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Abstract: k-Mersenne and k-Mersenne-Lucas sedenions are specialised extensions of
sedenions, a sixteen-dimensional algebraic structure. These variations introduce specific
algebraic rules and properties derived from their connection to Mersenne and Lucas numbers.
k-Mersenne sedenions are defined by their relationship to k-Mersenne numbers, while -
Mersenne-Lucas sedenions are associated with k-Mersenne-Lucas numbers. In this article
firstly k-Mersenne and k-Mersenne-Lucas sedenions are defined. Then the algebraic
properties of these sedenions such as norm, conjugate and inner product are examined. The
Mersenne and Mersenne-Lucas recurrence relations, Binet’s formulas, generating functions
and finite sum formulas for these sedenions are derived. These sedenions also reveal
interesting connections with established number theory identities such as Catalan's, Cassini's,
D'Ocagne's and Vajda's identities, providing further depth to their significance within the
mathematical theory and their potential applications across various scientific domains.

Keywords: /i-Mersenne sedenions, k-Mersenne-Lucas sedenions Binet’s formula, Catalan’s
identity

INTRODUCTION

In abstract algebra the term 'sedenion' refers to any 16-dimensional algebra over the real
numbers. The Cayley-Dickson construction [1] shows how octonions can be constructed as two-
dimensional algebra over quaternions. If this doubling process is applied to octonions, Cayley-
Dickson sedenions are obtained. Sedenions are non-commutative, non-associative, non-alternative,
but power-associative algebra over the real numbers. Unlike octonions, sedenions are not
composition algebras or normed division algebras, because they have zero divisors. Research on
sedenions can be summarised as follows. The most fundamental and comprehensive source on
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sedenions is the study entitled "Sedenionic algebra and analysis" by Imaeda and Imaeda [2].
Carmody [3] dealt with the investigation of circular, hyperbolic quaternions, octonions and
sedenions. Cawagas [4] investigated zero divisors within the Cayley-Dickson sedenion algebra.
Another research about zero divisors of Cayley-Dickson algebras was studied by Moreno [5]. Chan
and Dokovic [6] investigated the conjugacy class of subalgebras in the domain of real sedenions.
Kirlak and Kizilates [7] investigated a new generalisation of Fibonacci and Lucas sedenions.
Tasyurdu and Akpinar [8] and Akpinar [9] dealt with the study of Padovan, Pell-Padovan, Perrin
octonions and sedenions. Bektas [10] introduced C,H,O coefficient sedenions along with their
matrix representations. Gursoy and Bektas [11] conducted research on sedenionic matrices. Sumer
[12] investigated multifluid plasma equations in terms of sedenions.

The number theory is considered one of the most important branch of pure mathematics.
There are various recurrence relations within the theory. The Mersenne recurrence, often expressed
in the context of Mersenne numbers and their relation to prime numbers, has been a significant area
of study in the number theory. It also has applications in various mathematical fields and computer
science. In recent years numerous studies have been carried out on hypercomplex numbers in
algebraic geometry and the recurrence relations. The first study in this field dates back to 1963 by
Horadam [13] about complex Fibonacci numbers and quaternions. Subsequently, Iyer [14, 15]
investigated Fibonacci quaternions and generalised Fibonacci quaternions by showing that
Fibonacci and Lucas quaternions can be expressed by Fibonacci and Lucas numbers. Horadam [16]
continued his research and obtained recurrence relations for quaternions.

The concept of k-Lucas numbers was first introduced by Falcon [17]. Halici [18]
investigated the Fibonacci quaternions. Akkus and Kecioglu [19] dealt with Fibonacci octonions.
Ipek and Cimen [20, 21] studied Pell quaternions and Pell-Lucas quaternions, as well as Jacobsthal
and Jacobsthal-Lucas octonions. Cimen and Ipek [22] continued their research and studied
Jacobsthal and Jacobsthal-Lucas sedenions and also Cimen et al. [23] investigated Horadam
sedenions. Catarino [24, 25] investigated modified Pell and modified k-Pell quaternions and
octonions, as well as k-Pell, k-Pell-Lucas and modified k-Pell sedenions. Fibonacci and Lucas
sedenions were studied by Unal et al. [26]. Kizilaslan and Akkus [27] developed new computational
methods in quantum mechanics using quaternionic terms. Soykan [28, 29] investigated Tribonacci
Tribonacci-Lucas sedenions. Polatli and Kizilates [30] introduced new families of Fibonacci and
Lucas octonions with g-integer components.

