐ)∗∗ + ଶݑ

 ,ଶ݁(ଶݐ)∗∗

where ݐ = ଵ݁ଵݐ + ଶ݁ଶݐ  and ݑ९ℂ
∗ = ଵݑ

∗݁ଵ + ଶݑ
∗݁ଶ . This function ݑ९ℂ

∗∗ (⋅)  is called the ॰ -maximal 
function of ݑ since it is the ॰-largest of all ॰-average values over ݑ९ℂ

∗ .  
 
Remark 3.  Even if the value of ݑ९ℂ

∗∗ ݐ at (ݐ) = 0 is not included in the definition above, the ॰-limit 
as ݐଵ, ݐ ଶ approach zero from the right forݐ = ଵ݁ଵݐ +    ,ଶ݁ଶ is defined for all rearrangements. In factݐ

lim॰
௧భ ,௧మ→శ

९ℂݑ
∗∗ (ݐ) = lim॰

௧భ,௧మ→శ
ଵݑ)

ଵ݁(ଵݐ)∗∗ + ଶݑ
(ଶ݁(ଶݐ)∗∗ = lim

௧భ→శ
ଵݑ

ଵ݁(ଵݐ)∗∗ + lim
௧మ→శ

ଶݑ
ଶ݁(ଶݐ)∗∗

= ଵݑ
∗(0)݁ଵ + ଶݑ

∗ (0)݁ଶ = ९ℂݑ
∗ (0) = ஶ‖ݑ‖

॰ ,  
where the last equality is from (4). 
 
Theorem 2 [18, Theorem 4.17].  Suppose that (ܺ, ࣛ,  is a non-atomic measure space and let (ߤ
ृ(ܺ, ࣛ) denote the set of all complex-value ࣛ-measurable functions on ܺ. Then  

ݑݏ ቊන (ݔ)ߤ݀|(ݔ)݂|
ா

: (ܧ)݉ = ቋݐ = න ݏ݀(ݏ)∗݂
௧


. 

 
Theorem 3 [19]. Let ݑ = ଵ݁ଵݑ + ݒ ,ଶ݁ଶݑ  = ଵ݁ଵݒ + ଶ݁ଶݒ   be two elements of ृ(ߗ, ै) and ߴ =

ଵ݁ଵߴ +   ଶ. Thenߴ ଵ andߴ ଶ݁ଶ be a ९ℂ-measure with resonant measuresߴ 
ݑ) + ९ℂ(ݒ

∗∗ (ݐ) ⪯ ९ℂݑ
∗∗ (ݐ) + ९ℂݒ

∗∗  (ݐ)
for all ݐ ∈ ॰ା.  
 
Definition 7. Let ߴ = ଵ݁ଵߴ + ଶ݁ଶߴ   be a ९ℂ -measure, (ߗ, ै, (ߴ  be a σ -finite complete ९ℂ -
measurable space and ृ(ߗ, ै) be the set of all measurable ९ℂ-valued functions on ߗ. For 0 <  ≤
∞  and 0 < ݍ ≤ ∞ , the bicomplex Lorentz spaces, ܮ,

९ℂ = ,ܮ
९ℂ ,ߗ) ै, (ߴ , are the set of all 

equivalence classes of ९ℂ -measurable functions ݑ = ଵ݁ଵݑ + ଶ݁ଶݑ  ∈ ,ߗ)ृ ै)  such that the 
functional ‖ݑ‖,

९ℂ  is ॰-finite, where 
 

,‖ݑ‖
९ℂ = ݁ଵ‖ݑଵ‖, + ݁ଶ‖ݑଶ‖, 

and 

∥ ݑ ∥,=

⎩
⎨

⎧ቆ
ݍ


න
ஶ


൫ݐଵ/ݑ

൯(ݐ)∗ ݐ݀
ݐ ቇ

ଵ/

if  0 <  < ∞, 0 < ݍ < ∞,

ݑݏ
௧வ

ݑଵ/ݐ
(ݐ)∗ if  0 <  ≤ ∞, ݍ = ∞

 

for all ݅ = 1,2.  
 
Remark 4. For the ९ℂ-Lorentz ܮ,

९ℂ  space, the case  = ∞ and 0 < ݍ < ∞ is not of any interest. 
The reason for this is that ‖ݑ‖ஶ,

९ℂ ≺ ∞॰ means that ݂ = ,ܮ The ९ℂ-Lorentz .ߗ a.e on-ߴ 0
९ℂ  spaces 

can be seen as generalisations of the ordinary ९ℂ-Lebesgue spaces ܮ९ℂ
 , which are examined by 

Toksoy and Sağır [11]. The reason for this is that if one writes ݍ = ,ܮ then we can get ,
९ℂ = ९ℂܮ

  
for 0 <  ≤ ∞. In fact, by the definition of ‖⋅‖,

९ℂ  for 0 <  < ∞, 
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,‖ݑ‖
९ℂ = ݁ଵ‖ݑଵ‖, + ݁ଶ‖ݑଶ‖, = ݁ଵ ൭




න
ஶ


൭ݐ

ଵ
ݑଵ

൱(ݐ)∗


ݐ݀
ݐ

൱

ଵ


+ ݁ଶ ൭



න
ஶ


൭ݐ

ଵ
ݑଶ

൱(ݐ)∗


ݐ݀
ݐ

൱

ଵ


 

= ݁ଵ ቆන
ஶ


൫ݑଵ

൯(ݐ)∗
ቇݐ݀

ଵ


+ ݁ଶ ቆන
ஶ


൫ݑଶ

∗ ൯(ݐ)
ቇݐ݀

ଵ


 

= ݁ଵ ቆන
ஐ

݀|(ݔ)ଵݑ| ଵቇߴ

ଵ


+ ݁ଶ ቆන
ஐ

ଶቇߴ݀|(ݔ)ଶݑ|

ଵ


= ݁ଵ‖ݑଵ‖ + ݁ଶ‖ݑଶ‖ =  ,९ℂ‖ݑ‖

can be obtained. For  = ∞, the result can be seen from (4) immediately.  
 
Example 1.  For any ै-measurable set ܧ of finite measure according to ߴଵ and ߴଶ, we have 

‖߯ா‖,
९ℂ = ݁ଵ‖߯ா‖, + ݁ଶ‖߯ா‖, = ݁ଵ ൬


൰ݍ

ଵ


(ܧ)ଵߴ
ଵ
 + ݁ଶ ൬


൰ݍ

ଵ


(ܧ)ଶߴ
ଵ
 = ൬


൰ݍ

ଵ


(ܧ)ߴ
ଵ
 

for 0 < , ݍ < ∞ by Değirmen and Sağır [12, Definition 2.2]. If ݍ = ∞, then 

‖߯ா‖,ஶ
९ℂ = ݁ଵsup

௧வ
ݐ

ଵ
ݑଵ

(ݐ)∗ + ݁ଶsup
௧வ

ݐ
ଵ
ݑଶ

(ݐ)∗ = ݁ଵ (ܧ)ଵߴ
ଵ
 + ݁ଶߴଶ(ܧ)

ଵ
 = (ܧ)ߴ

ଵ
 

since ݁ଵ ⋅ ݁ଶ = 0 in ॰.  
 
Theorem 4.  The ९ℂ-Lorentz space ൫ܮ,

९ℂ , ‖∙‖,
९ℂ ൯ is a quasi-normed linear space. 

 
Proof.  It is easy by Castillo and Rafeiro [18, Theorem 6.4]. 
 
