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Abstract:  Statistical convergence is a significant generalisation of the traditional 
convergence of real or complex valued sequences. Over the years, it has been studied by 
many authors and found many applications in various problems. In this paper we introduce a 
new concept about statistical rough convergence for sequences in normed spaces by using 
weighted density, which is a generalisation of the natural density. We investigate the 
fundamental properties of g-statistical rough convergence and statistical rough limit points 
including closeness, convexity and boundedness. We also establish a relationship between 
statistical rough limit points and g-statistical boundedness. The obtained results provide a new 
framework for studying statistical rough convergence. 
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INTRODUCTION 
 

Statistical convergence is a crucial extension of the traditional convergence for real 
sequences. First, it was proposed independently by Fast [1] and Steinhaus [2], and then it has been 
extensively studied by various authors. The theory finds practical applications [3] and has been 
explored in different contexts such as statistical rough convergence [4, 5], fuzzy number spaces [6], 
double sequences on L-fuzzy [7] and uncertain sequences [8-11]. In general, sequences exhibiting 
statistical convergence share many properties with convergent sequences in metric spaces. 

In Phu’s work [12] a new idea known as rough convergence was presented for normed 
spaces with finite dimension. The set LIM (x), denoting the rough limit points of a sequence x =
(x ), was examined for specific properties in normed spaces. Moreover, the idea of a rough Cauchy 
sequence was presented, and relationships between rough convergence and various other 
convergence types were investigated. The relationship between LIM (x)  and the degree of 
roughness denoted by r  was also studied. Phu extended the idea of rough continuity to linear 
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operators in subsequent work [13] and further extended the findings on rough convergence in 
another publication [14] for infinite-dimensional normed spaces. 

The primary objective of the present research is to integrate statistical convergence and 
rough convergence using the g-weight density instead of natural density. 
 
Definition 1 [12].  Let (X, ∥⋅∥) be a normed space. A sequence x = (x ) in X is defined to be rough 

convergent (or r-convergent) to x∗ ∈ X, denoted by x → x∗ for a fixed non-negative real number r 
if, for every ε > 0, there exists n ∈ ℕ such that ∥ x − x∗ ∥< r + ε holds for all n ∈ ℕ with n ≤
n ∈ ℕ.  
 

Equivalently, it can be expressed as limsup ∥ x − x∗ ∥≤ r . Here, the real number r 
represents the degree of roughness, and rough convergence coincides with norm convergence when 
r = 0 .  It is important to note that the r -limit point of a sequence x  is typically not unique. 

Therefore, the r -limit set of x  is denoted by LIM (x): = {x∗ ∈ X: x → x∗} . The sequence x  is 
considered rough convergent whenever LIM (x) ≠ ⌀. It is evident that a norm convergent sequence 
is also rough convergent to the norm limit point. However, the converse may not always hold. 
Rough convergence can be viewed as a less stringent form of convergence compared to norm 
convergence. On the other hand, the asymptotic density of a set K ⊆ ℕ  is denoted by the following 
limit: 

 δ(K): = lim
→

|{k ≤ n: k ∈ K}|. 
 

Here, the absolute value bars represent the cardinality of the set {k ≤ n: k ∈ K}.  
  
Definition 2.  Consider a sequence x = (x )  within a normed space (X, ‖⋅‖) . It is termed 
statistically convergent to x∗ ∈ X  if  δ({n: ‖x − x∗‖ ≥ ε}) = 0 holds for every ε > 0. We refer to 
x∗ ∈ X as the statistical limit of the sequence x, denoted as st- lim

→
x = x∗.  

 
The concept of rough convergence finds diverse applications in various convergence types. 

For instance, Aytar [4, 5] specifically adapts it to statistical convergence. Antal et al. [15] study 
statistical rough Λ-convergence of order α. This broadening and application of rough convergence 
underscore its relevance and utility in different domains, extending beyond its initial introduction by 
Phu. Examples include rough ideal convergence [16, 17] and ideal statistically rough convergence 
introduced by Savaş et al. [18]. Recent notable results on ideal convergence incorporating the 
concept of roughness are presented by Leonetti [19]. 

 
Definition 3 [4]. A sequence x = (x )  in a normed space (X, ‖⋅‖)  is termed statistical rough  
convergent to x∗ ∈ X for a fixed non-negative scalar r if, for any ε > 0, the density δ({n: ‖x −
x∗‖ ≥ r + ε}) = 0.  

 
An element x∗ ∈ X is known as the statistical rough limit (abbreviated as r-st- lim

→
x = x∗ or 

x ⎯ x∗) of the sequence x. In the case of r = 0, statistical rough convergence coincides with 
statistical convergence in norm. The x∗ is denoted as the r-st-limit point of the sequence x, and it is 

generally not unique. The r-st-limit set of (x ), represented as st-LIM (x): = x∗ ∈ X: x ⎯ x∗ , 

points to scenarios where st - LIM (x ) ≠ ⌀ , indicating the presence of statistical rough 
convergence. A modified notion of natural density given by Balcerzak et al. [20] introduces the 
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concept of weight function. Let g: ℕ → [0, ∞)  be a function satisfying lim
→

g(n) = ∞  and 

lim
→ ( )

≠ 0.  The set of all weight functions with these properties is denoted by 풢.   
 

