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Abstract:  Missing data are an important issue affecting data analysis. This study develops 
and compares methods of imputing missing data in binary logistic regression. Seven 
imputation methods are applied: mode imputation, hot deck imputation, multiple imputation 
(MI), k-nearest neighbour imputation, random forest imputation, logistic regression 
imputation (LR), and modified logistic regression imputation (MLR). Missing data are 
simulated in three conditions: missing completely at random (MCAR), missing at random 
(MAR), and missing not at random (MNAR). The simulations were run using sample sizes of 
20, 50, 100, 150, 200, 500 and 1,000 and missing percentages of 10%, 20%, 30% and 40%. 
The simulated missing data in the three conditions were applied to real-life heart disease data 
and the obtained data sets were analysed using the seven imputation methods. Performance 
was compared by estimating the mean square error of each analysis. The results reveal that 
when the missing data condition is either MCAR or MAR, the MLR method gives the best 
performance with small sample sizes (n ≤ 50) at most levels of missing data, while the MI 
method gives the best performance with large sample sizes. For the MNAR condition, the LR 
method gives the best performance with small sample sizes for all levels of missing data. 

  
Keywords:  missing data, imputation method, logistic regression, estimated mean square error 

_______________________________________________________________________________________ 
 
INTRODUCTION  
 

In a data collection process missing data can arise. For example, when collecting 
information about a medical condition, there is a possibility that some data may be lost. The data 
could be related to risk factors that affect the condition, or to information that indicates whether a 
patient has the condition or not. This is a problem that significantly affects the analysis of medical 
data, especially in a logistic regression analysis, which identifies the relationship between a 
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qualitative dependent variable and independent variables [1]. In binary logistic regression model a 
dependent variable is binary and independent variables can be either categorical or continuous [2]. 
 Missing data are classified into three categories: those that are missing completely at random 
(MCAR), those that are missing at random (MAR), and those that are missing not at random 
(MNAR). MCAR refers to a situation where missing data are unrelated to the observed or 
unobserved data. In other words there are no apparent differences between participants with missing 
data and those with complete data. In the MAR category the probability that the data are missing is 
related to observed data, but not to unobserved data. For example, if women refrained from 
disclosing their weight, the undisclosed weight would be denoted as MAR. MNAR describes a 
scenario where missing data are related to unobserved data [3]. For example, individuals with the 
lowest level of education tend to have incomplete education data. The statistical significance of 
missing data and the approach to handling them are substantially impacted by their classification. 

 A simple technique that is widely used as the default method for handling missing data is to 
omit cases that contain them. A serious problem with this approach is that it reduces the size of the 
data set. It also limits the analysis to those observations in which all values are observed, which 
often results in a biased estimate and a loss of precision [4]. To maintain the size and 
representativeness of the data set, missing data can be replaced with substitute values imputed from 
available data. Until now there has been little study regarding the handling of missing values, 
especially in the context of missing dependent variables in binary logistic regression models, and 
therefore more investigation is needed to develop more efficient imputation methods.  

Some researchers have studied the performance of methods of imputing categorical 
independent variables. For example, Peng and Zhu [5] assessed the imputation of categorical 
variables in logistic regression using multiple imputation (MI) method and expectation 
maximisation (EM) method. Results showed that the former performed better than the latter. Waljee 
et al. [6] compared the performance of four imputation methods for categorical and continuous 
variables: mean imputation (Mean), MI, k-nearest neighbour imputation (KNN) and random forest 
imputation (RF). Results showed that RF was a highly accurate method of imputing missing 
laboratory data. Xu et al. [7] compared the accuracy of four common methods of imputing 
categorical variables in logistic regression: direct deletion, mode imputation (Mode), hot deck 
imputation (HD) and MI. Results showed that the MI method produced the best performance. These 
findings were consistent with those of Tsiampalis and Panagiotakos [8], who compared the 
performance of seven imputation methods for categorical and continuous variables in both logistic 
and Poisson regressions. Their results also showed that the MI method performed best. Mohamed et 
al. [9] reviewed the performance of ten imputation methods for missing data in the binary logistic 
regression model:  Mean, HD, last observation carried forward, stochastic regression imputation, 
predictive mean matching (PMM), EM, KNN, logistic regression imputation (LR), RF and nearest 
neighbour hot deck. Results showed that the EM and KNN methods were most appropriate for 
imputing missing data in the binary logistic regression model. 