Remark 5. The functional ‖⋅‖,

९ℂ  is a norm if and only if 1 ≤ ݍ ≤  < ∞ or, in trivial case,  =
∞ =   .ݍ
 
Definition 8.  For any ݑ ∈ ,ܮ

९ℂ , the functional ‖⋅‖(,)
९ℂ  is defined by 

 
(,)‖ݑ‖

९ℂ = ݁ଵ‖ݑଵ‖(,) + ݁ଶ‖ݑଶ‖(,), 
where 

∥ ݑ ∥(,)=

⎩
⎨

⎧ቆ
ݍ


න
ஶ


൫ݐଵ/ݑ

൯(ݐ)∗∗ ݐ݀
ݐ ቇ

ଵ/

if  0 <  < ∞, 0 < ݍ < ∞,

ݑݏ
௧வ

ݑଵ/ݐ
(ݐ)∗∗ if  0 <  ≤ ∞, ݍ = ∞

. 

By using Theorem 3 and Minkowski inequality, it is easy to see that ‖⋅‖(,)
९ℂ  satisfies the 

triangle inequality for 1 ≤  < ∞ and 1 ≤ ݍ ≤ ∞. Therefore, ‖⋅‖(,)
९ℂ  is a norm on ܮ,

९ℂ  and hence 
൫ܮ,

९ℂ , ‖⋅‖(,)
९ℂ ൯ is a normed space if 1 <  < ∞, 1 ≤ ݍ ≤ ∞ or  = ∞ = ݍ . Moreover, the norm 

‖⋅‖(,)
९ℂ  and the quasi-norm ‖⋅‖,

९ℂ  are ॰-equivalent, that is 
 

‖⋅‖,
९ℂ ⪯ ‖⋅‖(,)

९ℂ ⪯


 − 1
‖⋅‖,

९ℂ , 

where the first inequality is an immediate consequence of the fact that ݑ९ℂ
∗ (⋅) ⪯ ९ℂݑ

∗∗ (⋅), and the 
second follows from the Hardy inequality. 
 
Theorem 5 [19]. (Completeness) The ९ℂ -Lorentz space ܮ,

९ℂ  with the quasi-norm ‖⋅‖,
९ℂ  is 

complete for all 0 <  < ∞, 0 < ݍ ≤ ∞. Nevertheless, if 1 <  < ∞, 1 ≤ ݍ ≤  ,∞ = ݍ = 1 or 
 = ݍ = ∞, then the normed space ൫ܮ,

९ℂ , ‖⋅‖(,)
९ℂ ൯ is a ९ℂ-Banach space.  
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Theorem 6 [19]. Let ܵ be the set of all simple integrable functions. Then the set ् = {݁ଵݏଵ +
݁ଶݏଶ: ݏଵ, ଶݏ ∈ ܵ} is dense in ܮ,

९ℂ  for 0 <  < ∞ and 0 < ݍ < ∞. 
 
MAIN RESULTS 
 

Consider the vector space ℱ(Ω) comprising all ९ℂ-valued functions on a non-empty set Ω. 
Let ݑ: Ω → ९ℂ  be a ९ℂ-measurable function on Ω  such that ݑ ⋅ ݂ ∈ ℱ(Ω)  whenever ݂ ∈ ℱ(Ω) , 
where ݑ = ଵ݁ଵݑ + ଶ݁ଶݑ  and ݂ = ଵ݂݁ଵ + ଶ݂݁ଶ . This gives rise to a linear transformation 
:௨ܯ ℱ(Ω) → ℱ(Ω), defined as 

(݂)௨ܯ = ݑ ⋅ ݂ = ଵݑ ଵ݂݁ଵ + ଶݑ ଶ݂݁ଶ,  
where the product of functions is pointwise. If ℱ(Ω) is a topological ९ℂ-vector space and ܯ௨ is 
९ℂ-continuous, then it is referred to as a multiplication operator induced by ݑ . Multiplication 
operators have been scrutinised on various function spaces [20-26]. In line with their arguments, I 
investigate multiplication operators on the ९ℂ-Lorentz spaces ൫ܮ,

९ℂ , ‖⋅‖(,)
९ℂ ൯, where 1 <  < ∞, 

1 ≤ ݍ ≤ ∞. I initially establish a characterisation of the boundedness of ܯ௨  in terms of ݑ  and 
demonstrate that the set of multiplication operators on ൫ܮ,

९ℂ , ‖⋅‖(,)
९ℂ ൯, for 1 <  < ∞ and 1 ≤ ݍ ≤

∞, forms a maximal abelian subalgebra of the Banach algebra of all bounded linear operators on 
,ܮ

९ℂ . I employ this to characterise the invertibility of ܯ௨ on ܮ,
९ℂ . The compact and Fredholm ९ℂ-

multiplication operators are also delineated in this paper. 
 
Multiplication Operators on ९ℂ-Lorentz Spaces 
 

This section establishes the conditions for the boundedness and invertibility of the ९ℂ-
multiplication operator ܯ௨ . These conditions are expressed in relation to the boundedness and 
invertibility of the measurable ९ℂ-valued function ݑ respectively. 

 
Proposition 1.  For any ९ℂ-measurable function ݑ: ߗ → ९ℂ, ܯ௨ is a ९ℂ-linear operator on ℱ(ߗ).  
 
Theorem 7.  The linear transformation ܯ௨: ݂ → ݑ ⋅ ݂ on the ९ℂ-Lorentz space ൫ܮ,

९ℂ , ‖⋅‖(,)
९ℂ ൯ is 

bounded for 1 <  ≤ ∞, 1 ≤ ݍ ≤ ∞ if and only if ݑ is essentially ॰-bounded. Moreover, ‖ܯ௨‖ =
ஶ‖ݑ‖

॰ .  
Proof.  Firstly, assume that ݑ is essentially ॰-bounded and ‖ݑ‖ஶ

॰ ≺ ∞॰. Since ݑ ⋅ ݂ = ଵݑ ଵ݂݁ଵ +
ଶݑ ଶ݂݁ଶ for any ݂ ∈ ,ܮ

९ℂ , we have 
 

௨⋅ܦ
९ℂ (ߣ) = ௨భభܦ

ଵ݁(ଵߣ) + ௨మమܦ
 ଶ݁(ଶߣ)

= ݔ}ଵߴ ∈ Ω: (ݔ)ଵݑ| ଵ݂(ݔ)| > ଵ}݁ଵߣ + ݔ}ଶߴ ∈ Ω: (ݔ)ଶݑ| ଶ݂(ݔ)| >  ଶ}݁ଶߣ
⪯ ଵ‖ஶݑ‖ ݔ}ଵߴ ∈ Ω: | ଵ݂(ݔ)| > ଵ}݁ଵߣ + ݔ}ଶߴଶ‖ஶݑ‖ ∈ Ω: | ଶ݂(ݔ)| >  ଶ}݁ଶߣ
= ଵ‖ஶ݁ଵݑ‖) + భܦଶ‖ஶ݁ଶ)൫ݑ‖

