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Abstract:  The Poisson distribution may not fit the data in several real-life circumstances. In 

this case the zero-truncated Poisson-Lindley (ZTPL) distribution has been proposed as a 

statistical model for counting data that do not include zero values. The index of dispersion 

(IOD) is a valuable tool for evaluating the suitability of the distribution in modelling observed 

count data. Nevertheless, the examination of the non-parametric bootstrap method for 

estimating confidence intervals (CIs) of the IOD of the ZTPL distribution has not been 

conducted. The study of the non-parametric bootstrap CI for the IOD can provide a more 

nuanced and informative understanding of data variability. This is crucial for various 

applications including comparisons between groups, risk assessment, decision-making, and 

ensuring the robustness of statistical conclusions. This study aims to investigate the 

performance of non-parametric bootstrap CIs derived from percentile, simple, and bias-

corrected bootstrapping methods. Coverage probability and average length are evaluated 

using Monte Carlo simulation. The simulation results demonstrate that achieving the 

designated confidence level using non-parametric bootstrap CIs is unattainable for small 

sample sizes, irrespective of the other parameters. In addition, the performance of the non-

parametric bootstrap CIs does not differ significantly when the sample size is large. The bias-

corrected bootstrap CI demonstrates superior performance compared to other methods, even 

when dealing with limited sample sizes. Using two numerical examples, non-parametric 

bootstrap methods are utilised to calculate the CI for the IOD of a ZTPL distribution. The 

results match those of the simulation study. 

 

Keywords: bootstrap interval, count data, index of dispersion, interval estimation, Lindley 

distribution 
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INTRODUCTION 
 

The Poisson distribution is a discrete probability distribution that quantifies the likelihood of 

a specified number of events occurring within designated temporal or spatial intervals [1, 2]. The 

Poisson distribution is applied to data such as the number of lightning flashes in a thunderstorm, the 

number of vehicles passing a checkpoint, the number of residents who will need the cardiac 

machine tomorrow, the number of fumbles a team makes during a game, and so on [3]. The Poisson 

probability model can be utilised in the analysis of data sets that comprise both zero values and 

positive integer values with low probability of occurrence within a predetermined temporal or 

spatial range [4]. The Poisson distribution is commonly employed as a fundamental model for 

analysing count data. However, its applicability is limited by the constraint of equi-dispersion which 

refers to the equality of its mean and variance. When count data exhibit over-dispersion, meaning 

that the variance is greater than the mean [5], a commonly used approach is to employ a mixed 

Poisson distribution. This distribution assumes that the Poisson parameter is a random variable [6]. 

Sankaran [7] investigated the mathematical and statistical properties of Poisson-Lindley 

(PL) distribution, which he created by combining the Poisson and Lindley distributions. The PL 

distribution is derived from the Poisson distribution when the Poisson parameter, denoted as  , 

follows a Lindley distribution as proposed by Lindley [8] in 1958. The mathematical and statistical 

characteristics of the PL distribution were established by Sankaran [7]. Two estimation methods 

were used to estimate the parameter of the PL distribution, and when applied to two real-world data 

sets, the PL distribution proved to be more appropriate than the Poisson distribution [9]. The 

probability mass function (pmf) of the PL distribution is defined in equation (1): 
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Studies in the past have shown that the zero-modification Poisson distributions are different 

versions of the traditional Poisson distribution that take into account situations where the chance of 

a zero event happening is either higher or lower than what the standard Poisson model would 

predict. In this case the traditional Poisson distribution can lead to an inappropriate fit for both the 

counts of zero and non-zero values [10]. The zero-inflated Poisson distribution is a model that 

accommodates excess zeros in count data by combining a Poisson distribution for non-zero counts 

with a separate process that models the probability of observing zero counts [11]. In the case of the 

Poisson hurdle distribution, this distribution is a two-component model that addresses count data 

with excess zeros. It is suitable for situations where a distinct process affects the occurrence of zeros 

because it incorporates a hurdle component to model the decision to have any counts and a Poisson 

count component to model the distribution of non-zero counts [12, 13]. Zero-inflated Poisson and 

Poisson hurdle distributions have been much studied in research. For example, the zero-inflated 

mixed Poisson transmuted exponential distribution and its properties were proposed by Adetunji 

and Sabri [14]. Argawu and Mekebo [15] applied the zero-inflated Poisson regression analysis to 

the factors associated with under-five mortality in Ethiopia. Zou et al. [16] used generalised fiducial 

inference to construct confidence intervals (CIs) for the means of zero-inflated Poisson and Poisson 

hurdle models. 