Definition 4 [20]. The density of a set K ⊆ ℕ  with respect to a weight function g ∈ 풢 is defined by 
the limit 

 δ (K): = lim
→ ( )

|{k ≤ n: k ∈ K}|, 
 
whenever it exists. This type of density is abbreviated as g-weight density. 

 
The g-weight density coincides with the natural density when g(n) = n and, for example, 

with g(n) = n  for 훼 ∈ (0,1] it is reduced to the α-density by Çolak [21]. Thus, the g -weight 
density serves as a generalised form of natural density while maintaining similar properties. For sets 
A, B ⊂ ℕ , properties include δ (A) = 0  for finite sets A , δ (ℕ ∖ A) = δ (ℕ) − δ (A) , if δ (A) 
exists for g ∈ 풢 and A ⊆ B implies δ (A) ≤ δ (B). Following the work of Balcerzak et al. [21], 
sequences are reconsidered using the g-weight density. Adem and Altınok [22] introduce weight g-
statistical convergence for real sequences, and Das and Savaş [23] provide results on the statistical 
and ideal convergence of metric-valued sequences using the g-weight density.  

Definition 5 [22]. A real sequence x: = (x ) is weight g-statistical convergent (abbreviated x L) 
to the real number L if  

 δ ({n: |x − L| ≥ ε}) = 0 
holds for all ε > 0, or equivalently 

 δ ({n: |x − L| < ε}) = δ (ℕ) 
holds for all ε > 0.  

 
The following definition is a generalisation of Definition 6 which was given by Antal et al. 

[15], representing the basic concept of this paper. 
 

Definition 6.   In a normed space (X, ∥⋅∥), x = (x ) is g-statistical rough convergent to x∗ ∈ X with 

roughness degree r ≥ 0 (or shortly x ⎯⎯ x∗)  if 
 

 lim
→ ( )

|{k ≤ n: ∥ x − x∗ ∥≥ r + ε}| = 0               (1) 
 

holds for every ε > 0. The set of all points satisfying (1) is denoted by LIM (x): = {x∗ ∈ X: x

⎯⎯ x∗} for the sequence x with respect to g ∈ 풢. 
 

It should be noted that in the case of 푟 = 0, the notation of g-statistical rough convergence is 
identical to that of g-statistical convergence. 
 
Example 1. Consider the Banach space X: = L (ℝ) of Lebesgue integrable functions f: ℝ → ℝ , 
equipped with the L -norm defined by 
 

 ∥ f ∥ : = ∫ |f(x)|dx < ∞. 
 

Let B(0,1): = {f ∈ L (ℝ): ∥ f ∥ ≤ 1}  be the unit ball in X . Take the sequence (f )  in B(0,1) 

defined as f (x): = χ[ , ](x)  for all x ∈ ℝ  and g(n) = n  for all n ∈ ℕ . It is observed that f

⎯⎯ 0 ∈ L (ℝ) for all r ≥ 1.  
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The concept of ‘rough weighted statistical convergence’ is defined using weighted density, 
which is defined by the weighted sequence 푡 = (푡 ) ∈ℕ [24, 25]. The use of the multiplier “푡 ” in 
this definition completely distinguishes the sequences considered here from those considered in our 
definition.  Therefore, the definitions are not special cases of each other; in other words, they are 
not comparable definitions. They only coincide if the weight sequence is specifically (푡 ) =
(1,1,1, … ) [24, 25] and specifically when 푔(푛) = 푛 in our definition. Apart from this particular 
case, there are no overlapping situations. 

 
Example 2.  Consider X as a vector space comprising continuous real-valued functions defined on 
[0,1], characterised by being piecewise polynomial with a finite number of pieces. Define the norm 
on X as follows: 

 ∥ f ∥: = sup{|f(t)| + | (t)|: t ∈ [0,1]  and  (t)  exists} 
 

for f ∈ X. Let f ∈ X  be a linear function on every interval [ , ] for k = 1, ⋯ ,2n   such that 

f ( ) = 0  for odd k , and f ( ) =  for even k . Thus, we have ∥ f ∥= + 2 for all n ∈ ℕ . 

Therefore, it is evident that f ⎯⎯ 0 for r = 2 and g(n) = n, but it is not norm convergent to zero.  
 
MAIN RESULTS 
 

The majority of the papers and their various generalisations discussing rough convergence 
and statistical rough convergence share similarities in terms of the results provided [5, 12-14]. 
However, some differing results were identified by Das et al. [24]. Therefore, the results obtained in 
this section will be presented in two parts: results on the set of g-statistical rough limit points and 
results on g-statistical rough convergence. 

 

Results on Set of 퐠-Statistical Rough Limit Points 
 

In this section we primarily explore the fundamental properties of the set LIM (x) with 
respect to g ∈ 풢 for a given sequence x, such as closeness, convexity and boundedness. Let us begin 
this section with the following simple properties. 