k-Mersenne and k-Mersenne-Lucas octonions were studied by Kumari et al. [31]. Devi and
Devibala [32] studied Mersenne and Mersenne-Lucas sedenions. Boussayoud and Chelgham [33]
investigated k-Mersenne-Lucas numbers. Construction of dual-generalised complex Fibonacci and
Lucas quaternions and these special quaternions’ matrix representations were obtained by Senturk
et al. [34]. Yilmaz and Sacli [35] defined one-parameter generalisation of Leonardo dual
quaternions and examined their properties. Yilmaz et al. [36] defined six different quaternion-type
cyclic-Fibonacci sequence and examined their properties. Uslu and Deniz [37] studied some special
identities for k-Mersenne numbers. Uysal et al. [38] introduced the hyperbolic A-Mersenne and -
Mersenne-Lucas octonions.
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In this article general information about A~-Mersenne and k-Mersenne-Lucas sequence are
given first. Then k~-Mersenne and A-Mersenne-Lucas sedenions are introduced. Some properties of
these sedenions are examined and recurrence relations of some special identities are obtained.

PRELIMINARIES
Sedenions

A sedenion is constructed over real numbers. Let E;, = {e; € S |i = 0,1,2,...,15 } be the
canonical basis of sedenions, where e, = 1 is multiplicative scalar element and ¢;’s (i = 1,2, ...,15)
are 1maginary units. Any sedenion can be defined as a linear combination of E;4 as
X = Y15, xe; [8]. A set of sedenions can be written in the form:

15

SZ{x=leelleER,0SlS15 .

i=0
Sedenionic units satisfy the following properties:

l. eg=1andeye; =¢;ey=¢;, (i #0)

2. ee; = (g ) =-1, (i#0)
3. eej=—¢e, @+, Gj+#0).

The multiplication of sedenionic basis elements is given in Table 1. Re(X) = Sy = xye, is
called the real part of sedenion and V)x = Y15 x;e; = Im(X) is called its vectorial part. The
sedenion can be expressed as

15
X =xp€9 + inei =S¢ + V)x.
i=1

The sum of two sedenions is defined by
15

X+Y= Z(xi +ye; = (Sx + 5@;) + (Vx + ‘7;;)
=0

The multiplication of two sedenions is defined by

xy (ZlSOxe )(Zl 04-4’18) Zl]k 1 IJYIjeka

where e;, ¢, ex € Eq¢, fij = 2945 and yij € {—1,0,+1}. The coefficient yﬁ is called the field
parameter. The list of all triplet indices of the ordered triplets (i, j, k), which provide the loops here,
can be found in Table 2.

X is called the conjugate of sedenion and is defined as
X =xgeg — 22, xi€; =Sy — Vy.
X non-zero sedenion, the inverse of sedenion, is defined as

xXt= (11 = 0).

IIXIIZ’
Corollary 1. (S,+) is an Abelian group.

Corollary 2. The set of sedenions is 16-dimensional vector space over real numbers.
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Table 1. Multiplication table of unit sedenion basic elements

