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Abstract:  A novel version of the Sumudu transform is introduced by using the notion of          
∗-integral, which is called non-Newtonian Sumudu transform. The fundamental 
characteristics of the non-Newtonian Sumudu transform are demonstrated. The obtained 
results are applied to the solving of non-Newtonian differential equations and growth models. 
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INTRODUCTION  
 

Modelling is essential for solving physics and engineering problems that depend on many 
physical changes and phenomena observed in nature that affect and guide life. Since differential 
equations have an important role in mathematical modelling, they are used to model real-life 
problems in physics, engineering, chemistry, statistics, economics and numerous other disciplines.  

Integral transforms are employed to solve a variety of problems including initial-value 
problems, boundary-value problems, differential equations and integral equations that have taken 
place in fields such as mathematics, signal theory, physics, chemistry, economics, mechanics and 
other engineering sciences. Due to the diverse range of applications, many novel integral transforms 
have been introduced. The most widely used and well-known integral transforms are Laplace, 
Fourier and Sumudu transforms. These transforms have been studied using different concepts such 
as fractional, conformable fractional, non-conformable fractional, fuzzy, quantum calculus, 
multiplicative calculus and non-Newtonian calculus [1-11].  

Since Newton and Leibnitz established classical calculus, several calculi have been created, 
taking into account that a well-known and favoured method for introducing a new mathematical 
system is to change the axioms of a known system. Moreover, a mathematical issue that is 
challenging or impossible to answer using one calculus can be easily revealed using another 
calculus. As an alternative to classical calculus, Grossman and Katz [12] created a new structure 
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called non-Newtonian calculus, which involves some special calculi such as geometric, harmonic, 
quadratic, bigeometric, biharmonic and biquadratic calculus. They introduced modern forms of 
derivatives and integrals that convert addition and subtraction into multiplication and division. The 
pioneering work of Grossman and Katz has led to significant interest in non-Newtonian calculi in 
recent years owing to their diverse applications in fields such as functional analysis, differential 
equations, integral equations, probability theory, economy, finance, biology, calculus of variations, 
computer science including image processing, and signal processing [13-24]. Some definitions and 
known results in non-Newtonian calculus are reminded in the following. 

A generator is an injective function whose domain is ℝ and whose range is a subset of ℝ.   
ℝ ≔ {훼(푢): 푢 ∈ ℝ} is called non-Newtonian real line where 훼 is the generator. For 휐, 휈 ∈ ℝ ,                        
훼-arithmetic operations are denoted by 

 
훼-addition 휐+̇휈 = 훼{훼 (휐) + 훼 (휈)} , 
훼-subtraction 휐−̇휈 = 훼{훼 (휐) − 훼 (휈)} , 
훼-multiplication 휐 ×̇ 휈 = 훼{훼 (휐) × 훼 (휈)} , 
훼-division 휐/̇휈 (휈 ≠ 0̇) = 훼{훼 (휐)/훼 (휈)} , 
훼-order 휐 <̇ 휈  (휐 ≤̇ 휈) ⇔ 훼 (휐) < 훼 (휈)  (훼 (휐) ≤ 훼 (휈)). 

 
(ℝ , +̇,  × ̇ , ≤̇)  is totally ordered field. 훼 -Arithmetic is generated by 훼 . The identity function 
represented by 퐼, generates classical arithmetic. On the other hand, geometric arithmetic is produced 
by the exponential function. If the 훼-generator is chosen as exp, i.e. 훼(푢) = 푒  for 푢 ∈ ℝ, then 
훼⁻¹(휐) = ln 휐. The concept of 훼-arithmetic transforms into geometric arithmetic. The definitions of 
geometric operations are: 
 

geometric addition 휐 ⊕ 휈 = 훼{훼 (휐) + 훼 (휈)} = 푒{ } = 휐. 휈 , 
geometric subtraction 휐 ⊖ 휈 = 훼{훼 (휐) − 훼 (휈)} = 푒{ } = 휐 ÷ 휈, 휈 ≠ 0 , 
geometric multiplication 휐 ⊙ 휈 =  훼{훼 (휐) × 훼 (휈)} = 푒{ × } = 휐 = 휈  , 
geometric division 휐 ⊘ 휈 =  훼{훼 (휐)/훼 (휈)} = 푒{ ÷ } = 휐 , 휈 ≠ 1. 

 
If 휐 ∈ ℝ  and >̇ 0̇ 휐 <̇ 0̇ , then we say that it is 훼-positive number (훼-negative number). 

Also, 훼{−훼 (휐)} = −̇휐 for all 휐 ∈ ℝ  and 푛̇ = 훼(푛) for all 푛 ∈ ℤ. The 훼-fractional notation !  is 
described as 

푛̇! = 1̇ ×̇ 2̇ ×̇ … ×̇ 푛̇ = 훼(1) ×̇ 훼(2) ×̇ … ×̇ 훼(푛) = 훼(푛!). 
The 훼-absolute value of 휐 ∈ ℝ  is determined by 
 

|휐| =
휐 , 휐 >̇ 0̇
0̇ , 휐 = 0̇

0̇−̇휐 , 휐 <̇ 0̇
. 

 
For any 휐, 휈 ∈ ℝ , |휐+̇휈| ≤̇ |휐| +̇|휈| . For 휐 ∈ ℝ , 휐 =  훼{[훼 (휐)] }  and √휐 =
훼 훼 (휐) . The closed 훼 -interval on ℝ  is represented by 
 

[̇휐, 휈]̇ = {푥 ∈  ℝ | 휐 ≤̇ 푥 ≤̇ 휈}    = {푥 ∈  ℝ | 훼 (휐) ≤̇ 훼 (푥) ≤̇ 훼 (휈)} 
                         = 훼([훼 (휐), 훼 (휈)]). 
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The ∗-calculus is defined using two arbitrarily chosen generators. Let 훼 and 훽 be any generators 
and ∗ denote the ordered pair of arithmetics (훼-arithmetic, 훽 -arithmetic). Table 1 provides the 
notations used. 