 
Theorem 1.  Let x = (x ) be a sequence in a normed space X and g ∈ 풢 be any weight function.   

(i) For non-negative real numbers r ≤ r , we have the inclusion LIM (x) ⊆ LIM (x).  
(ii) If x is norm bounded, then there exists a positive real number r such that LIM (x) ≠ ⌀.  

(iii) x∗ ∈ LIM (x) if and only if 0 ∈ LIM (‖x − x∗‖).  
(iv) If x∗ ∈ LIM (x), then x∗ ∈ LIM (x).  

  
Proof: (i)  Let x∗ ∈ LIM (x) be an arbitrary element and assume that r ≤ r  holds. Then from the 
following inclusion 
 

 {k ≤ n: ‖x − x∗‖ ≥ r + ε} ⊆ {k ≤ n: ‖x − x∗‖ ≥ r + ε}, 
 

the proof is obvious. 
 
(ii)  The boundedness of the sequence x implies s: = sup{‖x ‖: n ∈ ℕ} < ∞ exists. Hence for any 
ε > 0 and all r ≥ s, we get 

 δ ({n: ‖x − 0‖ ≥ r + ε}) = 0. 
 

This implies 0 ∈ LIM (x), showing LIM (x) ≠ ⌀ for all r ≥ s. 
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(iii)  The definition itself implies the conclusion without requiring explicit proof. 
 
(iv)  Assuming x∗ ∈ LIM (x), for any ε > 0 there exists n = n (ε) ∈ ℕ such that ∥ x − x∗ ∥<
r + ε holds for all n ≥ n . Consequently, we have the inclusion 
 

 {n: ‖x − x∗‖ ≥ r + ε} ⊆ {1,2, ⋯ , n } 
 

for any ε > 0. The monotonicity property of g-density implies the following inequality 
 

 δ ({n: ‖x − x∗‖ ≥ r + ε}) ≤ δ ({1,2, ⋯ , n }) = 0. 
 

So we get x∗ ∈ LIM (x).  
 

Remark 1. Undoubtedly, unbounded sequences in normed spaces lack rough limit points. 
Nevertheless, such sequences may reveal g-statistical rough limit points and statistical rough limit 
points as illustrated by Aytar [5]. Conversely, for a bounded sequence x = (x ), it is established 
that LIM (x) ≠ ⌀, consequently implying st-LIM (x) ≠ ⌀. This observation remains valid in the 
context of g-statistical rough convergence as it is shown in Theorem 1(ii). In addition, the converse 
statement of Theorem 1(iv) may not hold.  
 
Example 3.  Consider the normed space (ℝ, |. |) with the weighted function g(n) = 2n and the 
sequence x = (x ) defined by 

 x : =
m, n = m , m ∈ ℕ,
2, n = m + 1,
3, otherwise.

 

For any ε > 0, the inclusion 
 {n: |x − 2| ≥ 1 + ε} ⊆ {m : m ∈ ℕ} 

implies that 
 δ ({n: |x − 2| ≥ 1 + ε}) ≤ δ ({m : m ∈ ℕ}) 

 

for any ε > 0. Thus, 2 ∈ LIM (x). However, 2 is not a 1-rough limit point of the sequence x due 
to the unboundedness of x.  

 
Theorem 2.  Let x = (x ) be a sequence in a normed space X. Then we have 
 

 diam LIM (x) ≤ 2r 

for every density g ∈ 풢.   
 

Proof:  Contrarily, we assume that diam LIM (x) > 2r . Then in this case there exist some 

elements y, z ∈ LIM (x) such that ‖y − z‖ > 2r. Moreover, since y, z ∈ LIM (x), by taking ε =
‖ ‖ − r > 0, we obtain δ (R ) = 0 and δ (R ) = 0, where R = {k ≤ n: ‖x − y‖ ≥ r + ε} and 

R = {k ≤ n: ‖x − z‖ ≥ r + ε}. Therefore, utilising the equation δ (R ∩ R ) = 1, we infer that, 
for every k ∈ R ∩ R , we have 
 

 ‖y − z‖ ≤ ‖x − y‖ + ‖x − z‖ < 2(r + ε) = ‖y − z‖, 
 

which is a contradiction. 

Now, consider a sequence x = (x ) such that x x∗. Then for an arbitrary ε > 0, we have 
δ ({k ≤ n: ‖x − x∗‖ ≥ ε}) = 0.  It follows that 
 

 ‖x − y‖ ≤ ‖x − x∗‖ + ‖x∗ − y‖ ≤ ‖x − x∗‖ + r 
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holds for all y ∈ B(x∗, r) = {z ∈ X: ‖x∗ − z‖ ≤ r}. Which shows that ‖x − y‖ ≤ r + ε for all k ∈
{k ≤ n: ‖x − x∗‖ < ε}. Now it follows from δ({k ≤ n: ‖x − x∗‖ < ε}) = 1 that we obtain y ∈
LIM (x), and so we have 

 B(x∗, r) = LIM (x). 
 

On the other hand, since diamB(x∗, r) = 2r, the upper bound 2r of the diameter of the set LIM (x) 
cannot be decreased anymore.  