104

Al e | € | €3 —€ | €5 €4 | —€7 | €6 € | —€g | —€11| €10 | —€13| €12 | €15 | €14
i e | —é3 | € €1 €6 e €4 | =65 | €10 | €11 | €3 | —€9 | —€14| —€15| €12 | €13
€3z € € | € | €7 —€ | €s €4 | €11 | —€10| €9 —€g | 15| €14 | —€13| €12
i ey | —€5 | =€ | €7 | =€ | & € €3 €12 | €13 | €14 | €15 | —€g | —€9 | —€10| —€1q
€5 2 €y | €7 | 66 —€1 | —€ | €3 € €13 | —€12| €15 | —€1a| €9 | —€g | €11 | —€qo
€6 I3 e €4 —€s | —€ | €3 € | —€1 | €14 | —€15| —€12| €13 | €10 | ~€11| ~€3 | €9
il e7 | € | €5 €y | —€3 | —€ €1 €0 | €15 | €14 | —€13| —€12| €11 | €10 | €9 | — €8
0 2| €3 | —€9 | —€10| —€11| —€12| —€13| —€1a| —€15| —€o| €1 € €3 €4 €s €6 e
€9 2 €g | —€11| €10 | —€13| €12 | €15 | —€1a| —€1| —€y | €3 € —€s5 | €4 e —€6
A0 €10 | €11 €g €9 | —€14| —€15| €12 €13 | —€2| €3 €y | €1 | € | €7 | é €s
AL €11 | —€10| €9 €g | —€15| €14 | —€13| €12 | —€3| —€ €1 € | —€7 | €6 —€5 | €4
AVl 12| €13 | €14 | €15 €g €9 | —€10| —€11| —€4| €5 €6 e € | —€1 | —€ | €3
ALy €13 | —€12| €15 | —€14| &9 €g €11 | —€10| ~6s| —€4 | €7 € | €1 —€ | €3 —€
AU €14 | —€15| —€12| €13 | €10 | —€11| €8s €y | €| —€7 | €1 | €5 € —€3 | —€ | —€
Ay €15 | €14 | —€13| —€12| €11 | €10 | —€9 | €3 | —€7| &g —€s | —é; | €3 € —€1 | —€

Table 2. Sedenionic Triplets

(1,2,3) (1,45) (1,7,6) (1,89) (1,11,10)
(1,13,12) (1,14,15) (24,6) (2,5,7) (2,8,10)
(29,11) (2,14,12) (2,15,13) 34,7) (3,6,5)
(38,11) (3,10,9) (3,13,14) (3,15,12) (48,12)
(49,13) (4,10,14) (411,15) (5,8,13) (5,10,15)
(5,12,9) (5,14,11) (6,8,14) (6,11,13) (6,12,10)
(6,15,9) (7,8,15) (7,9,14) (7,12,11) (7,13,10)
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Let X = (L5, yie;) and Y = (B1S, x;e;) be two sedenions. Then the inner product of two
sedenions is defined by [8]:

1 _ _
<X, Y>= E(xy +YX) = xoyo + X191 + - + X15Y1s.

Hence the norm of sedenion X denoted by [|X|| = VXX = [X15,(x;)2. If[|X|| = 1, then X is

called unit sedenion. The inner product and the norm operations mentioned above provide the
following properties:

. <X,Y>=<Y,X >,

2. <X, X >=|X]|?=0,

3. <XY,Z2>=<Y,XZ >=<X,2Y >,

4. 1 + Yl < 1l + yll,

5. 11Xl = ll=x1 = 11Xl = I-X1I,

6. 1112+ IYIZ = S (X + Y12 + Il = Y112,

7. 11Xyl = 1yxll = 1IXYll = 1XYIl.

Mersenne Sequences

In this section some information about Mersenne sequences is given.
Definition 1. The Mersenne sequence {M,, },,s, is defined by the following equation [32, 33]:
M, =3M,_, —2M,,_,, M, =0, M; = 1. (1)
By altering the initial conditions of definition, Mersenne-Lucas sequence {M L kﬁ}nzz is defined as
ML, =3ML,_y —2ML,,_,, MLy =2, ML, = 3. 2)
Definition 2. The A-Mersenne sequence {Mkr”}nzz is defined by the following equation [32, 33]:
Myn = 3kMypn-1 — 2Myp—, Myo =0, My, = 1. A3)

Similarly, by altering the initial conditions of the k-Mersenne sequence, k-Mersenne-Lucas
sequence {M L,(,l}n>2 is defined as

MLy = 3kMLyp_q — 2MLyn_p, MLyo =2, MLy = 3k. (4)

Definition 3. The n'" terms of k-Mersenne and k-Mersenne-Lucas numbers with a negative indices
are as follows [32, 33]:

1 1
My _n = _z_an,na MLy _n = z_nMLk,n- (5
The characteristic equation corresponding to Eq.(3) and Eq.(4) is a? — 3ka + 2 = 0. The
roots are @ = w, B = 3’(_2& and hold the following properties: a + 8 = 3k, aff = 2

and @ — = V9k? — 8. Forall ne N, the Binet’s formulas of k-Mersenne and k-Mersenne-Lucas
sequence are given by

n_pn
Min = “20m MLy = @™ + B (6)

The generating functions of k-Mersenne and k-Mersenne-Lucas sequence are given by
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2—-3kx

Y=o Minx" Ym0 MLppnx™ = -————-. ()

1 3kx+2x2’

k-MERSENNE SEDENIONS AND A-MERSENNE-LUCAS SEDENIONS

In this section A-Mersenne sedenions and k-Mersenne-Lucas sedenions are introduced and
their norm, conjugate, recurrence relation, sum formulas and Binet’s formulas are obtained.

Definition 4. Forn > 0, the n* k —Mersenne sedenion, My , , and n** k —Mersenne—Lucas
sedenion, MLy, ,, , are defined as

" — V15 —
Mk,n - Zs:O Mk,n+ses - Mk,n + Mk,n+1el + Mk,n+292 + -t Mk,n+15915a (8)

MLk,n = Z}EO MLk,n+ses = MLk,n + MLk,n+1el + MLk,n+ZeZ + -t MLk,n+15915- )

Definition 5. The nt"* k —Mersenne sedenion and nt® k —Mersenne—Lucas sedenion written as
negative indices of n, My, _,, and MLy, _,,, are

— 1 1 1 1 1
My-n = =5 Min — 5o Min-161 — 5z Mkn—€2 = — i Mkn—15915 (10)

211 AL
J—— 1
MLk,—n = MLkn‘l' MLkn 1el+2n__2MLk'n_zez+"'+ MLkn 15- (11)

2n—15

Definition 6. The scalar and vectorial parts of the k — Mersenne sedenions M, and
k —Mersenne—Lucas sedenions MLy, ,, are denoted by

S(Mien) = Miey and V(Myey,) = (Mins 1, Micnazs o Micias)
S(MLyy) = MLy, and V(MLyp,) = (ML ns1, MLy pizs oo, MLy ns1s),

Thus, Wi = (i) + V(W) and M, = S(MT) + V (W),

Definition 7. For n > 0, the conjugates of k —Mersenne sedenions My ,, and k —Mersenne—Lucas
sedenions MLy, ,, are defined by

Micn = Min = 2321 Minsses = S(Micn) =V (M), (12)
MLicp = MLn = 222, MLinyses = S(MLicn) = V(MLy,). (13)
Theorem 1. Forn > 0, we can write following features:

ﬁk; + M:kn = 25(1\71;1) = 2Mjn,

MLy + MLicn = 2S(MLyp) = 2MLy .

Proof: They follow immediately from Definition 7.

Definition 8. According to the norm of definition of sedenions, the norms of k —Mersenne
sedenions N(M, ,,) and k —Mersenne—Lucas sedenions N(MLy, ) are defined as

N(Mk,n) = \[Mlg,n + kn+1+Mkn+2 + et Mk n+15»

N(MLy,) = \[ML + ML} o MLy + o+ MLE s
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Theorem 2. The recurrence relations of k-Mersenne sedenions and A-Mersenne-Lucas sedenions
are given by the following equations:

1. Mynyr = 3kMyn — ZMy -1,
2. MLyyyr =3kMLy, —2MLy 1.

Proof:
1. Using Eq.(3) and (8), the recurrence relations of A-Mersemme sedenions are obtained as
follows:

Mini1 = Mini1 + Minizer + Minizey + -+ Minii6€ss
= 3kMyn — 2Myn_1 + (3kMyni1 — 2Min)er + (3kMynip = 2Myni1)e;
ot (3kMk,n+15 - 2Mk,n+14)€15
= 3k(Min + Mins1€1 + Mini2€s + =+ Miniis€1s)
—2(Mn-1+ My pes+Mypi1€s + -+ + My pi14€55)
= 3kMy, — 2Mj, 1.
2. Similarly, using Eq.(4) and (9), the recurrence relations of A-Mersenne-Lucas sedenions are
obtained as follows:
MLinir = MLyysy + MLyniz€q + MLgnize, + -+ MLy 6€15
= 3kMLy, — 2MLy _1 + (3kMLy pyq — 2MLy ey
+(3kMLipnsz = 2MLipia)ez + -+ (3kMyns1s — 2Mini1a)ess
= 3k(Myp, + Mins1€1 + My ps2€s + -+ Mini1s€1s)
—2(My -1 + Mypnes+Myni1€2 + - + My pi14€15)
= 3kMy, — 2Mj 1.