 
                             Table 1.  Notations of 훼-arithmetic and 훽-arithmetic 

 
 훼- Arithmetic 훽-Arithmetic 

Realm 퐶(= ℝ ) 퐷 = ℝ  
Summation +̇ +̈ 
Subtraction −̇ −̈ 
Multiplication ×̇ ×̈ 
Division /( or −훼) /̈( or −훽) 
Order <̇ <̈ 

 

In the ∗-calculus, 훼 -arithmetic is used for arguments and 훽 -arithmetic is used for values. The 
special calculuses, which are obtained by choosing one of identity function (퐼) and exponential 
function (exp) as  the generators 훼 and 훽, are given in Table 2. 
 

Table 2.  Special calculuses for generators 훼 and 훽 
 

Calculus 훼 훽 
Classical 퐼 퐼 
Geometric 퐼 exp 
Anageometric exp 퐼 
Bigeometric exp exp. 

 
The isomorphism 휄 (iota) from 훼 -arithmetic to 훽 -arithmetic uniquely possesses the following 
characteristics: 

(1) 휄 is one to one; 
(2) 휄 is on 퐶 and onto 퐷; 
(3)  휄(휐+̇휈) = 휄(휐)+̈휄(휈) 

 휄(휐−̇휈) = 휄(휐)−̈휄(휈) 
 휄(휐 ×̇ 휈) = 휄(휐) ×̈ 휄(휈) 
 휄 휐/̇휈 = 휄(휐)/̈휄(휈), 휈 ≠ 0̇ 

               휐 <̇ 휈 ⇔  휄(휐) <̈ 휄(휈) 
for any 휐,휈 ∈ 퐶 . It appears that 휄(휐) = 훽{훼⁻¹(휐)} for all 휐 ∈ 퐶  and 휄(푛̇) = 푛̈  for every integer 푛 
[12]. 
 
Definition 1 [12, 25].  Let 푓: 푋 ⊂ ℝ → ℝ  be a function and 푝 ∈ 푋′, 푚 ∈ ℝ . If for every 휀 >̈ 0̈ 
there is 훿 = 훿(휀) >̇ 0̇ such that |푓(푡)−̈푚| <̈  휀 for all 푡 ∈ 푋 whenever 0̇ <̇ |푡−̇푝| <̇ 훿, then it is 
called that the ∗-limit of function 푓 at 푝 is 푚 and it is expressed as ∗ lim

→
 푓(푡) = 푚. 

 
Definition 2 [25]. Let 푓: 푋 ⊂ ℝ → ℝ  be a function and 푝 ∈ 푋 . If for every 휀 >̈ 0̈  there is             
훿 = 훿(휀) >̇ 0̇ such that |푓(푡)−̈푓(푝)| <̈  휀 for all 푡 ∈ 푋 whenever |푡−̇푝| <̇ 훿, then it is said that 
푓 is ∗-continuous at the point 푝 ∈ 푋. 
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Definition 3 [12].  If ∗ lim
→

( ) ̈ ( )
( ) ̈ ( )

훽  occurs, it is described by (퐷∗푓)(푝) = 푓∗(푝) and is called the 

∗-derivative of 푓 at 푝 and that 푓 is ∗- differentiable at 푝. (퐷∗푓)(푝) = 푓∗(푝) is necessarily in 퐷 if it 
exists. 
 
Definition 4 [12]. The ∗-average of a ∗-continuous function 푓 on [̇휐, 휈]̇  is described by 푀∗  and 
defined to be the 훽 -limit of the 훽 -convergent sequence whose 푛  term is 훽 -average of 
푓(푢 ), 푓(푢 ), … , 푓(푢 ) where 푢 , 푢 , … , 푢  is the 푛-fold 훼-partition of  [̇휐, 휈]̇. The ∗-integral of a    
∗ -continuous function 푓  on [̇휐, 휈]̇  is denoted by ∗ ∫ 푓(푡)푑∗푡 , which is the number 
[휄(휈)−̈휄(휐)] ×̈ 푀∗  in 퐷. 
 
Remark 1 [12].  Let 푝̅ = 훼 (푝) for 푝 ∈ 퐶. Let 푓(̅푧) = 훽 (푓(훼(푧))) where 푓 is a function whose 
inputs and outputs are in 퐶 and 퐷 respectively. Then the following relationships hold: 

(1) The limits ∗ lim
→

 푓(푡) and  lim
→ ̅

 푓(̅푧) coexist and if they do exist, ∗ lim
→

 푓(푡) = 훽 lim
→ ̅

 푓(̅푧) . 

Furthermore, 푓 is ∗-continuous at 푝 if and only if 푓 ̅is continuous at 푝̅. 
(2) The derivatives (퐷푓)(푝)  and (퐷∗푓)(푝̅)  coexist and if they do exist, (퐷∗푓)(푝) =

훽[(퐷푓)̅(푝̅)]. 
(3) If 푓 is ∗-continuous on [̇푝, 푞]̇, then 푀∗ 푓 = 훽 푀 푓̅  and ∗ ∫ 푓(푡)푑∗푡 = 훽 ∫  ̅ 푓(̅푧)푑푧 . 

 
Definition 5 [26].  Let the function 푓: [̇휐, +̇∞)̇ ⊂ ℝ → ℝ  be ∗-continuous on 훼-interval [̇휐, 휈]̇ for 
each 휐 ≤̇ 휈 . The ∗-limit ∗ lim

→ ̇
  ∗ ∫   푓(푡)푑∗푡  is called improper ∗-integral of the function 푓  on 

[̇휐, +̇∞)̇ and it is denoted by ∗ ∫  
̇

푓(푡)푑∗푡. If the ∗ lim
→ ̇

  ∗ ∫   푓(푡)푑∗푡 exists and is equal to a 

number 퐸 ∈ ℝ , then it is said that the improper ∗-integral ∗ ∫  
̇

푓(푡)푑∗푡 is ∗-convergent. 
 