To the best of our knowledge, the investigation of imputation methods for missing binary 
outcomes has been limited. Ma et al. [10] compared six MI methods that accounted for intra-cluster 
correlation for missing binary outcomes in cluster randomised trials with standard imputation 
methods and complete case analysis under the MCAR missing condition. The within-cluster MI 
methods applied were logistic regression, propensity score and Markov chain Monte Carlo. Three 
across-cluster MI methods applied were propensity score, random-effects logistic regression and 
fixed-effect logistic regression. Results showed that the within-cluster and across-cluster MI 
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methods were more appropriate for handling the missing outcomes from cluster randomised trials. 
Sullivan et al. [11] investigated MI for relative risk estimation with missing data existing for both 
outcome and exposure variables induced under the MAR condition. Standard model-based MI 
approaches imputed missing data using multivariate normal imputation or fully conditional 
specification in a logistic outcome imputation model. Results showed that the fully conditional 
specification performed better than the multivariate normal imputation. Mohamed et al. [12] 
investigated nine imputation approaches in a binary logistic regression model with MAR as the 
missing condition: KNN, EM, HD, RF, regression imputation, LR, Mean, PMM and a new 
imputation approach EPK, which was an average of three single imputation methods: EM, PMM 
and KNN. The EPK and EM methods outperformed other imputation methods by having the lowest 
Akaike information criterion and Bayesian information criterion values. 

Therefore, in this study we focus on imputation methods for missing dependent variables in 
three missing conditions: MCAR, MAR and MNAR. The modified logistic regression imputation 
(MLR) method is proposed, which is developed from the LR method by modifying the cut-off point 
for logistic regression from 0.5 to an optimal cut-off point for a particular data set. The optimal cut-
off point is based on the receiver operating characteristic curve [13]. We then compare the 
performance of this method with that of six other popular methods, viz. Mode, HD, MI, KNN, RF 
and LR, using a data set with missing quantities of data equivalent to 10%, 20%, 30% and 40% of 
the total data set. The modified method is then applied to a real-life heart disease data set. 
 
IMPUTATION METHODS 
  
Mode Imputation (Mode) 
 

Mode is one of the easiest and most naive methods of imputing missing values of categorical 
variables [7] by substituting the mode of complete data for missing data in the same variable.  

 
Hot Deck Imputation (HD) 
 
  HD is a method of handling missing data in which each missing value is replaced with an 
observed response from a similar unit [14]. The HD method uses a completely observed donor case 
for the imputation of an incomplete case. The missing value is replaced by the corresponding value 
of the best donor case, which is found by minimising the distance between the donee and all 
potential donor cases (typically, Euclidean distance computed in the space of covariates) [15]. This 
method is popular because it does not rely on model fitting to impute the variable and is thus 
potentially less sensitive to model misspecification than a parametric model-based imputation 
method [14]. 
 
Multiple Imputation (MI) 
 

Rubin [16] developed a method of averaging the outcome across multiple imputed data.  
Thus, in MI instead of replacing each missing observation with a single value, multiple plausible 
values are inputted to reflect the underlying uncertainty around the imputation.  The MI method 
generates ‘m’ different complete data sets with observed and imputed values. It uses the following 
three steps.  

Imputation: As in single imputation, missing values are imputed, but imputed values are 
generated m times rather than just once. So there could be m different complete data sets after 
imputation.  
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Analysis of each data set: After imputation and the generation of m different data sets, each 
of the m data sets is analysed.  

Pooling: The results obtained from each analysed data set are consolidated [17].  
MI by chained equations implemented via the ‘mice’ package available in R software 

enables an iterative estimation of missing values in multiple variables and provides flexibility in 
imputing both categorical and continuous variables [18]. 
 