Theorem 3. For n,s e N, the Binet’s formulas of k —Mersenne sedenions, k —Mersenne—Lucas

sedenions and their conjugates and negative indices are given by the following equations
respectively:

_ Aa™-BB"
L My ==~
2. MLy, = Aa™+ BB™,
=—— _ Aa™-Bp"
Mk,n - a—,B 4
4. MLy, = Aa™+ BB™,
_ _ 1 Ba"-Ap"
5. Mn =~ 55 —ag

6. MLy_n = (Ba™+ AB™),

— V15 s — V15 s A — 15 s B — 15 s
where A = ) ;2a’es, B = )20 F%es, A =¢ey— )2;a’egsand B = ey — )24 Boes.

Proof:

1. From Eq.(6) and (8), we get the Binet’s formula of k —Mersenne sedenions as
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My p = XMy pises = (%) eq + (%) e, + -+ (%) es

" n
= :(Tﬁ(eo +ae;+ -+ 0(15915) — aﬁTﬁ(eO + .891 4+ o+ 1815915)
A B
__ Aa™-Bp"
_—a—ﬁ :

2. From Eq.(6) and (9), we get the Binet’s formula of k —Mersenne —Lucas sedenions as

MLyn = Zs2o MLy ses = (@™ + ey + (@™ + fMey + -+ + (a™ + fMeys
=a" (ey+ ae; + -+ a'®ejs) + B (eg + Bey + -+ BPeys)

A B
= Aa™ + Bp™. (15)
3. From Eq.(6) and (12), we get the Binet’s formula of k —Mersenne sedenions’ conjugate as
—_— at-pn Qntiopn+t Qn+15_pn+is
Myn = M:,n — X2 Mynases = ( oy );’: - (T) ey — (T) e1s
a
= ap (eg — aey -z a'®eys) — ﬁ(e’o — Bey -z B*oess)
—— A B
Aa”—-B
== (16)
4. From Eq.(6) and (13), we get the Binet’s formula of k — Mersenne —Lucas sedenions’
conjugate as
MLyyn = MLy, — Z}il MLynises = (@™ + BM)eg — (a™ + ey — - — (@™ + fM)eys
=a" (eg —ae; — - —a'es5) + B (e — fe; — - — 10ey5)
~ 3 A B
= Aa™ + Bp". 17)
5. From Eq.(6) and (10), we get the Binet’s formula of negative version of k —Mersenne sedenions
as
_ _i an_[gn _ 1 an—l_[gn—l _ 1 an—Z_‘Bn—Z
Mie-n = 2"( a-p )eo 2"—1( a—p )6’1 2"—2( a—p )6’2
1 an—15_ﬁn—15
e (Y
_ _i(a"eo+2a"_1el+22an_zez+23an_3e3+---+215an_15615
- on a-f
__ﬁnEO+2ﬁn_1€1+22ﬁn_2€2+23ﬁn_3€3+'”+215ﬁn_15€15)
a=B
_ _i(a"(eo+[§el+[§zez+[33e3+v-~+[§15€15) _ ,8"(60+ael+azez+a3e3+v--+a15615))
T oon a—f a-f
_ _ LBat-Apt
ST ap (18)

6. From Eq.(6) and (11), we get the Binet’s formula of negative version of k —Mersenne—Lucas
sedenions as

1

ML, _, = Zin(an + ™M) + iz (@ + B ey + 5 (@2 + [ ey
1 _ _
.|; + P (an 15 + ,Bn 15)6’15
= [(@™ + B™) + 2(a™ 1 + " Ve, + 22(a™ 2 + " 2)e,
+ .04 le(an—ls + ﬁn—lS)els]