Definition 6 [8].  If there exist 훽-constant 휇 >̈ 0̈ and 훼-constant 훾 such that 

|푓(푡)| ≤̈ 휇 ×̈ 푒̈ ( ×̇ )  
for all 푡 ≥̇ 푡  with 푡 ≥̇ 0̇, then it is said that 푓 is a function of 훽-exponential order 훾. 
 
Definition 7 [8].  A function 푓  is jump ∗-discontinuity at a point 푡  if the right-hand ∗-limit                       
∗ lim →  푓(푡) and the left-hand ∗-limit ∗ lim →  푓(푡) exist but are not equal. 
 
Definition 8 [8]. A function 푓  is piecewise (sectionally) ∗-continuous in the closed 훼 -interval 
푎 ≤̇ 푡 ≤̇ 푏 if there is a finite subinterval [̇푎, 푡 ]̇, [̇푡 , 푡 ]̇, … , [̇푡 , 푏]̇ such that 푓 is ∗-continuous on 
each open 훼 -interval (̇푡 , 푡 )̇  with 푡 = 푎, 푡 = 푏 , 푖 = 1, … , 푛  and has the one-sided ∗ -limits         
∗ lim →  푓(푡) and ∗ lim →  푓(푡). 

 
In this study, motivated by the extensive applications of both the non-Newtonian calculus 

and the integral transforms, the non-Newtonian Sumudu transform is established as a new 
contribution to the literature. The non-Newtonian version of some important properties of the 
Sumudu transform is obtained. The acquired results are utilised in the determination of solutions of 
non-Newtonian differential equations, supported by numerical illustration. Hereupon, solutions of 
some differential equations are found, thank to the relationship between non-Newtonian calculus 
and classical calculus. The results of the non-Newtonian exponential growth model and Gompertz 
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model, which are frequently used in population growth models, are investigated with the aid of the 
non-Newtonian Sumudu transform.  
 
NON-NEWTONIAN SUMUDU TRANSFORM  
 

Introducing the Sumudu transform from a non-Newtonian perspective, this section provides 
a fresh viewpoint on the idea of integral transform and a basic explanation of the theory behind the 
non-Newtonian Sumudu transform.  
 
Definition 9.  Let 풜 be a function set defined by   

풜 = 푓(푡): ∃푀 >̈ 0̈, 휏 , 휏 >̇ 0̇, |푓(푡)| <̈ 푀 ×̈ 푒̈
(| | )/

, 푡 ∈ 0̇−̇1̇ × [̇0̇, +̇∞)̇  , 

where 푀 is a 훽-constant and 휏 , 휏  are finite 훼-constants or infinite. For a given function in the set 
풜, the non-Newtonian Sumudu integral transform is defined as  
 

푆 {푓(푡)} = 퐹 (휐) =∗
1̈

휄(휐) 훽 ×̈ 푒̈
( )

( )

̇

̇

×̈ 푓(푡)푑∗푡                                   (1) 

for 휐 ∈ (̇−̇휏 , 휏 )̇. The equation is also given as 
 

푆 {푓(푡)} =∗ 푒̈
( )

̇

̇

×̈ 푓(휐 ×̇ 푡)푑∗푡.                                               (2) 

 
Remark 2.  For 푐, 푡 ∈ 퐶 , let 푐̅ = 훼 (푐), 휐̅ = 훼 (휐). Let 푓(̅푧) = 훽 푓 훼(푧) , where 푓  is a 

function with inputs in 퐶 and outputs in 퐷. Then the relationship between the classical Sumudu 
transform and non-Newtonian Sumudu transform occurs as follows: 
 

푆 {푓(푡)} =∗
1̈

휄(휐) 훽 ×̈ 푒̈
( )

( )

̇

̇

×̈ 푓(푡)푑∗푡 

                                                                  =∗ lim
→ ̇

∗ 훽
1

훼 (휐) ∙ 푒
( )

( ) ∙ 훽 푓(푡)
̇

푑∗푡 

                                                                  =∗ lim
→ ̇

훽
1

훼 (휐) ∙ 푒 ( )

( )

∙ 훽 푓 훼(푧) 푑푧  

                                                                  = 훽 lim
̅→

1
휐̅ ∙ 푒 ∙

̅

푓(̅푧)푑푧  

                                                                  = 훽 푆 푓(̅푧)  

                                                                   = 훽 푆 훽 푓 훼(푧) . 
 

Hence we get the expression 푆 {푓(푡)} =  훽 푆 푓(̅푧) =  훽 푆 훽 푓 훼(푧) . 
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Example 1.  The non-Newtonian Sumudu transform of the function 푓(푡) = 휄(푡) can be found as 
follows: 

푆 {휄(푡)} =
1̈

휄(휐) 훽 ×̈∗ 푒̈
( )

( ) ×̈
̇

̇
휄(푡)푑∗푡 

                =
1̈

휄(휐) 훽 ×̈∗ 푒̈
( )

( ) ×̈
̇

̇
훽 훼 (푡) 푑∗푡 

               =
1̈

휄(휐) 훽 ×̈∗ 훽 푒
( )

( ) . 훼 (푡)
̇

̇
푑∗푡 

               =
1̈

휄(휐) 훽 ×̈∗ lim
→ ̇

∗ 훽 푒
( )

( ) . 훼 (푡)
̇

푑∗푡  

               =
1̈

휄(휐) 훽 ×̈∗ lim
→ ̇

훽 훽 훽 푒
( )

( ) . 훼 훼(푧)
( )

( ̇ )
푑푧  

               =
1̈

휄(휐) 훽 ×̈∗ lim
→ ̇

훽 푒 ( )
( )