K-nearest Neighbour Imputation (KNN) 
 
 KNN becomes more common in models implemented to forecast missing values. The ‘k’ 
samples are identified from the data set to find the estimated value of the missing data. This 
necessitates the development of a model for each input variable that has missing values [19].  
 The KNN method implements the following operations [20]. 
Step 1: Define k , where k c  and c  is the amount of complete data. 
Step 2: Calculate the distance between the missing rows and complete rows using the Euclidean 
distance method [21]: 

                             2

1

( , ) ( )
p

i j iq jq
q

dist R R X X


   ,                                                (1) 

where ( , )i jdist R R  denotes the distance between a missing row i and a complete row j, iqX  denotes  

missing data at row i  and column q , and jqX  denotes complete data at row j and column q . 

Step 3: When sorting the distances between missing rows and complete rows, consider the k sets 
with the smallest distances. The imputation estimate is then calculated using the average of  
smallest distances for continuous variables or the mode for categorical variables. 
 
Random Forest Imputation (RF) 
 

RF is a method that uses random forest algorithm for imputing missing data. The algorithm 
is a supervised machine learning algorithm which is an ensemble method combining multiple 
decision trees, and the final prediction is made by aggregating the predictions of individual trees 
[22].  

The RF method is popular because of its ability to handle both continuous and categorical 
data and can be used for classification and regression [6, 23]. This method was implemented via the 
‘missForest’ package available in R software [24]. The method employs the following operations 
[25]. 
Step 1: The missing values are replaced with the mean for continuous variables or the mode for 
categorical variables.  
Step 2: The imputation process is done sequentially in ascending order of missing observations for 
each variable. The variable under imputation is used as the response when building the random 
forest model, which can be a regression or classification model. The observations in the data set are 
divided into two parts according to whether the variable is observed or missing in the original data 
set. Observed observations are used as the training set and missing observations are used as the 
prediction set. The missing part of the variable under imputation is replaced by the prediction from 
the generated random forest model for that variable. 
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Step 3: After imputing the missing values, the imputation process is iterated until the proportion of 
falsely classified entries (PFC) for categorical variables between the current and previous 
imputation results increases. The PFC equation is given by [26]  

        1
ˆ( )s

i ii
count y y

PFC
s




                                                          (2) 

where s  represents the number of missing values, iy  denotes the missing y  which has been 

replaced with the mode, îy  denotes the estimate y  from the random forest model, and therefore

 ˆi icount y y  denotes the count of incorrectly classified entries. 

  The PFC ranges from 0 to 1, and the smaller the value, the better the imputation. The RF 
method outputs the previous imputation as the final result [23]. A user setting for a maximum 
number of iterations is installed in the process, with a default value of 10 to limit the computational 
time to a reasonable level. 
 
Logistic Regression Imputation (LR) 
 
 LR is a type of regression imputation. The regression equation derived from the observed 
data is used to determine the missing data that must be imputed. The LR method is used to impute 
the binary variable directly [9]. The LR method is applied as follows. 
Step 1: Only the data set of a dependent variable with no missing data is used to estimate logistic 
regression coefficients with the maximum likelihood estimation. 
Step 2: After obtaining the regression coefficient estimates, missing values from the dependent 
variable are predicted. The logistic regression model is performed [9]: 

                                                    0 1 1 2 2

0 1 1 2 2

ˆ ˆ ˆexp( )ˆ ˆ ˆ ˆ1 exp( )i
x x

x x
  


  
 


  

  ,                                                     (3) 

where ˆi  denotes the estimated probability of events of interest, and 0 1
ˆ ˆ,   and 2̂ denote the 

estimated regression coefficient values. 
Step 3: Probabilities range from 0 to 1. A cut-off point of 0.5 is often used to indicate events [27]. 
The chosen prediction rule is applied to the estimated probabilities as a predicted value of 1 if 
ˆ 0.5i  , and 0 if ˆ 0.5i   [28]. 

Step 4: After obtaining the prediction value, it is imputed to the dependent variable. 
 