ଵ݁(ଵߣ) + మܦ
ଶ൯݁(ଶߣ) = ஶ‖ݑ‖

॰ ܦ
९ℂ(ߣ) 

 
for any ߣ = ଵ݁ଵߣ + ଶ݁ଶߣ ⪰ 0. Then ܦ௨⋅

९ℂ (ߣ) ⪯ ஶ‖ݑ‖
॰ ܦ

९ℂ(ߣ) implies 
 

ݑ) ⋅ ݂)९ℂ
∗ (ݐ) = ଵݑ) ଵ݂)∗(ݐଵ)݁ଵ + ଶݑ) ଶ݂)∗(ݐଶ)݁ଶ = ݅݊ ॰݂൛ߣ ⪰ 0: ௨⋅ܦ

९ℂ (ߣ) ⪯  ൟݐ
⪯ ஶ‖ݑ‖

॰ ݅݊ ॰݂൛ߣ ⪰ 0: ܦ
९ℂ(ߣ) ⪯  ൟݐ

= ஶ‖ݑ‖
॰

९݂ℂ
∗ (ݐ) = ଵ‖ஶݑ‖ ଵ݂

ଵ݁(ଵݐ)∗ + ଶ‖ஶݑ‖ ଶ݂
  ,ଶ݁(ଶݐ)∗

and (ݑଵ ଵ݂)∗(ݐଵ) ≤ ଵ‖ஶݑ‖ ଵ݂
ଶݑ) ,(ଵݐ)∗ ଶ݂)∗(ݐଶ) ≤ ଶ‖ஶݑ‖ ଶ݂

ݐ for any (ଶݐ)∗ = ଵ݁ଵݐ + ଶ݁ଶݐ ⪰ 0.  
Therefore, 

ݑ) ⋅ ݂)९ℂ
∗∗ (ݐ) = ଵݑ) ଵ݂)∗∗(ݐଵ)݁ଵ + ଶݑ) ଶ݂)∗∗(ݐଶ)݁ଶ 
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= ቆ
1
ଵݐ

න
௧భ


ଵݑ) ଵ݂)∗(ݏ)݀ݏቇ ݁ଵ + ቆ

1
ଶݐ

න
௧మ


ଶݑ) ଶ݂)∗(ݏ)݀ݏቇ ݁ଶ 

⪯ ଵ‖ஶݑ‖ ቆ
1
ଵݐ

න
௧భ


ଵ݂
ቇݏ݀(ݏ)∗ ݁ଵ + ଶ‖ஶݑ‖ ቆ

1
ଶݐ

න
௧మ


ଶ݂
ቇݏ݀(ݏ)∗ ݁ଶ 

= ଵ‖ஶ݁ଵݑ‖) + )(ଶ‖ஶ݁ଶݑ‖ ଵ݂
ଵ݁(ଵݐ)∗∗ + ଶ݂

(ଶ݁(ଶݐ)∗∗ = ஶ‖ݑ‖
॰

९݂ℂ
∗∗  (ݐ)

 
can be written. Consequently, (ݑଵ ଵ݂)∗∗(ݐଵ) ≤ ଵ‖ஶݑ‖ ଵ݂

ଶݑ) ,(ଵݐ)∗∗ ଶ݂)∗∗(ݐଶ) ≤ ଶ‖ஶݑ‖ ଶ݂
 and so ,(ଶݐ)∗∗

 
௨(݂)‖(,)ܯ‖

९ℂ = ݁ଵ‖ݑଵ ଵ݂‖(,) + ݁ଶ‖ݑଶ ଶ݂‖(,)

= ݁ଵ ൭
ݍ


න
ஶ


൭ݏ

ଵ
(ݑଵ ଵ݂)∗∗(ݏ)൱


ݏ݀
ݏ

൱

ଵ


+ ݁ଶ ൭
ݍ


න
ஶ


൭ݏ

ଵ
(ݑଶ ଶ݂)∗∗(ݏ)൱


ݏ݀
ݏ

൱

ଵ


⪯ ଵ‖ஶ݁ଵݑ‖ ൭
ݍ


න
ஶ


൭ݏ

ଵ


ଵ݂
൱(ݏ)∗∗


ݏ݀
ݏ

൱

ଵ


+ ଶ‖ஶ݁ଶݑ‖ ൭
ݍ


න
ஶ


൭ݏ

ଵ


ଶ݂
൱(ݏ)∗∗


ݏ݀
ݏ

൱

ଵ


⪯ ଵ‖ஶ݁ଵݑ‖) + ‖ଶ‖ஶ݁ଶ)൫݁ଵݑ‖ ଵ݂‖(,) + ݁ଶ‖ ଶ݂‖(,)൯ = ஶ‖ݑ‖
॰ ‖݂‖(,)

९ℂ  (6) 
 
is obtained for 1 <  < ∞ and 1 ≤ ݍ < ∞.  If ݍ = ∞, then  
௨(݂)‖(,ஶ)ܯ‖

९ℂ = ݁ଵ‖ݑଵ ଵ݂‖(,ஶ) + ݁ଶ‖ݑଶ ଶ݂‖(,ஶ)

= ݁ଵݑݏ
௦வ

ݏ
ଵ
(ݑଵ ଵ݂)∗∗(ݏ) + ݁ଶݑݏ

௦வ
ݏ

ଵ
(ݑଶ ଶ݂)∗∗(ݏ) 

⪯ ݑݏଵ‖ஶ݁ଵݑ‖
௦வ

ݏ
ଵ


ଵ݂
(ݏ)∗∗ + ݑݏଶ‖ஶ݁ଶݑ‖

௦வ
ݏ

ଵ


ଶ݂
(ݏ)∗∗

= ଵ‖ஶ݁ଵݑ‖) + (ଶ‖ஶ݁ଶݑ‖ ቆ݁ଵݑݏ
௦வ

ଵ/ݏ
ଵ݂
(ݏ)∗∗ + ݁ଶݑݏ

௦வ
ଵ/ݏ

ଶ݂
ቇ(ݏ)∗∗

= ஶ‖ݑ‖
॰ ൫݁ଵ‖ ଵ݂‖(,ஶ) + ݁ଶ‖ ଶ݂‖(,ஶ)൯ = ஶ‖ݑ‖

॰ ‖݂‖(,ஶ)
९ℂ  (7)  

is written. This means ܯ௨ is ९ℂ-bounded. 
Conversely, suppose that ܯ௨  is ९ℂ-bounded on the ९ℂ-Lorentz space ൫ܮ,

९ℂ , ‖⋅‖(,)
९ℂ ൯ for 

1 <  ≤ ∞, 1 ≤ ݍ < ∞. If ݑ is not essentially ॰-bounded, then for each ܰ ⪰ 0, the set  
ேܧ = ݔ} ∈ Ω: |(ݔ)ݑ| ≻ ܰ}  

has a ॰-positive measure. This means there exists ଵܰ , ଶܰ ≥ 0 with ܰ = ଵܰ݁ଵ + ଶܰ݁ଶ  such that 
|(ݔ)ଵݑ| > ଵܰ  and |ݑଶ(ݔ)| > ଶܰ  for all ݔ ∈ ேܧ  with ߴ(ܧே) ≻ 0 . Since the decreasing ॰ -
rearrangement of ߯ாಿ = ߯ாಿ ݁ଵ + ߯ாಿ ݁ଶ is ൫߯ாಿ ൯

९ℂ

∗ (ݐ) = ߯൫,ణభ(ாಿ)൯(ݐଵ)݁ଵ +  ߯൫,ణమ(ாಿ)൯(ݐଶ)݁ଶ, one 
can get that [15]  

ฮ߯ாಿ ฮ
(,)
९ℂ

= ݁ଵฮ߯ாಿ ฮ
(,)

+ ݁ଶฮ߯ாಿ ฮ
(,)

 

= ݁ଵ ൬


 − 1൰
ଵ


(ேܧ)ଵߴ
ଵ
 + ݁ଶ ൬


 − 1൰

ଵ


(ேܧ)ଶߴ
ଵ
 = ൬


 − 1൰

ଵ


(ேܧ)ߴ
ଵ
. 