. 푧 푑푧  

               =
1̈

휄(휐) 훽 ×̈∗ lim
→ ̇

훽 −훼 (휐). 푒 ( ) . 푧
( )

+ 훼 (휐). 푒 ( )
( )

푑푧  

               =
1̈

휄(휐) 훽 ×̈∗ lim
→ ̇

훽 −훼 (휐). 푒
( )

( ) . 훼 (푐) − 훼 (휐) . 푒 ( )
( )

 

               =
1̈

휄(휐) 훽 ×̈∗ lim
→ ̇

훽 −훼 (휐). 푒
( )

( ) . 훼 (푐) − 훼 (휐) . 푒
( )

( ) + 훼 (휐)  

               =
1̈

휄(휐) 훽 ×̈∗ lim
→ ̇

−̈푒̈
( )

( ) ×̈ 휄(푐) ×̈ 휄(휐)−̈ 휄(휐) ×̈ 푒̈
( )

( ) +̈휄(휐)  

               =
1̈

휄(휐) 훽 ×̈ (휄(휐) ) = 1̈! ×̈ 휄(휐). 
 
We can generalise this result by using induction as  
 

푆 휄(푡)( ) = 푚̈! ×̈ 휄(휐)( )  (푚 ∈ ℕ). 
 
Table 3 presents the outcomes of calculating non-Newtonian Sumudu transforms of various 

basis functions using the provided definition.  
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            Table 3. Non-Newtonian Sumudu transform of some elementary functions 
 

풇(풕) 푺푵[풇(풕)] = 푭푵(흊) 
1̈ 1̈ 

휄(푡) 휄(휐) 
휄(푡)( ) , 푚 ∈ ℤ  푚̈! ×̈ 휄(휐)( )  

푒̈
( ×̇ )

, 
̇
훼 >̇ 푘, 푘 ∈ ℝ  1̈

1̈−̈휄(푘) ×̈ 휄(휐)
훽 

휄(푡) ×̈ 푒̈
( ×̇ )

 
휄(휐)

1̈−̈휄(푘) ×̈ 휄(휐)
훽 

 
∗ sin(푘 ×̇ 푡) 

휄(푘) ×̈ 휄(휐)

1̈+̈ 휄(푘) ×̈ 휄(휐)
훽 , 휐 >̇ 0̇ 

 
∗ cos(푘 ×̇ 푡) 

1̈

1̈+̈ 휄(푘) ×̈ 휄(휐)
훽 , 휐 >̇ 0̇. 

   
  Note:  ∗ sin 푡 = 훽 sin 훼 (푡)  and ∗ cos 푡 = 훽 cos 훼 (푡)  

 
Theorem 1 (Existence of non-Newtonian Sumudu transform).  The non-Newtonian Sumudu 
transform 푆 {푓(푡)} exists for  

̇
훼 >̇ 훾 and ∗-converges 훽-absolutely if 푓 is piecewise ∗-continuous 

on [0̇, +̇∞) and of 훽-exponential order 훾. 
 
Proof.  We can write  

1̈
휄(휐) 훽 ×̈∗ 푒̈

( )
( ) ×̈

̇

̇
푓(푡)푑∗푡 

=
1̈

휄(휐) 훽 ×̈ ∗ 푒̈
( )

( ) ×̈
̇

푓(푡)푑∗푡+̈
1̈

휄(휐) 훽 ×̈ ∗ 푒̈
( )

( ) ×̈
̇

푓(푡)푑∗푡.                      (3) 
 
The function 푓 is ∗-continuous on 훼-interval (̇0̇, 푡 )̇ except possibly at a finite number of points 
푡 , 푡 , … , 푡  in (̇0̇, 푡 )̇ because 푓 is piecewise ∗-continuous on [̇0̇, 푡 ]̇. Hence we can write 
 

|푓(푡)| ≤̈ 푀 , 푡 <̇ 푡 <̇ 푡  (푖 = 1,2, … , 푛 − 1) 
 
for finite 훽-constants 푀 . To integrate the piecewise ∗-continuous function from 0̇ to 푡 , the 훽-sum 
of the ∗-integrals over each of the 훼-subintervals of 푓 is taken, that is 
 

          ∗ 푒̈
( )

( ) ×̈
̇

푓(푡)푑∗푡 =∗ 푒̈
( )

( ) ×̈
̇

푓(푡)푑∗푡 

                                                             +̈ ∗ 푒̈
( )

( ) ×̈ 푓(푡)푑∗푡+̈ … +̈  ∗ 푒̈
( )

( ) ×̈ 푓(푡)푑∗푡. 
 
Given that the function 푓 is ∗-continuous and 훽-bounded on every 훼-subinterval, it can be inferred 
that each ∗-integral is well-defined. Hence the first integral on the right of (3) exists. 

Since 푓 has 훽-exponential order 훾, there exist 훽-constant 푀 >̈ 0̈ and 훼-constant 훾 such that  
|푓(푡)| ≤̈ 푀 ×̈ 푒̈

( ) ( )
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for all 푡 >̇ 푡 .  Thus, we obtain  
 

∗ 푒̈
( )

( ) ×̈
̇

푓(푡)푑∗푡 ≤̈ ∗ 푒̈
( )

( ) ×̈
̇

|푓(푡)| 푑∗푡 

≤̈ ∗ 푒̈
( )

( ) ×̈
̇

푀 ×̈ 푒̈
( ) ( )

푑∗푡 

=∗ 푀 ×̈ 푒̈
( ). ( ) ( )

푑∗푡
̇

 

= 푀 ×̈∗ lim
→ ̇

∗ 푒̈
( ). ( ) ( )

푑∗푡 

= 푀 ×̈∗ lim
→ ̇

훽 훽 훽 푒
( ) . ( ) ( )

푑푡
( )

( )
 

= 푀 ×̈∗ lim
→ ̇

훽 푒
. ( ) ( )

푑푡
( )

( )
 

= 푀 ×̈∗ lim
→ ̇

훽
−훼 (휐)

1 − 훼 (휐)훼 (훾)  ∙ 푒
( ). ( ) ( )

− 푒
( ). ( ) ( )

 

= 푀 ×̈∗ lim
→ ̇

−̈휄(휐)
1̈−̈휄(휐) ×̈ 휄(훾)

훽 ×̈ 푒̈
( ). ( ) ( )

 −̈ 푒̈
( ). ( ) ( )

⎠

⎟
⎞

 

= 푀 ×̈
휄(휐)

1̈−̈휄(휐) ×̈ 휄(훾)
훽 ×̈ 푒̈

( ). ( ) ( )

. 