 

Remark 2. For r = 0, according to Theorem 2, we have diam LIM (x) = 0 for any sequence x =
(x )  in normed spaces. This implies that LIM (x) is either empty or a singleton.  

 
Theorem 3.  Let x = (x ) be a sequence in a normed space X. Then LIM (x) is closed and a convex 
set for any g ∈ 풢. 

 
Proof: If LIM (x)  is empty, the proof is straightforward. Assume LIM (x) ≠ ⌀ . Consider a 
sequence (y ) in LIM (x) converging, within the norm, to y ∈ X. For any ε > 0, there exists n ∈ ℕ 
such that ‖y − y‖ <  for all n > n . Let us choose sufficiently large n ∈ ℕ such that n > n . 
Since y ∈ LIM (x), the following equality 
 

 δ k ≤ n: x − y ≥ r + ε/2 = 0 (2) 
 

holds. If we take k from {k ≤ n: x − y < r + }, then ‖x − y‖ ≤ x − y + y − y <
r + ε.  Hence the following inclusion holds: 
 

 k ≤ n: x − y < r + ε ⊆ {k ≤ n: ‖x − y‖ < r + ε/2}, 
and so we have 

 {k ≤ n: ‖x − y‖ ≥ r + ε/2} ⊆ k ≤ n: x − y ≥ r + ε . 
 

Combining equation (2) with the monotonicity of g-density, we conclude that 
 

 δ ({k ≤ n: ‖x − y‖ ≥ r + ε/2}) = 0 
 

for any ε > 0, implying y ∈ LIM (x).  Hence LIM (x) is closed. 
Now we fix y , y ∈ LIM (x) and take ε > 0. Then δ (R ) = 0 and δ (R ) = 0 for the sets 

R = {k ≤ n: ‖x − y ‖ ≥ r + ε}  and R = {k ≤ n: ‖x − y ‖ ≥ r + ε} . For every k ∈ R ∩ R  
and λ ∈ [0,1], the inequality 
 

 x − (1 − λ)y + λy = ‖(1 − λ)(x − y ) + λ(x − y )‖ < r + ε 
 

holds. Thus, since δ (R ∩ R ) = 1, we can observe that: 
 

 δ k ≤ n: x − (1 − λ)y + λy ≥ r + ε = 0, 
 

implying (1 − λ)y + λy ∈ LIM (x).  Therefore, LIM (x) is convex.   
 

Remark 3.  Considering Theorem 2 and Theorem 3, and assuming X has finite dimension, we can 
state: For a sequence x = (x ), the set LIM (x) is compact, hence totally bounded and separable.  

 
Definition 7. A sequence x = (x ) in a normed space X  is termed g-statistically bounded if there 
exists a positive real number M > 0 such that 
 

 δ ({n ∈ ℕ: ‖x ‖ ≥ M}) = 0. 
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Evidently a norm bounded sequence is also 푔-statistical bounded. However, the converse is 
not true. To see this, let us choose a real number 훼 and use it to define the sequence (푥 ) as follows: 

  
 푥 = 푛, 푛 ∈ 퐴

훼, 푛 ∉ 퐴 
 
Consequently, for the set 퐴 = ⋃ {((2푘 − 1)! ,2(2푘 − 1)!] ∩ ℕ}, the following inclusion holds: 
  

 {푘: |푥 | ≥ 푀} ⊆ 퐴 
 
where 푀 = |훼| + 1. Furthermore, if we consider the weight function 푔 ∈ 풢 (as in Balcerzak [20]) 
defined by  

 푔(푛): = (2푘)!, (2푘 − 1)! < 푛 ≤ (2푘)!     푎푛푑    푘 = 1,2, . . .
푛, (2푘)! < 푛 ≤ (2푘 + 1)!     푎푛푑    푘 = 1,2, . . .  , 

 then we have   

 lim
→ ( )

|{푘 ≤ 푛: |푥 | ≥ 푀}| ≤ lim
→

| ( )|
( )

= 0, 
 
where 퐴(푛) = {푘 ∈ 퐴: 푘 ≤ 푛}. This implies that (푥 ) is 푔-statistical bounded but not bounded in 
the usual sense.  

The existence of g -statistical rough limit points does not necessarily imply sequence 
boundedness, as discussed in Example 3. However, the converse of the previous result holds true 
for g-statistical boundedness, as stated in the following theorem. 

 
Theorem 4.  A sequence x = (x ) in a normed space X is g-statistically bounded if and only if there 
exists a non-negative scalar r such that LIM (x) ≠ ⌀.  

 
Proof:  Assume x: = (x ) is a g-statistically bounded sequence. Then there exists a positive number 
M > 0 such that δ ({n ∈ ℕ: ‖x ‖ ≥ M}) = 0. Let s: = sup{‖x ‖: ‖x ‖ < M}. For each ε > 0 and 
every r ≥ s, we observe 

 δ ({n: ‖x − 0‖ ≥ r + ε}) = 0. 
 

Hence we have 0 ∈ LIM (x). Thus, LIM (x) ≠ ⌀ for all r ≥ s. 
 