  
Now to calculate the norm of ܯ௨൫߯ாಿ ൯, if we use the following inequality 

ቀܯ௨൫߯ாಿ ൯ቁ
९ℂ

∗
(ݐ) = ൫ݑ ⋅ ߯ாಿ ൯

९ℂ

∗ (ݐ) = ൫ݑଵ ⋅ ߯ாಿ ൯∗(ݐଵ)݁ଵ + ൫ݑଶ ⋅ ߯ாಿ ൯∗(ݐଶ)݁ଶ 

= ݂݅݊ ቄߙଵ ≥ 0: ௨భ⋅ఞಶಿܦ
(ଵߙ) ≤ ଵቅݐ ݁ଵ + ݂݅݊ ቄߙଶ ≥ 0: ௨మ⋅ఞಶಿܦ

(ଶߙ) ≤ ଶቅݐ ݁ଶ 
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= ݂݅݊൛ߙଵ ≥ 0: ݔଵ൛ߴ ∈ :ߗ หݑଵ(ݔ)߯ாಿ
ห(ݔ) > ଵൟߙ ≤ ଵൟ݁ଵݐ

+ ݂݅݊൛ߙଶ ≥ 0: ݔଶ൛ߴ ∈ :ߗ หݑଶ(ݔ)߯ாಿ
ห(ݔ) > ଶൟߙ ≤  ଶൟ݁ଶݐ

⪰ ݂݅݊ ൜ߙଵ ≥ 0: ଵߴ ൜ݔ ∈ :ߗ ห߯ாಿ
ห(ݔ) >

ଵߙ

ଵܰ
ൠ ≤ ଵൠݐ ݁ଵ

+ ݂݅݊ ൜ߙଶ ≥ 0: ଶߴ ൜ݔ ∈ :ߗ ห߯ாಿ
ห(ݔ) >

ଶߙ

ଶܰ
ൠ ≤ ଶൠݐ ݁ଶ 

= ݂݅݊൛ ଵܰߙଵ ≥ 0: ݔଵ൛ߴ ∈ :ߗ ห߯ாಿ
ห(ݔ) > ଵൟߙ ≤ ଵൟ݁ଵݐ

+ ݂݅݊൛ ଶܰߙଶ ≥ 0: ݔଶ൛ߴ ∈ :ߗ ห߯ாಿ
ห(ݔ) > ଶൟߙ ≤  ଶൟ݁ଶݐ

= ( ଵܰ݁ଵ + ଶܰ݁ଶ)൫߯ாಿ ൯
९ℂ

∗ (ݐ) = ܰ൫߯ாಿ ൯
९ℂ

∗   ,(ݐ)
then we get  
ฮܯ௨൫߯ாಿ ൯ฮ

(,)
९ℂ

= ݁ଵฮݑଵ ⋅ ߯ாಿ ฮ
(,)

+ ݁ଶฮݑଶ ⋅ ߯ாಿ ฮ
(,)

 

= ݁ଵ ൭
ݍ


න
ஶ


൭ݏ

ଵ
൫ݑଵ߯ாಿ ൯∗∗(ݏ)൱


ݏ݀
ݏ

൱

ଵ


 + ݁ଶ ൭
ݍ


න
ஶ


൭ݏ

ଵ
൫ݑଶ߯ாಿ ൯∗∗(ݏ)൱


ݏ݀
ݏ

൱

ଵ


 

⪰ ( ଵܰ݁ଵ + ଶܰ݁ଶ)ฮ߯ாಿ ฮ
(,)
९ℂ

= ܰ ൬


 − 1൰
ଵ


(ேܧ)ߴ
ଵ
.                                                  (8) 

Besides these, for ݍ = ∞, we have 

ฮܯ௨൫߯ாಿ ൯ฮ
(,ஶ)
९ℂ

= ݁ଵฮݑଵ߯ாಿ ฮ
(,ஶ)

+ ݁ଶฮݑଶ߯ாಿ ฮ
(,ஶ)

 

= ݁ଵݑݏ
௦வ

ݏ
ଵ
൫ݑଵ߯ாಿ ൯∗∗(ݏ) + ݁ଶݑݏ

௦வ
ݏ

ଵ
൫ݑଶ߯ாಿ ൯∗∗(ݏ) 

⪰ ଵܰ݁ଵݑݏ
௦வ

ݏ
ଵ
൫߯ாಿ ൯∗∗(ݏ) + ଶܰ݁ଶݑݏ

௦வ
ݏ

ଵ
൫߯ாಿ ൯∗∗(ݏ)                                                   (9) 

= ܰ ൭݁ଵݑݏ
௦வ

ݏ
ଵ
൫߯ாಿ ൯∗∗(ݏ) + ݁ଶݑݏ

௦வ
ݏ

ଵ
൫߯ாಿ ൯∗∗(ݏ)൱ = ܰฮ߯ாಿ ฮ

(,ஶ)
९ℂ

= (ேܧ)ߴܰ
ଵ
. 

Both (8) and (9) contradict the boundedness of ܯ௨. 
From (6) and (7), it can be seen that ‖ܯ௨‖ ⪯ ஶ‖ݑ‖

॰ . On the other hand, for any ߛ = ݁ଵߛଵ +
݁ଶߛଶ ≻ 0,  let ܩ = ݔ} ∈ Ω: |(ݔ)ݑ| ≻ ஶ‖ݑ‖

॰ −   Then .{ߛ
ݔ} ∈ Ω: ୧‖ஶݑ‖) − (ݔ)ீ߯(୧ߛ > {ߣ ⊂ ݔ} ∈ Ω: |(ݔ)ீ߯(ݔ)୧ݑ| >   {୧ߣ

can be written for ݅ = 1,2. Therefore, ܦ൫‖௨‖ಮ
॰ ିఊ൯ఞಸ

९ℂ (ߣ) ⪯ ௨⋅ఞಸܦ
९ℂ ߣ for all (ߣ) ∈ ॰ା ∪ {0} and 

൫ܯ௨(߯ீ)൯
९ℂ
∗ (ݐ) ⪰ ஶ‖ݑ‖)

॰ − ९ℂ(ீ߯)(ߛ
∗  (ݐ)

 
for all ݐ ∈ ॰ା ∪ {0}. As a result, ‖ܯ௨‖ ⪯ ஶ‖ݑ‖

॰ − ‖௨ܯ‖ and ߛ = ஶ‖ݑ‖
॰ . 

 
Remark 6.  In general, the multiplication operators on measurable function spaces are not injective. 
For instance, let ܷ = ݔ} ∈ (ݔ)ݑ :ߗ ≠ 0} and ܸ = ߗ − ܷ. Then ߤ(ܸ) > 0 and (߯ ⋅ (ݔ)(ݑ = 0 for 
all ݔ ∈ ௨(߯)ܯ This implies that .ߗ = 0 and ݎ݁ܭ(ܯ௨) ≠ {0}. Hence ܯ௨  is not injective. On the 
contrary, if ܯ௨ is injective, then ߤ(ܸ) must be zero. If ߤ(ܸ) = 0 and ߤ is a complete measure, then 
(݂)௨ܯ = 0  implies that (ݑ ⋅ (ݔ)(݂ = 0  for all ݔ ∈ ߗ  and so {ݔ ∈ Ω:  ݂(ݔ) ≠ 0} ⊂ ܸ  and ݂ = 0 
ߤ) −a.e.) on Ω.  
 