Modified Logistic Regression Imputation (MLR) 
 
 MLR is a method developed from the LR method by modifying the cut-off point from 0.5 to 
an optimal cut-off point for a particular data set. The optimal cut-off point is based on the receiver 
operating characteristic curve, which is a graph of the true positive rate (sensitivity) versus the false 
positive rate (1-specificity). The optimal cut-off point value is defined as the value whose sensitivity 
and specificity are closest to the value of the area under the receiver operating characteristic curve, 
and where the absolute value of the difference between the sensitivity and specificity values is 
minimal [13].  
 One of the commonly used methods for finding the optimal cut-off point is the Youden 
index method. This method defines the optimal cut-off point as the point maximising the Youden 
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function, which is the difference between sensitivity and specificity over all possible cut-off points 
( )c  [29]. The Youden index ( )J  equation [30] is given by                              

                                            max ( ) ( ) 1cJ Sensitivity c Specificity c    ,                                        (4) 

where ( )Sensitivity c denotes the probability of a positive test result, conditioned on the sample truly 
being positive, and ( )Specificity c  denotes the probability of a negative test result, conditioned on 
the sample truly being negative. 
 
PERFORMANCE EVALUATION 
 

The objective of imputation is to obtain statistically valid inferences from incomplete data. 
Consequently, the assessment of the quality of an imputation method should be conducted with 
respect to this purpose. Several assessments exist for comparing the efficacy of imputation 
techniques. This study employs the estimated mean square error (EMSE) of the regression 
coefficients to quantify the mean square difference between the estimated regression coefficients of 
the entire data and those of the imputed data.  The EMSE equation is given by [31]  
                              

1,000 2
* 2

( , ) ( , )
1 0

1 ˆ ˆ( ) ( )
1,000 b t b t

t b
EMSE   

 

    ,                                            (5) 

where ( , )
ˆ

b t  denotes the estimated regression coefficients of the complete sample data in the tht

iteration, and *
( , )

ˆ
b t  denotes the estimated regression coefficients of the imputed data in the tht  

iteration. The imputation method with the lowest EMSE is considered the best performance method. 
 
SIMULATION STUDY 
 
  This section contains the results of a simulation study that compare the performance of 
methods of imputing missing dependent variables in binary logistic regression models. First, two 
independent variables were drawn from standard normal distributions 1 (0,1)X N�  and   

2 (0,1)X N� . Then a dependent variable was constructed based on the Bernoulli distribution 

( )i iY Ber �  where  

                                                       
1 1 2 20

0 1 1 2 21

X X

i X X
e

e

  

  
 

 
                                                              (6) 

with regression coefficients 0 1 2, , 1    . Next, a sample was selected by simple random sampling, 
giving sample sizes of 20, 50, 100, 150, 200, 500 and 1000. MCAR, MAR and MNAR missing 
conditions were imposed on the dependent variable, with percentages of missing data of 10%, 20%, 
30% and 40%. To complete the data set, the missing data from the dependent variable were imputed 
using seven imputation methods. New binary logistic regression coefficients were then generated 
with the maximum likelihood estimation. The simulation procedure was repeated 1,000 times. After 
that, the EMSE of each of the seven techniques was obtained. R software was used to run all 
simulations. The results are shown in Tables 1-3. 
 Tables 1 and 2 show the EMSEs of the seven methods when the missing conditions for the 
simulation data set are MCAR and MAR respectively. The results reveal that the MLR method 
performs better than the others with small sample sizes (n ≤ 50) at most levels of missing data, 
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while the MI method performs better when the sample sizes are large (n > 50) for all levels of 
missing data. In every situation the MLR method outperforms the LR method. 
  Table 3 shows the EMSEs of the seven methods when the missing condition for the 
simulation data set is MNAR. The results show that the LR method performs better than the other 
methods when the sample sizes are small (n ≤ 50) for all levels of missing data. However, when the 
sample sizes are large ( n > 50) , the Mode method produces the best results at small missing data 
percentages (≤20%), and the LR method performs the best for missing data percentages of 30% and 
40% . In every scenario the LR method outperforms the MLR method. Additionally, in all scenarios 
the EMSE increases with higher percentages of missing data and decreases when sample sizes are 
bigger. 
 

Table 1.  EMSEs of seven imputation methods when missing condition assigned to simulation data 
set is MCAR  (Bold EMSE values are lowest values in each case.)  