Also, the second integral on the right exists for 
̇
훼 >̇ 훾 . Therefore, the argument is proven. 

 
Theorem 2 (Non-Newtonian linearity property).  If 푓  and 푓  are two ℝ -valued functions whose 
non-Newtonian Sumudu transform exists, then 
 

푆 {휆 ×̈ 푓 (푡)+̈휆 ×̈ 푓 (푡)} = 휆 ×̈ 푆 {푓 (푡)}+̈휆 ×̈ 푆 {푓 (푡)}  
where 휆  and 휆  are arbitrary 훽-constants. 
 
Proof.  Suppose that 

|푓 (푡)| ≤̈ 푀 ×̈ 푒̈
( ) ( )

 

|푓 (푡)| ≤̈ 푀 ×̈ 푒̈
( ) ( )

. 
Hence we can write 

|휆 ×̈ 푓 (푡)+̈휆 ×̈ 푓 (푡)| ≤̈ (휆 ×̈ 푀 +̈휆 ×̈ 푀 ) ×̈ 푒̈
( ) ( )

, 
 
which implies that the non-Newtonian Sumudu transform of the function 휆 ×̈ 푓 (푡)+̈휆 ×̈ 푓 (푡) 
exists. By employing 훽-additive and 훽-homogeneous properties of improper ∗-integral, we obtain 
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푆 {휆 ×̈ 푓 (푡)+̈휆 ×̈ 푓 (푡)} =
1̈

휄(휐) 훽 ×̈∗ 푒̈
( )

( ) ×̈ 휆 ×̈ 푓 (푡)+̈휆 ×̈ 푓 (푡) 푑∗푡

̇

̇

 

= 휆 ×̈
1̈

휄(휐) 훽 ×̈∗ 푒̈
( )

( )
̇

̇
×̈ 푓 (푡)푑∗푡+̈휆 ×̈

1̈
휄(휐) 훽 ×̈∗ 푒̈

( )
( )

̇

̇
×̈ 푓 (푡)푑∗푡 

               = 휆 ×̈ 푆 {푓 (푡)}+̈휆 ×̈ 푆 {푓 (푡)}, 
 
which completes the proof. 
 
Theorem 3 (Non-Newtonian first translation theorem).  If 푆 {푓(푡)} = 퐹 (휐) exists for 

̇
훼 >̇ 훾, 

then 

푆 푒̈
( ×̇ )

×̈ 푓(푡) =
1̈

1̈−̈휄(푘) ×̈ 휄(휐)
훽 ×̈ 퐹

휐
1̇−̇푘 ×̇ 휐

훼  
 
for any 훼-constant 푘. 
 
Proof.  Considering the definition of the non-Newtonian Sumudu transform in equation (2), we find 

푆 푒̈ ( ×̇ ) ×̈ 푓(푡) =∗ 푒̈ ( )
̇

̇
×̈ 푒̈ ( ×̇ ×̇ ) ×̈ 푓(휐 ×̇ 푡)푑∗푡 

                                    =∗ 훽 푒 ( ) . ( ). ( )
̇

̇
×̈ 푓(휐 ×̇ 푡)푑∗푡 

                                    =∗ lim
→ ̇

∗ 훽 푒 ( ) . ( ). ( )

̇
×̈ 푓(휐 ×̇ 푡)푑∗푡 

                                    =∗ lim
→ ̇

훽 훽 훽 푒( ) ( ) ( )
( )

. 훽 푓 훼(훼 (휐). 푡) 푑푡  

for 
̇
훼 >̇ 훾.  If it is taken as 푡[1 − 훼 (푘)훼 (휐)] = 푤, then we find 

      푆 푒̈ ( ×̇ ) ×̈ 푓(푡)  

= ∗ lim
→ ̇

훽 푒
( ). ( ) ( )

∙  훽 푓 훼
훼 (휐)

1 − 훼 (푘)훼 (휐) . 푤  ∙  
푑푤

1 − 훼 (푘)훼 (휐)  

= ∗ lim
→ ̇

훽
1

1 − 훼 (푘)훼 (휐) 푒
( ). ( ) ( )

∙ 훽 푓 훼
훼 (휐)

1 − 훼 (푘)훼 (휐)  푤 푑푤  

=
1̈

1̈−̈휄(푘) ×̈ 휄(휐)
훽 ×̈∗ lim

→ ̇
∗ 푒̈

( )×̇[ ̇ ̇ ×̇ ]

̇
×̈ 푓

휐
1̇−̇푘 ×̇ 휐

훼 ×̇ 푤 푑∗푤 

=
1̈

1̈−̈휄(푘) ×̈ 휄(휐)
훽 ×̈ 퐹

휐
1̇−̇푘 ×̇ 휐

훼 . 

 
Theorem 4 (Non-Newtonian second translation theorem). If 푆 {푓(푡)} = 퐹 (휐)  and               

ℎ(푡) =  0̈ , 0̇ <̇ 푡 <̇ 푘 
푓(푡−̇푘)    , 푡 >̇ 푘, then 푆 {ℎ(푡)} = 푒̈

( )
( ) ×̈ 퐹 (휐). 