However, probability models can become truncated when a range of possible values for the 

variables is either disregarded or impossible to observe. Indeed, zero-truncation is often enforced 

when one wants to analyse count data without zeros. David and Johnson [17] developed the zero-

truncated (ZT) Poisson (ZTP) distribution. Hussain [18] applied the ZTP distribution to data sets of 
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the number of red mites per leaf, the remission times in the week for twenty Leukomia patients, and 

the number of goals scored by any team. A ZT distribution’s pmf can be derived as 

 0
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where 0 ( ; )p x   and 0 (0; )p   are the pmf of the un-truncated distribution for any value of x  and 

0x   respectively.  

Numerous distributions have been proposed as substitutes for the ZTP distribution in order 

to address the issue of over-dispersion in data. These include the ZT Poisson-Amarendra 

distribution [19], ZT Poisson-Akash [20] distribution, and ZT Poisson-Ishita distribution [21]. 

Ghitany et al. [22] introduced the ZT Poisson-Lindley (ZTPL) distribution and examined its many 

features including moments, coefficient of variation, skewness, kurtosis and index of dispersion 

(IOD). Both the maximum likelihood estimation and method of moments have been derived for the 

purpose of estimating the parameter of interest. Moreover, the ZTPL distribution exhibits superior 

performance compared to the ZTP distribution when applied to real-world data sets. 

This paper focuses on the IOD, which is the ratio of variance to the mean. It is a normalised 

measure of the dispersion of a probability distribution. When the probability distribution of the 

number of occurrences in an interval is a Poisson distribution, the IOD has a value of 1. 

Consequently, the measure can be used to determine if observed count data can be modelled with a 

Poisson distribution. When the IOD is less than 1, it indicates that a data set demonstrates under-

dispersion. On the other hand, when the IOD surpasses 1, a data set demonstrates the phenomenon 

of over-dispersion [23]. 

Researchers employ IOD in a multitude of disciplines such as epidemiology, finance and 

ecology to gain insights into the distribution patterns of events or values. As an illustration, in the 

field of epidemiology the IOD could be employed to evaluate the presence of a random distribution 

of a disease or the existence of clusters of cases. Anderson and Siddiqui [24] investigated the 

sampling distribution of the IOD under each of Poisson, negative binomial and binomial 

distributions. Panichkitkosolkul [25, 26] recently studied bootstrap CIs for the IOD of the ZT 

Poisson-Ishita and ZT Poisson-Amarendra distributions respectively. However, there is currently 

lack of research on the estimation of the CI for the IOD of the ZTPL distribution. Non-parametric 

bootstrap CIs offer a means of quantifying the uncertainties associated with statistical inferences 

derived from a sample of data. The idea is to conduct a simulation study using actual data to 

estimate the likely extent of sampling error [27]. Determining the IOD of a ZTPL distribution 

necessitates the evaluation of three bootstrap CIs, namely the percentile bootstrap (PB), the simple 

bootstrap (SB) and the bias-corrected (BC) bootstrap. We undertake a simulated study to assess the 

relative benefits of these non-parametric bootstrap CIs because a theoretical comparison of them is 

not possible. In addition, the non-parametric bootstrap CIs have been compared in several 

simulation experiments (see Reiser et al. [28] and Flowers-Cano et al. [29]). This study does a 

Monte Carlo simulation to assess the effectiveness of different methods and thereafter determines 

the ideal approach based on the coverage probability and the average length.  
 
METHODS 
 

Point Parameter Estimation for ZTPL Distribution 
 

A novel method for fitting data sets that are not well fit by typical parametric distributions is 

the compounding of probability distributions. Ghitany et al. [22] introduced a new mixed 
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distribution that combines the Poisson distribution with the Lindley distribution. This approach was 

motivated by the requirement for a more adaptable model to analyse statistical data. The pmf of the 

PL distribution is provided in equation (1). 

Let X  be a random variable which follows the ZTPL distribution [22] with parameter ;  it 

is denoted as X ~ ZTPL( ).  Using equations (1) and (2), the pmf of the ZTPL distribution can be 

obtained as                
2
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The pmf plots of the ZTPL distribution with specific values for the parameters   are depicted in 

Figure 1. The expected value, variance and IOD of X  are as follows: 
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Figure 1.  Pmf plots of ZTPL distribution with   = 0.25, 0.5, 1.258627 and 2 

 

The log-likelihood function log ( ; )iL x   is maximised to obtain the point estimator of .  