 
 
 

n % Missing data 
Imputation method 

Mode HD MI KNN RF LR MLR 
20 10 0.5911 0.6101 0.5024 0.457 0.4949 0.4275 0.3665 

 20 1.0897 1.2101 1.3069 1.1856 1.4505 0.9588 0.6981 
 30 1.8378 1.901 1.9077 2.341 2.6995 1.8096 1.7392 
 40 2.4658 2.1801 2.5308 2.7798 4.2039 2.5269 2.1017 

50 10 0.2041 0.2986 0.2493 0.2317 0.2361 0.2213 0.2021 
 20 0.4278 0.607 0.4574 0.4545 0.4804 0.4716 0.3808 
 30 0.7703 0.946 0.7068 0.8208 0.88 0.86 0.7595 
 40 1.2003 1.2932 1.1851 1.4074 1.8442 1.8719 1.7713 

100 10 0.0907 0.1154 0.0534 0.0594 0.0547 0.0593 0.0568 
 20 0.2483 0.2543 0.1255 0.1842 0.1668 0.2022 0.1891 
 30 0.4832 0.4494 0.2225 0.379 0.3364 0.4659 0.4423 
 40 0.8189 0.6261 0.3415 0.7002 0.5931 0.9147 0.8598 

150 10 0.0708 0.0872 0.0376 0.0458 0.0412 0.049 0.0505 
 20 0.2137 0.2244 0.0768 0.1429 0.1097 0.1618 0.1542 
 30 0.4218 0.3904 0.129 0.2796 0.2172 0.3725 0.3636 
 40 0.7516 0.5799 0.2141 0.5904 0.4305 0.7976 0.7421 

200 10 0.0632 0.076 0.0253 0.0374 0.0311 0.0412 0.0407 
 20 0.1969 0.1952 0.0579 0.1304 0.0892 0.1524 0.1471 
 30 0.4004 0.3544 0.101 0.2718 0.1884 0.3483 0.3373 
 40 0.715 0.5325 0.1659 0.5556 0.3631 0.756 0.7202 

500 10 0.0479 0.0532 0.0098 0.0255 0.0151 0.0295 0.0289 
 20 0.1701 0.1661 0.0223 0.101 0.0532 0.1249 0.1193 
 30 0.3732 0.3031 0.0403 0.2534 0.1203 0.3233 0.3061 
 40 0.6673 0.4653 0.0627 0.4937 0.2142 0.6731 0.6278 
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Table 1. (Continued)  

 
 
Table 2.  EMSEs of seven imputation methods when missing condition assigned to simulation data 
set is MAR  (Bold EMSE values are lowest values in each case.)  

 

  n % Missing data 
Imputation method 

Mode HD MI KNN RF LR MLR 
1000 10 0.0437 0.0468 0.005 0.0237 0.0105 0.0265 0.0255 

 20 0.1613 0.1541 0.0108 0.0996 0.0389 0.116 0.1104 
 30 0.3548 0.2896 0.0195 0.2421 0.0863 0.2962 0.2799 
 40 0.6478 0.4565 0.0311 0.5014 0.1706 0.6485 0.6059 

n % Missing data 
Imputation method 

Mode HD MI KNN RF LR MLR 
20 10 0.4301 0.7124 0.3918 0.3585 0.3737 0.2969 0.256 

 20 1.0542 1.4064 1.2863 1.3938 1.4202 1.0551 0.9712 
 30 2.1896 2.506 1.5899 1.7556 1.918 1.4243 1.1774 
 40 3.4126 2.8294 2.4708 3.0721 3.699 1.863 1.6621 

50 10 0.1336 0.4619 0.1247 0.0989 0.1076 0.095 0.0831 
 20 0.4248 0.9198 0.2876 0.2926 0.2845 0.2934 0.246 
 30 0.9642 1.2982 0.6243 0.6465 0.6413 0.6841 0.5283 
 40 1.9623 1.6311 1.0512 1.1536 1.1559 1.3444 0.971 