Conversely, if we assume LIM (x) ≠ ⌀ for some r ∈ ℝ , then for any x∗ ∈ LIM (x) and 

fixed ε > 0, we have 
 δ ({n: ‖x − x∗‖ ≥ r + ε}) = 0. 
 

Clearly, δ ({n ∈ ℕ: ‖x ‖ ≥ r + ε+∥ x∗ ∥}) = 0. Thus, (x ) is g-statistically bounded for M: = r +
ε+∥ x∗ ∥. 

 

Theorem 5. Consider a sequence x = (x )  in a normed space X . The element x∗  belongs to 
LIM (x) if and only if there exists a sequence y = (y ) (different from x) in X  such that (y ) 
converges generally to x∗ and ∥ x − y ∥≤ r holds for all n ∈ ℕ. 

 

Proof:  Suppose x ⎯⎯ x∗. Then for every ε > 0, it follows that 
 

 δ ({n: ∥ x − x∗ ∥≥ r + ε}) = 0. 
 

Let us define the sequence (y ) as follows: 
 

 y : =
x∗, ∥ x − x∗ ∥≤ r
x + r

∗

∥ ∗∥
, otherwise.  

Hence we have 
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 y − x∗ =
0, ∥ x − x∗ ∥≤ r

∗

∥ ∗∥
(∥ x − x∗ ∥ −r), otherwise , 

and so 

 ∥ y − x∗ ∥= 0, ∥ x − x∗ ∥≤ r
∥ x − x∗ ∥ −r, otherwise.  

 

Consider the following inclusion: 
 

 {k ≤ n: ∥ y − x∗ ∥≥ ε} ⊆ {k ≤ n: ∥ x − x∗ ∥≥ r + ε}. 
 

Then it follows from the assumption δ ({n: ∥ x − x∗ ∥≥ r + ε}) = 0 that we obtain the following 

density: δ ({k ≤ n: ∥ y − x∗ ∥≥ ε}) = 0. This means that y ⎯⎯ x∗ . Moreover, by considering 
the definition of (y ), we observe that 
 

 ∥ x − y ∥= ∥ x − x∗ ∥, ∥ x − x∗ ∥≤ r
r, otherwise  

 

is true;  that is ∥ x − y ∥≤ r for all n ∈ ℕ.  This completes the proof of the sufficiency part. 

Conversely, assume that y ⎯⎯ x∗ and ∥ x − y ∥≤ r for all n ∈ ℕ. The following simple 
triangle inequality 

 ∥ x − x∗ ∥≤∥ x − y ∥ +∥ y − x∗ ∥ 
 

states that the following inclusion holds: 
 

{k ≤ n: ∥ y − x ∥≤ r} ∩ {k ≤ n: ∥ y − x∗ ∥< ε + r} ⊆ {k ≤ n: ∥ x − x∗ ∥≤ r + ε}. 
 

Thus, it follows that δ ({n: ∥ x − x∗ ∥≥ r + ε} = 0,  i.e. x∗ ∈ LIM (x).    
 

Remark 4.  Let A be a bounded subset of a normed space X. Then there exists a positive scalar M 
such that ∥ x ∥≤ M for all x ∈ A. Let us take a scalar r ≥ 2M. Thus, for an arbitrary sequence x =
(x ) and element x in A, we have the following inequality: 
 

 ∥ x − x ∥≤∥ x ∥ +∥ x ∥≤ M + M ≤ r < r + ε 
 

for every ε > 0 and for all n ∈ ℕ. Thus, we can get x ⎯⎯ x  for some weight functions g ∈ 풢. 
Therefore, every sequence is g-statistical rough convergent to any element on a bounded subset. 

 
Now, let us take a scalar 0 ≤ r < 2M, a weight function g ∈ 풢, and a sequence x in A. Thus, 

for any ε > 0 and x ∈ X, let us choose n  as the smallest positive integer such that 
 

 
( )

|{k ≤ n : ∥ x − x ∥≥ r + ε}| < ε. 
 

We define a new sequence (y ) as follows: 

 y : = x , k ≤ n
x, k > n . 

Then we have 
 |{k ≤ n: ∥ y − x ∥≥ r + ε}| = |{k ≤ n : ∥ x − x ∥≥ r + ε}|. 

Therefore, we get 
 

( )
|{k ≤ n: ∥ y − x ∥≥ r + ε}| =

( )
|{k ≤ n : ∥ x − x ∥≥ r + ε}| < ε. 

 

This shows that  y ⎯⎯ x.    
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           We complete this section with the following basic result. 

Proposition 1. Let x = (x )  be a sequence in the normed space X . Then x x∗  implies that 
B (x∗) = LIM (x).  

Proof: Assume that x x∗  in X and take an arbitrary z ∈ B (x∗). Then ∥ z − x∗ ∥≤ r  holds. It 
follows that 

 ∥ x − z ∥≤∥ x − x∗ ∥ +∥ x∗ − z ∥≤∥ x − x∗ ∥ +r. 
 