 
Proof. Using the definition of non-Newtonian Sumudu transform in equation (1), it is 
straightforward to observe that 
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                                    푆 {ℎ(푡)} =
1̈

휄(휐) 훽 ×̈∗ 푒̈
( )

( ) ×̈ ℎ(푡)푑∗푡

̇

̇

 

                                                     =
1̈

휄(휐) 훽 ×̈∗ 푒̈
( )

( ) ×̈ 푓(푡−̇푘)푑∗푡

̇

 

                                                     =
1̈

휄(휐) 훽 ×̈∗ lim
→ ̇

∗ 푒̈
( )

( ) ×̈ 푓(푡−̇푘)푑∗푡  

=
1̈

휄(휐) 훽 ×̈∗ lim
→ ̇

훽 푒 ( ). 훽 푓 훼 푡 − 훼 (푘) 푑푡

( )

( )

 . 

 
If we substitute  푡 − 훼 (푘) = 푤, then we find   
 

                         푆 {ℎ(푡)} =
1̈

휄(휐) 훽 ×̈∗ lim
→ ̇

훽 푒
( )

( ) . 훽 푓 훼(푤) 푑푤

( ) ( )

 

                   =
1̈

휄(휐) 훽 ×̈∗ lim
→ ̇

훽 푒
( )

( ) . 푒
 ( )

( ) ( )

. 훽 푓 훼(푤) 푑푤  

                                         = 푒̈
( )

( ) ×̈
1̈

휄(휐) 훽 ×̈∗ lim
→ ̇

∗ 푒̈
( )

( )
̇

̇

×̈ 푓(푤)푑∗푤  

                                         = 푒̈
( )

( ) ×̈ 퐹 (휐) , 
 
which ends the proof. 
 
Theorem 5 (Non-Newtonian derivative theorem).  If 푓(푡) is ∗-continuous on [̇0̇, +̇∞)̇ and of       
훽-exponential order 훾, and also 푓∗(푡) is piecewise ∗-continuous on [̇0̇, +̇∞)̇, then 
 

푆 {푓∗(푡)} =
푆 {푓(푡)}−̈푓 0̇

휄(휐)  훽 

for  
̇
훼 >̇ 훾. 

 
Proof.  By definition of non-Newtonian Sumudu transform, one gets 
 

푆 {푓∗(푡)} =
1̈

휄(휐) 훽 ×̈∗ 푒̈
( )

( ) ×̈
̇

̇
푓∗(푡)푑∗푡 

                                                                 =
1̈

휄(휐) 훽 ×̈∗ lim
→ ̇

∗ 푒̈
( )

( ) ×̈ 푓∗(푡)푑∗푡
̇

 

                                                                 =
1̈

휄(휐) 훽 ×̈∗ lim
→ ̇

훽 푒 ( ). 훽 푓∗ 훼(푡) 푑푡

( )

. 
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From the relationship between classical calculus and non-Newtonian calculus, it can be seen that 
훽 푓∗ 훼(푡) = (훽 푓훼) (푡). Consequently, by using partial integration method, the following 
expression is derived:  

푒 ( ). 훽 푓∗ 훼(푡) 푑푡

( )

= 푒 ( ). (훽 푓훼) (푡)푑푡

( )

 

                                       = 푒 ( ) . (훽 푓훼)(푡)
( )

+
1

훼 (휐) . 푒 ( ) . (훽 푓훼)(푡)푑푡

( )

 

= 푒
( )

( ) . 훽 푓(푐) − 훽 푓 훼(0) +
1

훼 (휐) . 푒 ( ). (훽 푓훼)(푡)푑푡.

( )

 

As a consequence, we obtain 
 

푆 {푓∗(푡)} =
1̈

휄(휐) 훽 ×̈∗ lim
→ ̇

훽 푒
( )
( ). 훽 푓(푐) − 훽 푓 0̇ +

1
훼 (휐) . 푒 ( ). (훽 푓훼)(푡)푑푡

( )

 

=
1̈

휄(휐) 훽 ×̈∗ lim
→ ̇

푒̈
( )

( ) ×̈ 푓(푐)−̈푓 0̇ +̈
1̈

휄(휐) 훽 ×̈ 훽 푒 ( ). (훽 푓훼)(푡)푑푡

( )

 

=
1̈

휄(휐) 훽 ×̈ ∗ lim
→ ̇

푒̈
( )

( ) ×̈ 푓(푐) −̈
1̈

휄(휐) 훽 ×̈ 푓 0̇  

   +̈
1̈

휄(휐) 훽 ×̈
1̈

휄(휐) 훽 ×̈∗ lim
→ ̇

푒̈
( )

( ) ×̈ 푓(푡)푑∗푡
̇

 . 

 
Since 푓 is of 훽-exponential order 훾, then there is 훽-constant 휇 >̈ 0̈ and 훼-constant 훾 such that 
 

|푓(푡)| ≤̈ 푀 ×̈ 푒̈
( ×̇ )

. 
Hence one obtains 

푒̈
( )

( ) ×̈ 푓(푐) ≤̈ 푀 ×̈ 푒̈
( ). ( ) ( )

( )  

                                                                                    = 푀 ×̈ 푒̈
( ) ( ) ( ) . 

 

Since ∗ lim
→ ̇

푒̈
( )
( ) ×̈ 푓(푐) = 0̈ for 

̇
훼 >̇ 훾,  we find 

푆 {푓∗(푡)} =
1̈

휄(휐) 훽 ×̈ ∗ lim
→ ̇

푒̈
( )

( ) ×̈ 푓(푐) −̈
1̈

휄(휐) 훽 ×̈ 푓 0̇  

                                                    +̈
1̈

휄(휐) 훽 ×̈
1̈

휄(휐) 훽 ×̈∗ lim
→ ̇

푒̈
( )

( ) ×̈ 푓(푡)푑∗푡
̇

 

                                                     =
1̈

휄(휐) 훽 ×̈ 0̈−̈
1̈

휄(휐) 훽 ×̈ 푓 0̇ +̈
1̈

휄(휐) 훽 ×̈ 푆 {푓(푡)} 



 
Maejo Int. J. Sci. Technol. 2024, 18(02), 130-145  
 

 

141

                                                     =
1̈

휄(휐) 훽 ×̈ 푆 {푓(푡)}−̈푓 0̇  

as desired. 
 