100 10 0.0528 0.1951 0.0538 0.0513 0.0512 0.0533 0.0481 
 20 0.1812 0.4574 0.1366 0.1684 0.1479 0.1871 0.154 
 30 0.4921 0.7131 0.2352 0.3376 0.3075 0.4314 0.3332 
 40 0.9779 1.0158 0.3791 0.6607 0.5612 0.8869 0.6544 

150 10 0.0363 0.2425 0.0346 0.0367 0.033 0.038 0.0329 
 20 0.1365 0.3938 0.0838 0.1336 0.1001 0.1483 0.1195 
 30 0.3239 0.666 0.1564 0.293 0.2232 0.3889 0.2954 
 40 0.7651 0.9347 0.2519 0.6051 0.4419 0.7818 0.5855 

200 10 0.0344 0.1492 0.0282 0.0345 0.0288 0.0369 0.0319 
 20 0.1162 0.3933 0.0629 0.1173 0.0815 0.1324 0.1059 
 30 0.2951 0.6621 0.1127 0.2656 0.1826 0.342 0.2586 
 40 0.6816 0.8894 0.1948 0.6001 0.371 0.772 0.5608 

500 10 0.0239 0.1237 0.0098 0.0248 0.0148 0.0265 0.0319 
 20 0.0995 0.3331 0.0242 0.1011 0.0516 0.1159 0.0925 
 30 0.256 0.594 0.0437 0.2758 0.1246 0.316 0.2434 
 40 0.5261 0.8513 0.072 0.5594 0.2425 0.6861 0.4989 

1000 10 0.0209 0.1168 0.0047 0.0225 0.0104 0.0235 0.0193 
 20 0.0939 0.3254 0.0114 0.1036 0.0394 0.1113 0.0868 
 30 0.2418 0.5695 0.0204 0.268 0.0956 0.3008 0.2237 
 40 0.5093 0.8245 0.035 0.5631 0.2029 0.6716 0.4729 
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Table 3.  EMSEs of seven imputation methods when missing condition assigned to simulation data 
set is MNAR  (Bold EMSE values are lowest values in each case.)  

 
 
APPLICATION TO REAL-LIFE DATA 
 
  The actual data set used in the study was a set of heart disease predictions from the online 
database www.kaggle.com. [32]. This data set includes 1,025 observations and one dependent 
variable ( )y , heart disease. A value of 0 represents not having heart disease and a value of 1 
represents having heart disease. Two independent variables were used for this study: blood pressure 

1( )x  and cholesterol level 2( )x . Next, samples were selected by simple random sampling, giving 
sample sizes of 50 and 500, referred to as small and large sample sizes. The MCAR, MAR and 
MNAR missing conditions were assigned to the dependent variable. The missing data percentages 

n % Missing data 
Imputation method 

Mode HD MI KNN RF LR MLR 
20 10 0.3994 0.7139 0.4798 0.5166 0.4328 0.2206 0.3362 

 20 1.0047 1.4151 1.1079 1.31 1.2588 0.6539 0.8567 
 30 2.0273 2.396 2.2275 2.513 2.8411 1.4421 1.7712 
 40 3.9258 3.2697 3.2232 3.5661 4.2104 1.9326 2.9982 

50 10 0.0841 0.3098 0.126 0.0908 0.1161 0.0801 0.1068 
 20 0.3767 0.7109 0.3467 0.3754 0.348 0.2049 0.3192 
 30 1.1525 1.3832 0.7652 0.9411 0.7569 0.5301 1.0625 
 40 2.8354 2.1069 1.4433 1.7065 1.6658 1.0871 1.6995 

100 10 0.0206 0.1971 0.0648 0.0498 0.0632 0.0446 0.0682 
 20 0.1306 0.5444 0.184 0.1616 0.1873 0.139 0.221 
 30 0.7673 1.09 0.4099 0.5434 0.451 0.3007 0.5377 
 40 2.7483 1.7785 0.845 1.3566 0.9989 0.6277 1.19 

150 10 0.0125 0.1635 0.0459 0.0416 0.0435 0.0322 0.0516 
 20 0.0802 0.5321 0.1602 0.1531 0.1644 0.1185 0.2124 
 30 0.6978 1.039 0.3707 0.5019 0.3963 0.2654 0.5072 
 40 2.5076 1.7683 0.6728 0.917 0.7969 0.5266 1.0475 