= Zin [(a™ + 2a™ te, + 22a™ 2e, + -+ + 215a™ 15e, ;)

n-2
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+(B™ + 2B ey + 228" e, + - 4 213 B ey )]
= g la"(L+ Bey + B2, + 4 f10e;5)
+B™(1+ ae; + ale, + -+ al®eys)]
=~ (Ba™ + Ap™). (19)

Theorem 4. For r,n,seN and s > r, the generating functions of k —Mersenne sedenions and
k —Mersenne—Lucas sedenions are given respectively as

Mo+ (M1 —3kMyo)x
1-3kx+2x2

L f(x) = N3 Mipa™ =

2

MLy o+(MLy1-3kMLy o)

— \'oo n _—
2. g(x) —Zn=0MLk,nx - 1-3kx+2x2

Proof:

1. Let f(x) = Xp-o My 2™ be given. We can write

f(x) = Mo+ My 12 + My 2% + -
—3kxf(x) = —(3kxMy o + 3kx*M) 1 + 3kx My 5 + )
222 f (x) = 2x* My o + 223 M) + 224 M 5 + .
Thus, we get the following result:
(1 = 3kx + 2x2)f (x) = My o + (My, — 3kMy)x
ey = i + (P = 30T )
1—3kx + 2x?2
2. Similarly, let g(x) = X5-g MLy 2™ be given. Then

9(x) = MLy + MLy, % + MLy 2% + -
—3kxg(x) = —(3kxMLy o + 3kx®MLy; + 3kx3MLy, + -+ )
2x2g(x) = 242MLyo + 223MLyy + 2x* MLy, + .
Thus, we get the following result:
(1 —3kx +2x42)g(x) = MLy + (ML, — 3kMLy,)x
MLy + (MLyy — 3kMLyy)x
1—3kx + 2x? '

g(x) =

Theorem 5. For k # 1, the finite sum formulas of these sedenions can be written as follows:

1 noa _ 2My =My ni1+ My 1 +(1-3Kk) My o
. s=01"k,;s — D

3(1-k)
—— 2MLj, ,—ML +M} 1+(1-3k)ML
n — kn kn+1 k,1 k,0
2. ¥ MLy, = e :
Proof:

1. Let k # 1. From Eq.(8) and (14), we get the finite sum formula of k —Mersenne sedenions as follows:
— AaS-BfS A B
Y=o My,s = ?=0( a—p ) - (ﬁ) s=0 @’ — (_) s=0B°

a—
_ A (1-a™1\ B (1-p"*1
_a—ﬁ( 1-a ) a—ﬁ( 1-p )

A(l—ﬁ—an+1—an+1ﬁ)—B(1—a—ﬁn+1—ﬁn+1a)
(a=p)(1-(a+p)+ap)
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A-B—af(Aa"r-BB~1)—(Aa™t1-BB ) +af (Aa™-BB™)
(a—p)3(1-k)
My o—2My _1—Mgpt1+2Myp
3(1-k)
_ 2Myn—My i1+ My 1 +(1-3k) My o
- 3(1-k) '

(20)

2. Let k # 1. From Eq.(9) and (15), we get the finite sum formula of k —Mersenne—Lucas sedenions as
follows:

Z.ysl=0 ﬁl‘\k,s = ?:0(‘4055 + B.BS) = AZ?:O a’+ B Z?:o p*

_ A (1_an+1) n B (1_‘811+1)
1-a 1-B

A(l—[?—a"+1—an“ﬁ)+B(1—a—[3n+1—[§n+1a)

(1-(a+p)+ap)
A+B—af(Aa" +BB ™) (Aa™ 1 +BB ) +af (Aa™+B ™)

3(1-k)
MLy o—2MLy _1—MLy n41+2MLg
3(1-k)

2MLy =MLy 141+ MLy 1+(1-3k)MLy o

3(1-k) )

21
Lemma 1. Let A = Y13 a’e,, B = Y13 BSe, be given. AB and BA can be calculated by
AB = (TZoa’e) (Bs2, Boes)
= —65533¢, + (144778 — 11469a)e; + (11475 — 11473p)e,