Therefore, for any ε > 0, ∥ x − x∗ ∥< ε implies ∥ x − z ∥< r + ε. Hence we get the following 
inequality: 

 
( )

|{k ≤ n: ∥ x − z ∥≥ ε + r}| ≤
( )

|{k ≤ n: ∥ x − x∗ ∥≥ ε}|. 
 

By applying x x∗, the limit of the right-hand side of the above inequality is zero. Hence we get 
 

 lim
→ ( )

|{k ≤ n: ∥ x − z ∥≥ ε + r}| = 0. 
 

It follows that z ∈ LIM (x), that is  B (x∗) ⊆ LIM (x). For the converse inclusion, we can consider 
the second part of the proof of Theorem 2.  

  
Findings on 퐠-Statistical Rough Convergence 

 
It is a known fact that the convergence of a subsequence in norm does not necessarily imply 

norm convergence in the context of statistical convergence. In this section we explore this 
phenomenon in the framework of g-statistical rough convergence, as stated in the following result.  

 
Theorem 6.  For an arbitrary element x∗ in LIM (x ), there exists a subset K = {k < k < ⋯ } of 
ℕ with δ (K) = δ (ℕ) such that x∗ ∈ LIM x .  

 
Proof:  Consider an arbitrary element x∗ ∈ LIM (x ). For any ε > 0, we have 
 

 lim
→ ( )

|{k ≤ n: ‖x − x∗‖ < r + ε}| = δ (ℕ). (3) 
 

By setting ε =  for every j ∈ ℕ, we get δ K = 0 for the set K : = {n ∈ ℕ: ‖x − x∗‖ ≥ r + }. 

This fact implies also that δ K = δ (ℕ). Moreover, the  inclusionsK ⊃ K ⊃ ⋯ ⊃ K ⊃ K ⊃
⋯ are also satisfied. Let (t ) be a strictly increasing sequence of positive real numbers such that 

lim
→

t = δ (ℕ). By the definition of K , choose any b ∈ K  such that ( )
( )

> t  holds for all n >

b . Also choose b ∈ K  such that b > b , and for all n ≥ b  we have ( )
( )

> t .  Continuing this 

iterative procedure leads to a sequence (b ) of natural numbers such that b ∈ K  for all j = 1,2, ⋯, 
and also 

 
( )

( )
> t  (4) 

 
for all n ≥ b , where K (n) denotes the cardinality of {b ≤ k: k ∈ K }. Thus, we have identified the 
sequence (b ), which we will utilise to form the set K purportedly existing in the theorem. 

Now, let us construct the set K ⊆ ℕ as follows:  include every natural number within [1, b ] 
in K , and include every natural number within b , b ∩ K  for each j = 1,2, ⋯  in K . 
Consequently, it follows from (3) and (4) that 
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 ( )
( )

≥ ( )
( )

> t  
 

for all b ≤ n < b .  As n approaches infinity, δ (K) = δ (ℕ). For any chosen ε > 0, there exists 

a natural number j ∈ ℕ such that < ε.  Consider n ≥ b , where n belongs to K. Then there exists 

a unique t ≥ j such that b ≤ n < b , and also 
 

 ‖x − x∗‖ < r + < r + < r + ε 
 

holds. This implies x ⎯⎯ x∗ on the set K.  
 
Let x = (x ) and y = (y ) represent two sequences in the normed space X. If δ (n: x ≠

y ) = 0,  they are considered equivalent with respect to g ∈ 풢, denoted by x ≃ y. 
 

Theorem 7. For any sequence x = (x )  in normed space X  and x∗ ∈ LIM (x) , there exists a 
sequence y = (y ) (different from x) in X such that x ≃ y and x∗ ∈ LIM (y).  

 
Proof:  Consider an arbitrary element x∗ ∈ LIM (x). By Theorem 1(iii), we have 0 ∈ LIM (‖x −
x∗‖). Consequently, Theorem 6 implies the existence of K = {n : k ∈ ℕ} with  δ (K) = δ (ℕ) such 
that  0 ∈ LIM x − x∗ . Let us define the sequence y = (y ) as 
 

 y : = x ,            n ∈ K,
x∗ ,    n ∈ ℕ − K. 

Clearly,  
 δ ({n ∈ ℕ: x ≠ y }) = δ (ℕ − K) = 0 
 

holds.  This implies that x ≃ y and 
 

 lim
→ ( )

|{k ≤ n: ‖y − x∗‖ ≥ r + ε}| = 0 
 

holds. Thus, the proof is concluded.  
 

Theorem 8.  For a sequence x = (x ) in a normed space X and x∗ ∈ X, we have lim
→

x = x∗ if and 
only if x∗ ∈ LIM (x) for all r > 0.   
Proof:  The proof of this basic theorem is straightforward and so it is omitted. 
 
The following theorem is g-version of Theorem 8.  

Theorem 9. For a sequence x = (x ) in a normed space X and x∗ ∈ X,  x x∗ if and only if x∗ ∈
LIM (x) for all r > 0.  

 

Proof:  Assuming x x∗, for any ε > 0 we have 
 

 lim
→ ( )

|{k ≤ n: ‖x − x∗‖ ≥ ε}| = 0. 
 