200 10 0.008 0.155 0.0353 0.0288 0.0359 0.0253 0.0455 
 20 0.0493 0.499 0.134 0.125 0.1386 0.0961 0.1896 
 30 0.5171 1.0149 0.313 0.4474 0.3618 0.2557 0.5057 
 40 2.6185 1.7021 0.6168 0.8798 0.7281 0.4933 1.0227 

500 10 0.0033 0.0854 0.0243 0.0136 0.0198 0.014 0.0273 
 20 0.0124 0.339 0.0997 0.0848 0.0887 0.0585 0.1193 
 30 0.0776 0.7386 0.2563 0.2367 0.2395 0.1449 0.3082 
 40 2.1623 1.2611 0.5197 0.6274 0.5036 0.2955 0.6412 

1000 10 0.0025 0.0819 0.02 0.0126 0.0164 0.0114 0.0247 
 20 0.0105 0.3216 0.0934 0.0756 0.0784 0.0533 0.1175 
 30 0.0305 0.7123 0.2422 0.2536 0.22 0.1364 0.307 
 40 2.0713 1.2355 0.4879 0.6703 0.4579 0.2753 0.6318 
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were 10%, 20%, 30% and 40%, which were then estimated using the seven imputation methods. 
The parameters were estimated by the maximum likelihood estimation method and the efficiency of 
each imputation method was defined by the EMSE. The results are shown in Tables 4-6. 
 Tables 4 and 5 and Figures 1 and 2 show the EMSEs of the seven methods when the missing 
conditions are MCAR and MAR. The results reveal that the MLR method performs best when the 
sample size is 50 while the MI method performs best when the sample size is 500. In every 
situation, the MLR method outperforms the LR method. 
 Table 6 and Figure 3 show the EMSEs of the seven methods when the missing condition is 
MNAR. The results reveal that the MLR method performs best when the sample size is 50 while the 
Mode method gives the best results when the sample size is 500. Additionally, although the MLR 
method outperforms the LR method when 50n  , the LR method outperforms the MLR method 
when 500n  . These results are consistent with those obtained in the simulation study, especially 
when the missing conditions are MCAR and MAR. 
 
Table 4.  EMSEs of seven imputation methods when MCAR missing condition is assigned to heart 
disease prediction data set   

 
Note:  Bold EMSE values are lowest values in each case. 
              
 

(a) 50n       (b) n = 500 
 
Figure 1.  EMSEs of seven imputation methods when MCAR missing condition is assigned to heart 
disease prediction data set 
 

n % Missing data 
Imputation method 

Mode HD MI KNN RF LR MLR 
50 10 1.2985 1.4545 1.6443 2.3165 1.6019 0.9565 0.8521 

 20 3.1659 2.9561 3.4293 5.5947 4.5412 2.1009 1.8231 
 30 4.9746 4.2238 6.6518 10.735 10.5311 4.2487 3.5256 
 40 7.0184 5.4066 10.0569 16.6316 18.4505 5.9324 4.6212 

500 10 0.2402 0.2092 0.086 0.2917 0.1475 1.501 1.4183 
 20 0.6162 0.5436 0.2529 1.0377 0.3059 6.488 6.1542 
 30 1.0724 0.9855 0.4875 2.4703 0.492 16.7636 16.0368 
 40 1.8198 1.5662 0.8787 4.6676 1.0745 34.563 33.3094 
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Table 5.  EMSEs of seven imputation methods when MAR missing condition is assigned to heart 
disease prediction data set   

 
Note:  Bold EMSE values are lowest values in each case.    
  