In the general situation, the following outcome is obtained. 

 
Corollary 1. Supposing that 푓(푡), 푓∗(푡), ⋯ , 푓∗( )(푡)  are ∗ -continuous functions on the               
훼 -interval [̇0̇, +̇∞)̇  and possess 훽 -exponential order 훾  and further assuming that  푓∗( )(푡)  is 
piecewise ∗-continuous on [̇0̇, +̇∞)̇, then it is concluded that 
 

푆 푓∗( )(푡) =
푆 {푓(푡)}

휄 (휐)  훽−̈
푓 0̇

휄 (휐) 훽−̈
푓∗ 0̇

휄( ) (휐)
훽−̈ … −̈

푓∗( ) 0̇
휄(휐) 훽 

for 
̇
훼 >̇ 훾.  

 
Definition 10.  If 푆 {푓(푡)} = 퐹 (휐), then the inverse non-Newtonian Sumudu transform is defined   
by 푆 {퐹 (휐)} = 푓(푡). 
 
Theorem 6.  The inverse non-Newtonian Sumudu transform is linear, i.e.  
 

푆 휆 ×̈ 퐹 (휐)+̈휆 ×̈ 퐹 (휐) = 휆 ×̈ 푆 퐹 (휐) +̈휆 ×̈ 푆 퐹 (휐)  
 
where 휆  and 휆  are arbitrary 훽-constants. 
 
Proof. Let 푓 (푡)  and 푓 (푡)  be some functions such that 푆 {푓 (푡)} = 퐹 (휐)  and 푆 {푓 (푡)} =
퐹 (휐). Since non-Newtonian Sumudu transform is linear, we have  
 

푆 {휆 ×̈ 푓 (푡)+̈휆 ×̈ 푓 (푡)} = 휆 ×̈ 푆 {푓 (푡)}+̈휆 ×̈ 푆 {푓 (푡)} = 휆 ×̈ 퐹 (휐)+̈휆 ×̈ 퐹 (휐). 
 
Applying the inverse non-Newtonian Sumudu transform to this expression gives 
 

휆 ×̈ 푓 (푡)+̈휆 ×̈ 푓 (푡) = 푆 휆 ×̈ 퐹 (휐)+̈휆 ×̈ 퐹 (휐)  
which is the equivalent to  
 

푆 휆 ×̈ 퐹 (휐)+̈휆 ×̈ 퐹 (휐) = 휆 ×̈ 푆 퐹 (휐) +̈휆 ×̈ 푆 퐹 (휐) . 
 
This demonstrates the linearity of the inverse non-Newtonian Sumudu transform. 
 
Application to Ordinary Non-Newtonian Differential Equations 
 

The non-Newtonian Sumudu transform approach may be used to solve linear non-
Newtonian differential equations with 훽-coefficients. It effectively converts the problem of solving 
non-Newtonian differential equations into an algebraic problem. We shall now provide an example.  
 
Example 2.  Consider the second-order non-Newtonian differential equation 
 

푦∗∗(푡)+̈푦(푡) = 휄(푡)                                                                             (4)  
with 푦 0̇ = 1̈, 푦∗ 0̇ = 0̈. By applying the non-Newtonian Sumudu transform to either side of 
equation (4), we obtain 

푆 {푦∗∗(푡)+̈푦(푡)} = 푆 {휄(푡)} 
푆 {푦∗∗(푡)}+̈푆 {푦(푡)} = 푆 {휄(푡)} 

푆 {푦(푡)}
휄 (휐) 훽−̈

푦 0̇
휄 (휐) 훽−̈

푦∗ 0̇
휄(휐) 훽 +̈푆 {푦(푡)} = 휄(휐)  
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푆 {푦(푡)} ×̈ 1̈+̈
1̈

휄 (휐) 훽 = 휄(휐)+̈
1̈

휄 (휐) 훽. 
 
If we adjust the equation based on the variable 푆 {푦(푡)}, we have 
 

푆 {푦(푡)} =
휄 (휐)+̈1̈
휄 (휐)+̈1̈

 훽 

                                                                                      = 휄(휐)+̈
1̈−̈휄(휐)

휄 (휐)+̈1̈
훽 

                                                                                      = 휄(휐)+̈
1̈

휄 (휐)+̈1̈
훽−̈

휄(휐)
휄 (휐)+̈1̈

훽. 

The solution is obtained as 
푦(푡) = 휄(푡)+̈ ∗ cos(푡) −̈ ∗ sin(푡) 

 
by applying the inverse transform. 

Especially, when the non-Newtonian differential equation (4) is considered in the sense of 
geometric calculus, the equivalent geometric differential equation problem for 훼 = 퐼, 훽 = exp is 
equal to 

푦 (푡). 푦(푡) − 푦 (푡) + 푦(푡) 푦 (푡) − 푡푦 (푡) = 0, 푦(0) = 푒, 푦 (0) = 푒, 
 
and the solution is 푦(푡) = 푒 . 

Particularly, by choosing the generators 훼 = exp , 훽 = exp , we obtain the equivalent 
bigeometric differential equation problem of (4) as follows: 

 
푡. 푦(푡)푦 (푡) + 푡 . 푦(푡)푦 (푡) − 푡 . 푦 (푡) + 푦(푡) . (ln 푦(푡) − ln 푡) = 0, 푦(1) = 푒, 푦 (1) = 0 
 
and the solution is 푦(푡) = 푡. 푒( ). 
 