Let us take an arbitrary positive real number r > 0.  The inclusion 
 

 {k ≤ n: ∥ x − x∗ ∥≥ r + ε} ⊆ {k ≤ n: ∥ x − x∗ ∥≥ ε} 
implies 

lim
→

1
g(n)

|{k ≤ n: ∥ x − x∗ ∥≥ r + ε}| ≤ lim
→

1
g(n) |{k ≤ n: ∥ x − x∗ ∥≥ ε}|. 
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Since lim
→ ( )

|{k ≤ n: ‖x − x∗‖ ≥ ε}| = 0, we see that the equality lim
→ ( )

|{k ≤ n: ∥ x − x∗ ∥

≥ r + ε}| = 0  holds. Thus, this equality shows that x∗ belongs to the set LIM (x). This completes 
the proof of the sufficiency part. 

Conversely, assuming x ⎯⎯ x∗ for all r > 0, we obtain 
 

 lim
→ ( )

|{k ≤ n: ∥ x − x∗ ∥≥ r + ε}| = 0. 
 

Now let us choose an arbitrary ε > 0, set r: =  and ε = .  This leads to 
 

 lim
→ ( )

|{k ≤ n: ∥ x − x∗ ∥≥ r + ε}| = lim
→ ( )

|{k ≤ n: ∥ x − x∗ ∥≥ ε }| = 0. 
 

Thus, the desired result x x is obtained.  
 
Let us consider a sequence x = (x ) ⊂ X  and a strictly increasing sequence of natural 

numbers (n ) ∈ℕ , and define x = (x )  and K = {n : k ∈ ℕ} . As a natural consequence of 
Theorem 6, we can pose the following query. 

 
Remark 5.  If a specific number serves as a weighted statistical rough limit for a sequence, how can 
we verify its role as a weighted statistical rough limit for a subsequence as well?  

 
Theorem 10.  Let  x: = (x ) be a sequence and x : = (x ) be a subsequence of x in a normed 
space X such that 

 liminf
→

( )

( )
> 0. 

 

 If  x∗ ∈ LIM (x), then  x∗ ∈ LIM (x ).  
 

Proof:  Assume x∗ ∈ LIM (x). Then the inclusion 
 

 m ≤ n: x − x∗ ≥ r + ε ⊆ {m ≤ n: ‖x − x∗‖ ≥ r + ε} 
 

holds for all ε > 0. This implies  
 

( )
m ≤ n: x − x∗ ≥ r + ε ≤

( )
|{m ≤ n: ‖x − x∗‖ ≥ r + ε}|. (5) 

 

The condition x∗ belonging to LIM (x) is expressed by 
 

 limsup
→ ( )

m ≤ n: x − x∗ ≥ r + ε = 0 (6) 
 

for every ε > 0. To prove (6), it suffices to show that the right part of the inequality in (5) tends to 
zero. Utilising the inequalities given by Antal et al. [15] and defining sequences y  and z  as 
specified, we achieve the desired result.  

 
Corollary 1.  Let (X, ‖. ‖) be a normed space and x = (x ) be a sequence in X. The following 
statements are equivalent: 
 

(i) x∗ ∈ LIM (x); 

(ii) x∗ ∈ LIM (x ) when liminf
→

( )

( )
> 0; 

(iii) x∗ ∈ LIM (x ) when liminf
→

( )

( )
= δ (ℕ).  

 

Theorem 11.  Let x = (x ) be a sequence in a normed space X, and g, h ∈ 풢. Then the following 
assertions hold: 
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(i) If there exist M > 0  and k ∈ ℕ  such that ( )
( )

≤ M  holds for all n ≥ k , then we have 
LIM (x) ⊆ LIM (x). 

(ii) If there exist m > 0  and k ∈ ℕ  such that m ≤ ( )
( )

 holds for all n ≥ k , then we have 
LIM (x) ⊆ LIM (x). 
 

Proof: (i) Let x∗ ∈ LIM (x) be any element, satisfying 

 lim
→ ( )

|{k ≤ n: ‖x − x∗‖ ≥ r + ε}| = 0 (7) 
 

for all ε > 0.  By considering  ( )
( )

≤ M and  n ≥ k , we obtain the inequality 
 

 
( )

|{k ≤ n: ‖x − x∗‖ ≥ r + ε}| ≤ M
( )

|{k ≤ n: ‖x − x∗‖ ≥ r + ε}|. 
 

Thus, by taking the limit, equation (7) implies x∗ ∈ LIM (x). Therefore, LIM (x) ⊆ LIM (x)  is 
established.  The proof of (ii) follows a similar approach and is omitted here.  
 
Corollary 2. For a sequence x = (x ) in a normed space X and functions g, h ∈ 풢 , if constants 

m, M > 0 and k ∈ ℕ satisfy m ≤ ( )
( )

≤ M for all n ≥ k , then  
 

 LIM (x) = LIM (x). 
  
Theorem 12.  For sequences x: = (x )  and  y: = (y ) in a normed space X,  if (x − y) → 0, then 
LIM (x) = LIM (y).  