(a) n = 50     (b) n = 500 

Figure 2.  EMSEs of seven imputation methods when MAR missing condition is assigned to heart 
disease prediction data set    

            
Table 6.  EMSEs of seven imputation methods when MNAR missing condition is assigned to heart 
disease prediction data set   

 
Note:  Bold EMSE values are lowest values in each case. 

n % Missing data 
Imputation method 

Mode HD MI KNN RF LR MLR 
50 10 2.9291 2.9227 3.2495 5.8502 4.55 0.6868 0.6363 

 20 7.4511 4.3272 6.0424 14.7784 9.9751 1.929 1.7608 
 30 14.1573 5.4033 9.2139 21.6973 16.9056 4.3768 3.8069 
 40 21.2927 6.7895 11.7816 25.5103 27.3465 7.3129 6.2516 

500 10 4.3728 0.5855 0.275 1.0421 0.4702 2.9816 2.9114 
 20 9.7376 1.2011 0.5511 2.9072 1.2992 10.7696 10.5844 
 30 14.5897 1.8053 0.985 6.0274 2.4289 23.8251 23.7744 
 40 18.9135 2.2727 1.3366 8.4251 3.8492 45.7501 44.9565 

n % Missing data 
Imputation method 

Mode HD MI KNN RF LR MLR 
50 10 2.003 1.5238 1.6362 2.1273 1.5676 1.073 0.8829 

 20 5.1217 3.426 4.1891 5.8669 5.6942 2.9301 2.1978 
 30 8.3482 5.6179 9.2561 11.2109 12.4961 5.5865 4.0799 
 40 12.8224 7.9778 14.7367 19.9994 24.8089 9.2117 6.5458 

500 10 0.172 0.1844 0.2519 1.3387 0.3395 2.0271 2.1636 
 20 0.4177 0.4796 0.5116 4.0507 1.1619 9.0693 9.7956 
 30 0.5698 0.6684 0.8527 7.6202 2.4013 22.5309 24.8214 
 40 0.7405 0.8216 1.3661 8.7293 4.597 45.55 51.3829 
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(a) n = 50     (b) n = 500 

Figure 3.  EMSEs of seven imputation methods when MNAR missing condition is assigned to heart 
disease prediction data set 
 
DISCUSSION AND CONCLUSIONS 
 
 The main aim of this study was to develop and compare the performance of seven different 
missing data imputation methods applied to the dependent variable of the binary logistic regression 
model when the missing data were of three different types: MCAR, MAR and MNAR. Logistic 
regression analysis was applied due to the binary nature of the missing data variable. The MLR 
method exhibited superior performance in cases where the sample size was small ( 50)n  . When 
the sample size was large ( 100)n  , the MI method performed best because it uses multiple 
substitution values and summarises the results obtained from the estimation to get the optimal value, 
giving reliable and highly accurate results [18]. In the majority of cases, the MLR method 
outperformed the LR method. For MLR, an optimal cut-off point can be determined so that it is 
specific to the data set, whereas the LR method relies on a universally accepted cut-off point of 0.5. 
 Moreover, the outcomes of the simulated study and real-life data were consistent, especially 
when the missing data condition was either MCAR or MAR. The outcomes for MNAR were 
different because its condition made parameter estimates more biased than the MCAR and MAR 
conditions [3]. As the sample size increased, the EMSE values tended to decrease because 
estimations are more accurate when based on a larger sample size. When the percentage of missing 
data was higher, the EMSE value tended to increase because the sample size was smaller, making 
the parameter estimates more biased. 
   Overall, it is evident that each imputation approach has advantages and disadvantages. The 
Mode and HD methods are simple techniques for filling in missing data. They are especially well-
suited for categorical variables but may not exhibit the same level of efficiency as other methods. 
The KNN method is a versatile approach that takes into account relationships among variables but 
is susceptible to outliers because it heavily depends on distance measures. The RF method is well-
suited for data sets from large sample sizes that exhibit complex patterns but it is not appropriate for 
data sets of small sample sizes that do not provide enough data to construct an imputation model. 
Inaccurate results are produced. The MI approach produces multiple imputed data sets, allowing 
accurate estimation of parameter values but it is not suitable for small sample sizes or when dealing 
with the MNAR missing data condition. The LR method is perfectly appropriate for filling in 
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missing data in binary or categorical variables, especially when the missing condition is MNAR 
with small sample sizes. However, it becomes computationally intricate when dealing with large 
sample sizes. The MLR technique, derived from the LR method, exhibits superior performance and 
is particularly well-suited to limited sample sizes when the missing data conditions are MCAR or 
MAR. 
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