+(3825a® — 382343 — 7650(a — f))e; + (20838* — 3825a%)e,

+(1277B5 — 1275a° + 2550(a® — B3))es

+(255a° — 2538° — 1020(a? — B2) e

+(257B7 — 253a” — 510(a® — B°) + 1020(a® — £3) + 2040(a — B))e;

+(255a® — 2538%)eg + (458° — 43a® + 86(a” — B7))e,

+(47a° — 45810 — 86(a’® — B°))ey,

+(17a' — 158 — 30(a® — B°) + 60(a’ — B7) — 136(a® — B°))esy

+(15812 — 13a'? + 208(a* — B*))ey,

+(5p%2 — 3a'® + 10(at! — p*) — 80(a’® — B°) + 96(a® — B*))ey3

+(BM + 3at* + 2p13 — 4(a® — p1°) + 16(a’ — p°) — 192(a® — p?))ey,

+(,815 + 0(15 _ 2,814 _ 20(13 + 4(0(11 —,811) _ 8(0(9 +,89) _ 160(7 —,87)

—32(a® — %) + 64(a® — B3) — 128(a — B) ) eys. (22)
BA = (X5 Bes) TsZo a’es)

= —65533¢, + (14477a — 114698)e; + (114758 — 11473a)e,

+(38255% — 3823a% — 7650(8 — a))e; + (2083a* — 38255%)e,

+(1277a° — 127585 + 2550(8% — @) )es

+(255B° — 253a® — 1020(B2 — a?) )eq

+(257a” — 25387 — 510(B° — a®) + 1020(8° — a®) + 2040(5 — a))e,

+(2556°% — 253a®)eg + (45a° — 43B8° + 86(87 — a”))e,

+(47a® — 45810 — 86(B° — a®))ey,

+(17p1 — 15a™ — 30(B° — a®) + 60(87 — a”) — 136(B° — a®))ey,
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+(15a? — 13812 + 208(B* — a*) ey,

+(5a™® — 3813 + 10(B — a't) — 80(B° — a®) + 96(B° — a®))ey3

+(a™ + 38 + 2a'® — 4(B1° — a'®) + 16(B° — a®) — 192(B% — a?) )e.4

+(0(15 +,315 _ 20(14 _ 2,313 + 4(,311 —,311) _ 8(ﬂ9 + 0(9) _ 16(ﬁ7 _ 0(7))

—32(B° — a®) + 64(B> — a®) — 128(8 — @) )eys. (23)

SOME RELATIONS BETWEEN SPECIAL IDENTITIES WITH k —MERSENNE SEDENIONS
AND k —MERSENNE—-LUCAS SEDENIONS

In this section some special identities in number theory are examined. Interesting relations

between these identities and kA-Mersenne sedenions and k-Mersenne-Lucas sedenions are obtained
by using definitions given in the previous section.

Theorem 6 (Catalan’s Identity). For n,r e N* such that n >r , Catalan’s identities for
k —Mersenne sedenions and k —Mersenne—Lucas sedenions can be given respectively as

— —2 _ (ABBT-BAa")
— n-—-r
. Myp_yMypir — My, =2"""My,

Vok2-g ’
2. MLyp_ MLy iy — MLk'n2 = 2”‘TMk'T\/9k2 — 8(BAa" — AB,BT).

Proof:

1. If we use Eq.(14) and Lemma 1, we can write the following equation:

o 2 Aa™T—BBTT [Aa™T—BBTHT Aa"—Bp" 2
Myn-—+Minir — Myn = ( )( ) - ( )

a-B a-p a-B
= 1 npen _ﬁ_r npn _a_r
= @-py? [AB“ B (1 ar) +BAa"p (1 ﬁr)]
_aB™(a"-B") . ABBT-BAa"
(a—p)? arrﬁr .
= (@B)" " My, L
— on-r (ABBT—BAa")
= 27T My, LR (24)
2. If we use Eq.(15) and Lemma 1, we can write the following equation:
MLip MLy sy — MLy,," = (Aa™" + BB™")(Aa™7 + BF™T) — (Aa™ + BA™)?
= ABa"p™ (% - 1) + BAampr (g— 1)
oA (1) -5 (1- )]
_ _npn[BAa"(a"-B")-ABB"(a"-p")
=a"f [ e ]
= 2"""(a" — B")[BAa" — ABPBT]
= 2" M, ,V9k? — 8(BAa" — ABB"). (25)