Proposition 2. The multiplication operator ܯ௨  is injective on ܮ,

९ℂ (ܷ, ै, (ߴ = ൛݂߯:  ݂ ∈
,ܮ

९ℂ (Ω, ै, ܷ ൟ, where(ߴ = ݔ} ∈ Ω: (ݔ)ݑ ≠ 0}.  
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Proof.  Let ݂߯  be an element of ܮ,
९ℂ (ܷ, ै, (ߴ  with ܯ௨(݂߯) = 0 . Then 0 = (ݔ)௨(݂߯)ܯ =

ݔ for all (ݔ)߯(ݔ)݂(ݔ)ݑ ∈ Ω. From this equality, we get ݂(ݔ) ⋅ (ݔ)ݑ = 0 and so ݂(ݔ) = 0 for all 
ݔ ∈ ܷ.  This means ݂߯ = 0 and ݎ݁ܭ(ܯ௨) = {0}. 
 
Corollary 1.  The multiplication operator ܯ௨ has a closed range on ܮ,

९ℂ (ܷ, ै,  ௨ܯ if and only if (ߴ
is bounded below on ܮ,

९ℂ (ܷ, ै,   .(ߴ
 
Corollary 2. If ߴ is a complete ९ℂ-measure and ݑ ≠ ߴ) 0 − ܽ. ݁. ), then the multiplication operator 
,ܮ ௨ onܯ

९ℂ ,ߗ) ै, ,ܮ ௨ is bounded below onܯ has a closed range if and only if (ߴ
९ℂ ,ߗ) ै,   .(ߴ

 
Theorem 8.  The set of all multiplication operators on the ९ℂ-Lorentz space ܮ,

९ℂ ,ߗ) ै, for 1 ,(ߴ <
 < ∞, 1 ≤ ݍ < ∞, is a maximal abelian subalgebra of ी ቀܮ,

९ℂ ,ߗ) ै,  ቁ , the Banach algebra of(ߴ
all ९ℂ-bounded ९ℂ-linear operators on ܮ,

९ℂ ,ߗ) ै,    .(ߴ
Proof.  Let ॸ = :௨ܯ} ݑ ∈ ஶܮ

९ℂ(Ω, ै,  be the set of all multiplication operators induced by the {(ߴ
elements of ܮஶ

९ℂ(Ω, ै, (ߴ . Then it is easy to see that ॸ  is an abelian subalgebra of 

ी ቀܮ,
९ℂ (Ω, ै, ,ܮ ቁ according to composition. Let ܶ be an operator on(ߴ

९ℂ (Ω, ै, ܶ satisfying (ߴ ∘

௨ܯ = ௨ܯ ∘ ܶ for any ݑ ∈ ஶܮ
९ℂ(Ω, ै, :݁ ,(ߴ Ω → ९ℂ be the unit function with ݁(ݔ) = ݁ଵ + ݁ଶ for all 

ݔ ∈ Ω and ܶ(݁) = ݒ = ଵ݁ଵݒ + ܧ ଶ݁ଶ. Then for any ९ℂ-measurable setݒ ∈ ै, we get  
ܶ(߯ா) = ܶ(݁ ⋅ ߯ா) = ܶ ቀܯఞಶ

(݁)ቁ = ఞಶܯ ൫ܶ(݁)൯ = ఞಶܯ
(ݒ) = ݒ ⋅ ߯ா =  .௩(߯ா)ܯ

 
Now assume that ݒ ∉ ஶܮ

९ℂ(Ω, ै, (ߴ . Then the set ܨே = ݔ} ∈ Ω: |(ݔ)ݒ| ≻ ܰ}  has positive ॰ -
measure for each ܰ = ଵܰ݁ଵ + ଶܰ݁ଶ ⪰ 0. Therefore, we get 

ฮܶ൫߯ிಿ ൯ฮ
(,)
९ℂ

= ฮܯ௩൫߯ிಿ ൯ฮ
(,)
९ℂ

⪰ ܰ ൬


 − 1൰
ଵ


(ேܨ)ߴ
ଵ
, 

 
which contradicts the boundedness of ܶ. Thus, ݒ ∈ ஶܮ

९ℂ(Ω, ै, ܶ and (ߴ =  ௩ by Theorem 6, usingܯ
the density of simple functions in ܮ,

९ℂ (Ω, ै,   .(ߴ
 
Corollary 3. The multiplication operator ܯ௨  on ܮ,

९ℂ ,ߗ) ै, (ߴ  for 1 <  < ∞ , 1 ≤ ݍ < ∞  is 
invertible if and only if ݑ is ॰-invertible in ܮஶ

९ℂ(ߗ, ै,    .(ߴ
Proof.  Suppose that ݑ  is ॰ -invertible in ܮஶ

९ℂ(Ω, ै, (ߴ  with the inverse ݒ . Then ܯ௩(ܯ௨݂) =
ݑ)௩ܯ ⋅ ݂) = ݂    and    ܯ௨(ܯ௩݂) = ݒ)௨ܯ ⋅ ݂) = ݂ , which means ܯ௨

ିଵ = ௩ܯ = ௨షభܯ . If ܯ௨
ିଵ 

exists, then it commutes with all multiplication operators on ܮ,
९ℂ (Ω, ै, ௨ܯ This means .(ߴ

ିଵ =  ௩ܯ
for some ݒ ∈ ஶܮ

९ℂ(Ω, ै,   .ݑ is the ॰-inverse of ݒ by Theorem 8 and (ߴ
 
Compact Multiplication Operators 
 

A compact multiplication operator on ܮ,
९ℂ (Ω, ै,  is an operator that arises from pointwise (ߴ

multiplication of functions by certain measurable functions, typically ॰ -bounded ones. These 
operators map ॰-bounded sets to relatively ॰-compact sets, exhibiting desirable properties similar 
to compact operators in functional analysis. In this subsection ॰-compact multiplication operators 
are characterised. 

 
Theorem 9. Let ܯ௨  be a compact operator, ܪ௨,ఋ = ݔ} ∈ :ߗ |(ݔ)ݑ| ⪰ {ߜ  and ܮ,

९ℂ ൫ܪ௨,ఋ൯ =
൛݂߯ுೠ,ഃ: ݂ ∈ ,ܮ

९ℂ ,ߗ) ै, ߜ ൟ for any(ߴ = ଵ݁ଵߜ + ଶ݁ଶߜ ≻ 0. Then ܮ,
९ℂ ൫ܪ௨,ఋ൯ is a ॰-closed, invariant 

subspace of ܮ,
९ℂ ,ߗ) ै, ,ܮ ௨ toܯ ௨ and the restriction ofܯ under (ߴ

९ℂ ൫ܪ௨,ఋ൯ is a compact operator.  
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Proof.  We first show that ܮ,
९ℂ ൫ܪ௨,ఋ൯ is a subspace of ܮ,

९ℂ (Ω, ै, ,Let ሚ݂ .(ߴ ݃ ∈ ,ܮ
९ℂ ൫ܪ௨,ఋ൯ and 

ܽ, ܾ ∈ ९ℂ. Since ሚ݂ = ݂߯ுೠ,ഃ and ݃ = ݃߯ுೠ,ഃ for any ݂, ݃ ∈ ,ܮ
९ℂ (Ω, ै,  we get ,(ߴ

 
ܽ ሚ݂ + ܾ ݃ = ݂ܽ߯ுೠ,ഃ + ܾ݃߯ுೠ,ഃ = (݂ܽ + ܾ݃)߯ுೠ,ഃ . 

 
By the definition of ܯ௨: ,ܮ

९ℂ ൫ܪ௨,ఋ൯ → ,ܮ
९ℂ (Ω, ै, ௨൫ܯ we have ,(ߴ ሚ݂൯ = ݑ ⋅ ሚ݂ = ݑ ⋅ ݂߯ுೠ,ഃ and so 

,ܮ
९ℂ ൫ܪ௨,ఋ൯ is an invariant subspace of ܮ,

९ℂ (Ω, ै,  .௨ܯ under (ߴ

Now let us show that the ॰ -closure of ܮ,
९ℂ ൫ܪ௨,ఋ൯  satisfies ܮ,

९ℂ ൫ܪ௨,ఋ൯॰
⊂ ,ܮ

९ℂ ൫ܪ௨,ఋ൯ . 