Application to Growth Models 
 

Thomas Malthus introduced one of the earliest mathematical models illustrating the dynamic 
change of populations. The Malthusian model posits that the rate of population growth in a country 
is directly proportional to its total population, denoted as 푊(푡), at any given time 푡. This concept is 
commonly used to explain how the more people there are at any given time, the more there will be 
in the future. In mathematical terms, this assumption can be expressed such that 휅 is a constant of 
proportionality. In classical calculus, the mathematical representation of this model is described as 

( ) = 휅푊(푡) [27]. Güngör [18] generalised this model in the non-Newtonian sense, and called it 
the non-Newtonian exponential growth model, which is expressed by  

 
푑∗푊
푑푡∗ = 휅 ×̈ 푊(푡)                                                                        (5) 

 
with inital condition 푊(0̇) = 푊 , where 푊  represents the population size at time 푡  and 휅  is a             
훽-positive number. Taking into account the non-Newtonian differential equation, then 
 

푊∗(푡) = 휅 ×̈ 푊(푡)
푊(0̇) = 푊 . 

 
From here, we use the non-Newtonian Sumudu transform to calculate the population size at time 푡 
in the context of non-Newtonian calculus. We obtain 
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푆
푑∗푊
푑푡∗ = 휅 ×̈ 푆 {푊(푡)} 

 
by taking the non-Newtonian Sumudu transform to both sides of (5). Benefiting from the property 
of the non-Newtonian Sumudu of ∗-derivative, we get 
 

푆 {푊(푡)}−̈푊(0̇)
휄(휐) 훽 = 휅 ×̈ 푆 {푊(푡)} 

푆 {푊(푡)}−̈푊 0̇ = 휅 ×̈ 휄(휐) ×̈ 푆 {푊(푡)} 
1̈−̈휅 ×̈ 휄(휐) ×̈ 푆 {푊(푡)} = 푊  

푆 {푊(푡)} =
푊

1̈−̈휅 ×̈ 휄(휐)
훽.                                                            (6) 

 
Applying inverse non-Newtonian Sumudu transform on either side of (6), we get 
 

푊(푡) = 푆
푊

1̈−̈휅 ×̈ 휄(휐)
훽  

                                                                            = 푊 ×̈ 푆
1̈

1̈−̈휅 ×̈ 휄(휐)
훽  

                                                                            = 푊 ×̈ 푒̈ ( ) ( ) , 
 
which is the required amount of the population at time 푡. 

The Gompertz model is among the most prevalent models of population growth. Adapted 
applications of this model include plant growth, the growth of some animals, tumour growth and 
bacterial growth. The mathematical expression for this model is denoted by the differential 
equation: 

푑푊(푡)
푑푡 = 휇푊(푡) ln

휅
푊(푡),                                                             (7) 

 
where 푊(푡) represents the population size at time 푡, 휇  is the growth rate and 휅  is the carrying 
capacity [28]. To solve equation (7) using the non-Newtonian Sumudu transform, we shall use the 
connection between classical calculus and non-Newtonian calculus. By setting 훼 = 퐼 and 훽 = exp 

in the definition of the ∗-derivative, we get 푊∗(푡) = 푒
( )

( )  in geometric calculus. Thus, we may 
express equation (7) as 

푊∗(푡) = exp ln 
휅

푊(푡) .  

Therefore, we can represent this equation as 
 

푊∗(푡) = 휅 ⊕ 푒 ⊙ 푊(푡)                                                            (8) 
 
in the sense of geometric calculus. In particular, if we apply the geometric calculus version of the 
non-Newtonian Sumudu transform to either side of (8), we get 
 

푆 {푊∗(푡)} = 푆 {휅 ⊕ 푒 ⊙ 푊(푡)} 
(푆 {푊(푡)} ⊖ 푊(0)) ⊘ 푒 = 휅 ⊕ 푒 ⊙ 푆 {푊(푡)} 

푒 ⊖ (푒 ⊙ 푒 ) ⊙ 푆 {푊(푡)} = 휅 ⊙ 푒 ⊕ 푊(0). 
Thus, we obtain 

푆 {푊(푡)} = 푊(0) ⊘ 푒 ⊖ (푒 ⊙ 푒 ) ⊕
(휅 ⊙ 푒 )

푒 ⊖ (푒 ⊙ 푒 )
.                     (9) 
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Using the inverse non-Newtonian Sumudu transform on either side of (9) yields 
 

푊(푡) = 푆 푊(0) ⊘ 푒 ⊖ (푒 ⊙ 푒 ) ⊕ 푆 {휅} ⊖ 푆 휅 ⊘ 푒 ⊖ (푒 ⊙ 푒 )  
                        = 푊(0) ⊙ 푒 ⊕ 휅 ⊙ 푒 ⊖ 휅 

                        = 휅 ⋅ 푒
( )

. 
 
As a result, we get the solution to equation (7). 
 
CONCLUSIONS   
 

The definition of the Sumudu transform has been generalised to non-Newtonian calculus 
through the use of *-integral. The relationship between the classical Sumudu transform and non-
Newtonian Sumudu transform is examined. Many significant characteristics of the non-Newtonian 
Sumudu transform have been proven. The solution of non-Newtonian differential equation is 
investigated with the use of the acquired findings. In particular, when the forms of this equation in 
geometric and bigeometric calculus, which are popular classes of non-Newtonian calculus, are 
considered, it is seen that the relationship between non-Newtonian calculus and classical calculus 
can be exploited to obtain results for some difficult differential equations. The results of the non-
Newtonian exponential growth models have been obtained by applying the non-Newtonian Sumudu 
transform. The result of the Gompertz model, one of the most popular population growth models, 
has been obtained with the help of the geometric form of the non-Newtonian Sumudu transform.  
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