 
Proof:  Let x∗ ∈ LIM (x) be arbitrary. For any ε > 0, the inclusion 

{n ∈ ℕ: ‖y − x∗‖ ≥ r + ε} ⊆ {n ∈ ℕ: ‖x − y ‖ ≥ r +
ε
2} ∪ {n ∈ ℕ: ‖x − x∗‖ ≥ r +

ε
2} 

implies that the following inequality 

lim
→

1
g(n) |{k ≤ n: ‖y − x∗‖ ≥ r + ε}| ≤ lim

→

1
g(n) |{k ≤ n: ‖x − y ‖ ≥ r +

ε
2}| 

                                                         + lim
→ ( )

|{k ≤ n: ‖x − x∗‖ ≥ r + }| 
 

holds.  Thus, x∗ ∈ LIM (y).  The reverse inclusion is proven similarly and is omitted.  
 

Theorem 13.  Let X and Y be normed spaces, T: X → Y be a linear bounded operator, and x = (x ) 
be a sequence in X.  If x∗ ∈ LIM (x), then Tx∗ ∈ LIM‖ ‖ (Tx),  where Tx: = (Tx ).  

 
Proof:  Let x∗ ∈ LIM (x). For T = 0, the result is obvious. Assume T is nonzero. For any ε > 0, 
due to the boundedness and linearity of T, we have 
 

 ‖Tx − Tx∗‖ ≤ ‖T‖‖x − x∗‖ < ‖T‖ r +
‖ ‖

. 

Thus,  

{k ≤ n: ‖Tx − Tx∗‖ ≥ ‖T‖r + ε} ⊆ {k ≤ n: ‖x − x∗‖ ≥ r +
ε

‖T‖}. 
 

This implies δ ({k ≤ n: ‖Tx − Tx∗‖ ≥ ‖T‖r + ε}) = 0,  that is  Tx∗ ∈ LIM‖ ‖ (Tx).   
 

Corollary 3.  If ‖T‖ ≤ 1,  then we have T LIM (x) ⊆ LIM (Tx).  
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Let ℓ (X) , gS(B)  and gS  be the sets of all bounded sequences, g -statistical bounded 
sequences and g-statistical null sequences on X respectively. The following theorem generalises the 
result [24] and provides a decomposition for gS(B). 

 
Theorem 14.  A decomposition exists in the form of 
 

 gS(B) = ℓ (X) + gS , 
 

where X is a normed space. However, this decomposition is not unique.  
 

Proof:  Consider x: = (x ) in gS(B). Let M > 0  such that δ (P) = 0, where P: = {n ∈ ℕ: ‖x ‖ ≥
M}.  Let the sequences y: = (y ) and z = (z ) be defined as follows: 
 

y = x , n ∈ P
0, n ∈ P      and       z = 0, n ∈ P

x , n ∈ P . 
 

The equality x = y + z  holds for each n . We have y ∈ l (X) . For r ∈ ℝ  and ε > 0 , the 
inclusion 

 {n ∈ ℕ: ‖z ‖ ≥ r + ε} ⊆ P 
 

implies δ ({n ∈ ℕ: ‖z ‖ ≥ r + ε}) = 0, that is  z ⎯⎯ 0. Therefore, gS(B) ⊆ ℓ (X) + gS . 
Conversely, consider y: = (y ) in ℓ (X) and z: = (z ) in gS . There exists M  such that ∥

y ∥≤ M  for every n . For r ∈ ℝ  and ε = 1 , we have δ ({n ∈ ℕ: ∥ z ∥≥ r + 1}) = 0 . The 
containment 

 {n ∈ ℕ: ‖y + z ‖ ≥ M + r + 1} ⊆ {n ∈ ℕ: ‖z ‖ ≥ r + 1} 
 

implies v ∈ gS , completing the proof. 
 
CONCLUSIONS AND FURTHER REMARKS  
 

Statistical convergence stands as a significant extension of the traditional convergence 
observed in sequences of real or complex numbers, drawing considerable attention from researchers 
over the years due to its wide-ranging applications across various fields. This study introduces the 
concept of g-statistical rough convergence for sequences within normed spaces, leveraging a g-
weight density as a broader form of the natural density. Within this framework, it delves into 
convergence results and outlines fundamental properties of the g-rough set of statistical limit points 
associated with a sequence. Additionally, it explores the interconnection between statistical rough 
boundary points and the notion of g-statistical boundedness. 

Let X be a normed vector space and  x: = (x ) be a sequence in X. From the definition of 

rough convergence, if x → x∗ ∈ X, then for any ε > 0, the following set 
 {n ∈ ℕ: ‖x − x∗‖ ≥ r + ε} 

is finite. This implies that x∗ ∈ LIM (x) for all g ∈ 풢 because of 
 δ ({n ∈ ℕ: ‖x − x∗‖ ≥ r + ε}) = 0. 
 

The relation between the rough limit point and g-statistical rough limit point of a sequence naturally 
causes one to ask the following question: Is it true that if x∗ ∈ X  is g-statistical rough limit point of 
the sequence x for every g ∈ 풢, then it is rough limit point of x? 
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