Suppose that ݃ ∈ ,ܮ
९ℂ ൫ܪ௨,ఋ൯॰

. Then there exists a sequence ݃  in ܮ,
९ℂ ൫ܪ௨,ఋ൯ such that ݃ → ݃,  

where ݃ = ݃߯ுೠ,ഃ  for each ݊ ∈ ℕ. Since ݃  is a ॰-Cauchy sequence in ܮ,
९ℂ ൫ܪ௨,ఋ൯, it can be 

written that for all ߝ = ଵ݁ଵߝ + ଶ݁ଶߝ ≻ 0, there exists an ݊ ∈ ℕ such that ‖ ݃ − ݃‖(,)
९ℂ ≺  for all ߝ

݉, ݊ > ݊. Hence for all ݉, ݊ > ݊, we can find a ߜ = ଵ݁ଵߜ + ଶ݁ଶߜ ≻ 0 such that ߜ(݃ − ݃) ⪯
(݃ − ݃)߯ுೠ,ഃ and |ߜ|(݃ − ݃)९ℂ

∗ (ݐ) ⪯ (݃ − ݃)९ℂ
∗  Then  .(ݐ),ణ൫ுೠ,ഃ൯ ൯ൣ߯(ݐ)

݃‖ߜ − ݃‖(,)
९ℂ ⪯ ൬


 − 1൰

ଵ


௨,ఋ൯ܪ൫ߴ
ଵ
‖ ݃ − ݃‖(,)

९ℂ  

can be written. Therefore, {݃}∈ℕ  is also a ॰ -Cauchy sequence in ܮ,
९ℂ (Ω, ै, (ߴ . Since 

,ܮ
९ℂ (Ω, ै, is a Banach space, we can write that ݃ (ߴ → ݃ for an element ݃ ∈ ,ܮ

९ℂ (Ω, ै,  ,Thus .(ߴ
we have 

ฮ݃߯ுೠ,ഃ − ݃߯ுೠ,ഃฮ
(,)

९ℂ
≤ ‖݃ − ݃‖(,)

९ℂ  

and  ݃ → ݃. Consequently ݃ ∈ ,ܮ
९ℂ ൫ܪ௨,ఋ൯ and ܯ௨|,

९ℂ ൫ுೠ,ഃ൯ is a compact operator. 
 
Theorem 10.  A multiplication operator ܯ௨  on ܮ,

९ℂ ,ߗ) ै, is ॰-compact for 1 (ߴ <  ≤ ∞, 1 ≤
ݍ ≤ ∞ if and only if ܮ,

९ℂ ൫ܪ௨,ఋ൯ is finite dimensional for each ߜ = ଵ݁ଵߜ + ଶ݁ଶߜ ≻ 0, where ܪ௨,ఋ =
ݔ} ∈ Ω: |(ݔ)ݑ| ⪰ ,ܮ and {ߜ

९ℂ ൫ܪ௨,ఋ൯ = ൛݂߯ுೠ,ഃ: ݂ ∈ ,ܮ
९ℂ (Ω, ै,  .ൟ(ߴ

 
Proof.  Assume that ܯ௨  is a compact operator. Then ܮ,

९ℂ ,ݑ) ௨ܯ is a ॰-closed and (ߜ -invariant 
subspace of ܮ,

९ℂ (Ω, ै, ,ܮ ௨ toܯ and so the restriction of (ߴ
९ℂ ,ݑ)  is compact by Theorem 9. Now (ߜ

take any ݔ ∈ Ω  and let ݔ ∉ ௨,ఋܪ . Then |(ݔ)ݑ| ≺ ߜ , ൬ܯ௨|,
९ℂ ൫ுೠ,ഃ൯(݂)൰

९ℂ

∗
(ݐ) = ൫ݑ ⋅ ݂ ⋅

߯ுೠ,ഃ൯
९ℂ

∗ (ݐ) = 0  and so ܯ௨|,
९ℂ ൫ுೠ,ഃ൯ = 0  for any ݂ ∈ ,ܮ

९ℂ (Ω, ै, (ߴ  and ݐ = ଵ݁ଵݐ + ଶ݁ଶݐ ≻ 0 . If 

ݔ ∈ ௨,ఋܪ , then |ݑଵ(ݔ)| ≥ |(ݔ)ଶݑ| ,ଵߜ ≥   ଶ and we haveߜ
ห൫ݑ ⋅ ݂ ⋅ ߯ுೠ,ഃ൯(ݔ)ห


⪰ ଵห൫݂ߜ ⋅ ߯ுೠ,ഃ ൯(ݔ)ห݁ଵ + ଶห൫݂ߜ ⋅ ߯ுೠ,ഃ൯(ݔ)ห݁ଶ 

= ห൫݂ߜ ⋅ ߯ுೠ,ഃ ൯(ݔ)ห


, 

and ܦߜ௨⋅⋅ఞಹೠ,ഃ
९ℂ (ߣ) ⪰ ⋅ఞಹೠ,ഃܦ

९ℂ (ߣ)  for any ߣ = ଵ݁ଵߣ + ଶ݁ଶߣ ⪰ 0 . Therefore, ߜ൫݂ ⋅ ߯ுೠ,ഃ൯
९ℂ

∗ (ݐ) ⪯

൫ݑ ⋅ ݂ ⋅ ߯ுೠ,ഃ൯
९ℂ

∗ ൫݂ߜ ,(ݐ) ⋅ ߯ுೠ,ഃ ൯
९ℂ

∗∗ (ݐ) ⪯ ൫ݑ ⋅ ݂ ⋅ ߯ுೠ,ഃ ൯
९ℂ

∗∗  and (ݐ)

ฮܯ௨൫݂߯ுೠ,ഃ൯ฮ
(,)

९ℂ
= ݁ଵฮݑଵ ⋅ ଵ݂ ⋅ ߯ுೠ,ഃฮ

(,)
+ ݁ଶฮݑଶ ⋅ ଶ݂ ⋅ ߯ுೠ,ഃฮ

(,)
 

⪰ ݁ଵߜଵฮ ଵ݂ ⋅ ߯ுೠ,ഃ ฮ
(,)

+ ݁ଶߜଶฮ ଶ݂ ⋅ ߯ுೠ,ഃฮ
(,)

= ฮ݂߯ுೠ,ഃฮߜ
(,)

९ℂ
. 
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Thus, in either case ܯ௨|,
९ℂ ൫ுೠ,ഃ൯ possesses a ॰-closed range in ܮ,

९ℂ ൫ܪ௨,ఋ൯ and hence ॰-invertible. 

Since ܯ௨ is a compact operator, it can be written that ܮ,
९ℂ ൫ܪ௨,ఋ൯ is finite dimensional. 