Theorem 7 (Cassini’s Identity). Forn > 1, Cassini’s identities for k —Mersenne sedenions and
k —Mersenne—Lucas sedenions can be given respectively as

—_— —2 —1 (ABB-BAa)
— pn-1
L Myn-aMyps1 — My, =2 Vokz—_g °

2. MLgnaMLgpe1 — MLy, = 2""1\OkZ — 8(BAa — ABB).

Proof: By substituting r = 1 in the Catalan’s identity, we obtain required results.
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Theorem 8 (D’Ocagne’s Identity). For n,r =0, D’Ocagne’s identities for k — Mersenne
sedenions and k —Mersenne—Lucas sedenions can be given respectively as

_— —— 2" (ABa™ " —-BABT™™)
1. Mk,er,n+1 - Mk,r+1Mk,n =

9k2-8 ’
2. MLy, MLypy1 — MLy 1MLy, = 2™M\/9k2 — 8(BAﬁT‘” — ABa™™).

Proof:

1. It can be written using Eq.(14) and Lemma 1 as follows:

WM = Mireibi = (57) (M=) - (=) (57

(=ABa”B™*! — BABTa™" + ABa™*'B" + BABT a™)
—: (ABa”B"(a — B) ~ BABTa™(a ~ B))

_ zn(ABaT n_BABT™M)
- 9k2-8 ' (26)

~ (a- ﬁ)z

2. Ifweuse Eq.(15) and Lemma 1, then it can be written as follows:
MLiyMLiyiq — MLy 1MLy, = (Aa”™ + BB")(Aa™" + Bp™1)
—(Aa™! + B,BTH)(AO(" + B,Bn)
= ABa"B™(B — a) + BABTa™(B — a)
= 2"\/9k2 — 8(BAB"™™" — ABa™ ™). (27)
Theorem 9 (Vajda’s Identity). Forr,t,n e N*, Vajda’s identities for k —Mersenne sedenions and

k —Mersenne—Lucas sedenions can be given respectively by the following equations:

—2"My, (AB,Bk BAak)
9kZ—

2. MLypirMLypie — ML MLy irie = Z"Mkm\/9k2 — 8(ABB* + BAa*).

Proof:

1. If we use Eq.(14) and Lemma 1, then it can be written as follows:

— — — — Aan+T_B‘87l+T Aan+t_B‘8n+t
Min+rMyn+t = MenMinirse = ( )( )

1. Mk,n+er,n+t Mankn+r+t -

2

pan g aaire g
_( a—p )( a—p )

— ( 3)2 [ABan‘Bn+k(‘BT _ ) _ BAO(TH'k‘Bn(‘BT _ (ZT)]
—2"M, -(ABB¥—BAK
= EMir (458 -pacT) (28)

2. Ifwe use Eq.(15) and Lemma 1, then it can be written as follows:
MLipr MLy st = ML oMLy ey se = (Aa™7 + BE™T)(Aa™t + BR™)
—(Aa™ + B,B”)(Aa"”” + B‘Bn+r+t)
— AB(Zn‘BTH't((ZT _ ,BT) + BA(Zn'l't‘Bn((ZT _ ,BT)
= a"B"(a” — BT)[ABB' + BAa']
= My, 2"V9kZ — 8(ABB* + BAa?). (29)
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CONCLUSIONS

In this article we first provided the general information about sedenions, k —Mersenne
numbers and k —Mersenne—Lucas numbers. Then we defined the k —Mersenne sedenions and
k —Mersenne—Lucas sedenions. Subsequently, we obtained Binet’s formula, norm, conjugate and
generating functions of these sedenion sequences. Following that, we got the finite sum formula of
the k —Mersenne and k —Mersenne —Lucas sedenions. Finally, some information is given about
special identities in number theory. Based on this information and new definitions, we established
relations between Catalan’s, Cassini’s, D’Ocagne’s and Vajda’s identities and k — Mersenne
sedenions and k —Mersenne—Lucas sedenions.
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