Conversely, suppose that ܮ,
९ℂ ൫ܪ௨,ఋ൯ is finite dimensional for each ߜ ≻ 0. Then ܮ,

९ℂ ൬ܪ௨,భ
൰ 

is finite dimensional for each ݊ ∈ ℕ. Let ݑ: Ω → ९ℂ be a sequence defined as ݑ(ݔ) =  if (ݔ)ݑ
|(ݔ)ݑ| ⪰ ଵ


(ݔ)ݑ , = 0  otherwise. Since ݑ  is essentially ॰ -bounded, all members of ݑ  is 

essentially ॰-bounded. Moreover, for any ݂ ∈ ,ܮ
९ℂ (Ω, ै,  we have ,(ߴ

 
(௨ି௨)ܦ

९ℂ (ߣ) = ቀ௨ܦ
(భ)ି௨భቁభ

ଵ݁(ଵߣ) + ቀ௨ܦ
(మ)ି௨మቁమ

 ଶ݁(ଶߣ)

and 

 ൫(ݑ − ൯݂(ݑ
९ℂ
∗ (ݐ) = ൬ቀݑ

(ଵ) − ଵቁݑ ଵ݂൰
∗

ଵ݁(ଵݐ) + ൬ቀݑ
(ଶ) − ଶቁݑ ଶ݂൰

∗
 .ଶ݁(ଶݐ)

If ݔ ∈ ௨,భܪ
, then |(ݔ)ݑ| ⪰ ଵ


 and so (ݑ − ݂(ݑ = 0 . If ݔ ∉ ௨,భܪ

, then |(ݔ)ݑ| ≺ ݁ଵ
ଵ


+ ݁ଶ
ଵ


, 

(ݔ)ݑ = 0  and so ൫(ݑ − ൯݂(ݑ
९ℂ
∗ (ݐ) ⪯ ଵ

 ଵ݂
ଵ݁(ଵݐ)∗ + ଵ

 ଶ݂
ଶ݁(ଶݐ)∗ = ଵ

 ९݂ℂ
∗ (ݐ) with ൫(ݑ −

൯݂(ݑ
९ℂ
∗∗ (ݐ) ⪯ ଵ

 ९݂ℂ
ݐ for all (ݐ)∗∗ = ଵ݁ଵݐ + ଶ݁ଶݐ ≻ 0.  Consequently, 

 
ฮ൫ܯ௨ − ௨൯݂ฮܯ

(,)
९ℂ

= ݑ)‖ − (,)‖݂(ݑ
९ℂ  

= ݁ଵ ቛቀݑ
(ଵ) − ଵቁݑ ଵ݂ቛ

(,)
+ ݁ଶ ቛቀݑ

(ଶ) − ଶቁݑ ଶ݂ቛ
(,)

⪯
1
݊

‖݂‖(,)
९ℂ . 

This last inequality means that ܯ௨  ॰-converges to ܯ௨  uniformly. Since ܮ,
९ℂ ൬ܪ௨,భ

൰  is finite-

dimensional, ܯ௨  constitutes a finite-rank operator. Therefore ܯ௨  is a sequence of compact 
operators. Uniform convergence reveals the result: ܯ௨ is a compact operator, which completes the 
proof. 
 
Corollary 4.  If ߴଵ and ߴଶ are non-atomic measures, then the only compact multiplication operator 
on the ९ℂ-Lorentz space ܮ,

९ℂ ,ߗ) ै,   .is the zero operator (ߴ
 
Corollary 5.  If the set ܪ௨,ఋ  contains only finitely many atoms for each ߜ ≻ 0 , then ܯ௨  is a 
compact multiplication operator on the ९ℂ-Lorentz space ܮ,

९ℂ ,ߗ) ै,   .(ߴ
 
Fredholm Multiplication Operators 
 

In this section we initially set forth a criterion for a multiplication operator to possess a 
closed range. Subsequently, we leverage this criterion to delineate Fredholm multiplication 
operators on ܮ,

९ℂ (Ω, ै, where 1 ,(ߴ < , ݍ < ∞ and ߴଵ  and ߴଶ  are non-atomic measures. In this 
context the operator ܯ௨ is considered Fredholm if its range ℜ(ܯ௨) is closed and ݀݅݉ܰ(ܯ௨) and 
 .are finite (௨ܯ)ℜ݉݅݀ܿ

 
Theorem 11.  Let ܯ௨ be a multiplication operator on ܮ,

९ℂ ,ߗ) ै, where 1 ,(ߴ <  ≤ ∞, 1 ≤ ݍ ≤ ∞ 
and ܹ = ݔ} ∈ :ߗ (ݔ)ݑ ≠ 0}. Then ܯ௨ has a closed range if and only if there exists a ߛ = ଵ݁ଵߛ +
ଶ݁ଶߛ ≻ 0 such that |(ݔ)ݑ| = ଵ݁|(ݔ)ଵݑ| + ଶ݁|(ݔ)ଶݑ| ⪰ ߴ) ߛ − ܽ. ݁. ) on ܹ.   
Proof.  If there exists a ߛ = ଵ݁ଵߛ + ଶ݁ଶߛ ≻ 0 such that |(ݔ)ݑ| ⪰ ߴ) ߛ − ܽ. ݁. ) on ܹ, then  

௨݂߯ௐ‖(,)ܯ‖
९ℂ = ݑ‖ ⋅ ݂ ⋅ ߯ௐ‖(,)

९ℂ = ݁ଵ‖ݑଵ ⋅ ଵ݂ ⋅ ߯ௐ‖(,) + ݁ଶ‖ݑଶ ⋅ ଶ݂ ⋅ ߯ௐ‖(,) 
⪰ ݁ଵߛଵ‖ ଵ݂ ⋅ ߯ௐ‖(,) + ݁ଶߛଶ‖ ଶ݂ ⋅ ߯ௐ‖(,) = ௐ‖(,)݂߯‖ߛ

९ℂ  
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for all ݂ ∈ ,ܮ
९ℂ (Ω, ै,  .௨ has a closed rangeܯ ,Therefore .(ߴ

Conversely, let ܮ,
९ℂ (ܹ) = ൛݂߯ௐ: ݂ ∈ ,ܮ

९ℂ (Ω, ै,  ௨ has a closed range, then thereܯ ൟ. If(ߴ
exists an ߝ = ଵ݁ଵߝ + ଶ݁ଶߝ ≻ 0  such that ‖ܯ௨݂‖(,)

९ℂ ⪰ ߝ ∥ ݂ ∥(,)
९ℂ  for all ݂ ∈ ,ܮ

९ℂ (ܹ) . Now 

assume that ܸ = ݔ} ∈ ܹ: |(ݔ)ݑ| ≺ ఌభ
ଶ

݁ଵ + ఌమ
ଶ

݁ଶ}  and ߴ(ܸ) = ݁ଵ (ܸ)ଵߴ + ݁ଶߴଶ(ܸ) ≻ 0 . In that 

case a ९ℂ-measurable set ܧ ⊂ ܸ can be found such that ߯ா ,ܮ ∋
९ℂ (ܹ). Then we have 

 
௨ఞಶܦ

९ℂ (ߣ) = ௨భఞಶܦ
ଵ݁(ଵߣ) + ௨మఞಶܦ

 ଶ݁(ଶߣ)
= ݔ}ଵߴ ∈ Ω: |(ݔ)ଵ߯ாݑ| > ଵ}݁ଵߣ + ݔ}ଶߴ ∈ Ω: |(ݔ)ଶ߯ாݑ| >  ଶ}݁ଶߣ

⪰
ଵߝ

2 ݔ}ଵߴ ∈ Ω: |߯ா(ݔ)| > ଵ}݁ଵߣ +
ଶߝ

2 ݔ}ଶߴ ∈ Ω: |߯ா(ݔ)| > ଶ}݁ଶߣ =
ߝ
2 ఞಶܦ

९ℂ(ߣ) 

and (ݑ ⋅ ߯ா)९ℂ
∗ (ݐ) ⪯ ቀఌభ

ଶ
݁ଵ + ఌమ

ଶ
݁ଶቁ (߯ா)९ℂ

∗ (ݐ) , which implies (ݑ ⋅ ߯ா)९ℂ
∗∗ (ݐ) ⪯ ఌ

ଶ
(߯ா)९ℂ

∗∗ (ݐ)  for all 

ݐ = ଵ݁ଵݐ + ଶ݁ଶݐ ≻ 0. Thus, ‖ܯ௨߯ா‖(,)
९ℂ ⪯ ఌ

ଶ
∥ ߯ா ∥(,)

९ℂ  , which is a contradiction. This implies 
(ܸ)ߴ = 0 and completes the proof.  
 
Theorem 12.  Suppose that ߴଵ  and ߴଶ  are non-atomic component measures of ߴ . Let ݑ  be an 
essentially ॰-bounded ९ℂ-measurable function and ܯ௨  be a multiplication operator on the ९ℂ-
Lorentz space ܮ,

९ℂ ,ߗ) ै, for 1 (ߴ < , ݍ < ∞. Then the following conditions are equivalent:  
 (1) ℜ(ܯ௨) is closed and codim ℜ(ܯ௨) < ∞.  
|(ݔ)ݑ| (2)  ⪰ ߴ) ߜ − ܽ. ݁. ) on Ω for some ߜ = ݁ଵߜଵ + ݁ଶߜଶ ≻ 0. 
  .௨ is an invertible operatorܯ (3) 
   .௨ is a Fredholm operatorܯ (4) 
 Proof.  (1 ⟹ 2) Assume that ℜ(ܯ௨) is closed and codimℜ(ܯ௨) < ∞. Then by the preceding 
theorem, there exists a ߜ = ݁ଵߜଵ + ݁ଶߜଶ ≻ 0  such that |(ݔ)ݑ| ⪰ ߜ ߴ)  − ܽ. ݁. )  on ܹ =
ݔ} ∈ Ω: (ݔ)ݑ ≠ 0}. Therefore, it suffices to demonstrate that ߴ(Ω\ܹ) = 0. 

Now suppose that ܯ௨  is not surjective and let ℎ = ݁ଵℎଵ + ݁ଶℎଶ ∈ ,ܮ
९ℂ (Ω, ै, (௨ܯ)ℜ\(ߴ . 

Since ℜ(ܯ௨) is closed, we can find a function ݃ = ݁ଵ݃ଵ + ݁ଶ݃ଶ ∈ ᇲ,ᇲܮ
९ℂ (Ω, ै,   such that (ߴ

න
ஐ

ℎଵ݃ଵ݀ ଵߴ = ݁ଵ, න
ஐ

ℎଶ݃ଶ݀ߴଶ = ݁ଶ (10) 
 
and ݁ଵ ∫ஐ ଵݑ ଵ݂݃ଵ݀ ଵߴ + ݁ଶ ∫ஐ ଶݑ ଶ݂݃ଶ݀ߴଶ = 0  for all ݂ = ݁ଵ ଵ݂ + ݁ଶ ଶ݂ ∈ ,ܮ

९ℂ (Ω, ै, (ߴ , where 
/1 + ᇱ/1 = ݍ/1 + ᇱݍ/1 = 1. From (10), for ݅ = 1,2, the sets ܧఌ = ݔ} ∈ Ω: (ℎ݃)(ݔ) ≥  } mustߝ
have positive measure for some ߝ = ݁ଵߝଵ + ݁ଶߝଶ ≻ 0. Since ߴଵ and ߴଶ are non-atomic component 

measures of ߴ, we can select disjoint sequences ቄܧ
()ቅ of subsets of ܧఌ with 0 < ܧቀߴ

()ቁ < ∞ for 

݅ = 1,2 . If we choose ݃ = ݁ଵ݃
(ଵ) + ݁ଶ݃

(ଶ) = ߯ா
(భ)݃ଵ݁ଵ + ߯ா

(మ)݃ଶ݁ଶ , then ݃ ∈ ᇲ,ᇲܮ
९ℂ (Ω, ै,  (ߴ

and non-zero because  
݁ଵ න

ஐ
ℎଵ݃

(ଵ)݀ ଵߴ + ݁ଶ න
ஐ

ℎଶ݃
(ଶ)݀ߴଶ = ݁ଵ න

ா
(భ)

ℎଵ݃ଵ݀ ଵߴ + ݁ଶ න
ா

(మ)
ℎଶ݃ଶ݀ߴଶ

⪰ ݁ଵߝଵ ܧଵቀߴ
(ଵ)ቁ + ݁ଶߝଶߴଶቀܧ

(ଶ)ቁ = ߝ ൬ ܧଵቀߴ
(ଵ)ቁ + ܧଶቀߴ

(ଶ)ቁ൰ ≻ 0. 
 
Moreover, ߯ா

(భ) ଵ݂݁ଵ + ߯ா
(మ) ଶ݂݁ଶ  is in ܮ,

९ℂ (Ω, ै, (ߴ  for each ݂ = ݁ଵ ଵ݂ + ݁ଶ ଶ݂ ∈ ,ܮ
९ℂ (Ω, ै, (ߴ . 

Therefore, 

௨ܯ⟩
∗ ݃ , ݂⟩ = ⟨݃ , ⟨௨݂ܯ = ݁ଵ න

ஐ
݃

(ଵ)(ݑଵ ଵ݂)݀ ଵߴ + ݁ଶ න
ஐ

݃
(ଶ)(ݑଶ ଶ݂)݀ߴଶ 
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= ݁ଵ න
ஐ

߯ா
(భ)݃ଵ(ݑଵ ଵ݂)݀ ଵߴ + ݁ଶ න

ஐ
߯ா

(మ)݃ଶ(ݑଶ ଶ݂)݀ߴଶ 

= න
ஐ

௨݂ܯ ቀ݁ଵ߯ா
(భ) + ݁ଶ߯ா

(మ)ቁ (݃ଵ݁ଵ + ݃ଶ݁ଶ)݀ߴ = 0, 

where ܯ௨
∗  is the conjugate operator of ܯ௨. This implies {݃} is a sequence in ܰ(ܯ௨

∗ ) and so the 
sequence {݃}  forms a linearly independent subset of ܰ(ܯ௨

∗ ) . This contradicts the fact that 
dimܰ(ܯ௨

∗ ) =codimℜ(ܯ௨) < ∞. Hence ܯ௨ is surjective and ߴ(Ω\ܹ) = 0. If ߴ(Ω\ܹ) ≻ 0, then 
there exists a subset ܸ  of Ω\ܹ  with 0 ≺ (ܸ)ߴ ≺ ∞॰ . Then ߯ = ݁ଵ߯ + ݁ଶ߯ ∈ ,ܮ

९ℂ (Ω, ै, \(ߴ
ℜ(ܯ௨), which contradicts the fact that ܯ௨ is surjective. Therefore, ߴ(Ω\ܹ) = 0 and |(ݔ)ݑ| ⪰  ߜ
a.e. on Ω.  

The other implications are easy. 
 
CONCLUSIONS 
 

In this study I analysed multiplication operators acting on bicomplex Lorentz spaces, a 
mathematical structure that extends classical Lorentz spaces to the bicomplex setting. By utilising 
tools from functional analysis and operator theory, I derived necessary and sufficient conditions for 
these operators to be compact and Fredholm. My findings reveal that the compactness of the 
multiplication operators depends critically on the behaviour of the symbol functions within the 
bicomplex framework while the Fredholm property is governed by both the invertibility conditions 
and the interplay of bicomplex components. 

These results contribute to a broader understanding of operator theory in bicomplex spaces, 
offering insights that may prove useful for further theoretical developments or applications in 
mathematical physics and engineering. Future research could explore the spectral properties of these 
operators or extend the analysis to other classes of bicomplex function spaces. 
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