Therefore, the maximum likelihood (ML) estimator for   of the ZTPL distribution is derived by the 

following processes: 
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 

 2
1

2 32 1
0,

1 23 1

n

i i

nn nx

x



    


   

   
  

where 1

1

.
n

i

i

x n x



   As a closed-form solution for the ML estimator cannot be found, numerical 

iteration methods such as Newton-Raphson method, bisection method, fixed-point iteration method 

and secant method can be employed to solve the non-linear problem. The research utilises maxLik 

package [30] in statistical software R [31] for ML estimation using the Newton-Raphson method. 

The point estimator of the IOD can be estimated by replacing the parameter   with the ML 

estimator for   shown in equation (3). Therefore, the point estimator of the IOD is given by 
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where ̂  is the ML estimator for .  

 

Non-parametric Bootstrap CIs 
 

Percentile bootstrap (PB) CI 
 

The PB CI is a non-parametric method that estimates the uncertainty surrounding a 

population parameter by resampling the original sample. It is particularly useful when the 

underlying distribution of the data is unknown or complicated [32]. The procedure for acquiring a 

PB CI for   is outlined as follows: 

1) Collect the Sample Data: Start with the data from the initial sample, which represents a 

subset of the population. Consider that there are n  observations in the sample. 

2) Resample with Replacement: The bootstrap method entails resampling with replacement 

from the initial sample. The observations are selected from the original sample, with the prospect of 

multiple selections of the same observation. 

3) Calculate the Statistic: The statistic of interest (parameter, mean, median, etc.) is 

computed for each bootstrap sample. A distribution of the statistic is obtained through repetitive 

resampling. 

4) Generate Confidence Interval: In order to construct a CI, it is important to arrange the 

bootstrap statistics in ascending order and subsequently select the appropriate percentiles. For 

example, if we want a 95% two-sided CI, we would select the 2.5th percentile as the lower bound 

and 97.5th percentile as the upper bound. The (1 )100%  two-sided PB CI for   is constructed as 

 
* *

( ) ( )
ˆ ˆ, ,   PB r sCI          (4) 

where  *

( )
ˆ

r  is the thr  quantile of a collection of the parameter estimate 
*̂ arranged in ascending 

order, while *

( )
ˆ

s  is the ths  quantile of the aforementioned collection, ( / 2) ,r B     

(1 ( / 2)) ,s B     where  x  stands for the ceiling function of ,x  and 1   is the confidence 

level. This study utilises   = 0.05 and B  = 2,000; the two quantiles related to the lower and upper 
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bounds of the PB two-sided CI are * *

( ) (50)
ˆ ˆ

r   (the 50th quantile) and * *

( ) (1950)
ˆ ˆ

s   (the 1950th 

quantile). 

 
Simple bootstrap (SB) CI 
 

The SB CI, also known as the basic bootstrap CI, is a straightforward and easily applicable 

method for constructing a CI, similar to the PB CI. Consider the quantity of interest to be   and the 

estimator of   to be ˆ.  The SB CI implies that the distributions of ˆ    and *ˆ ˆ   are comparable 

[33]. The (1 )100%  two-sided SB CI for   is 

 
* *

( ) ( )
ˆ ˆ ˆ ˆ2 , 2 ,    SB s rCI            (5) 

where the quantiles 
*

( )
ˆ

r  and  
*

( )
ˆ

s  correspond to the same percentile of empirical distribution of 

bootstrap estimates 
*̂  employed in equation (4) for the PB CI. 

 
Bias-corrected (BC) bootstrap CI 
 

To surmount the over-coverage issues of PB CI [34], the BC bootstrap CI incorporates a 

bias-correction factor to correct the bias of the bootstrap parameter estimates [35]. The estimation of 

the bias-correction factor 0ẑ  involves determining the proportion of bootstrap estimates smaller 

than the original parameter estimate ˆ,  

 *
1

0

ˆ ˆ#
ˆ ,

 
   

 
z

B

 
 

where 1  is defined as the inverse of the cumulative function of standard normal distribution, 

#   is the indicator function and B  is the bootstrap replication. The values 1  and 2  are 

computed using the value of 0
ˆ .z They are given by 

 1 0 /2
ˆ2z z      and   2 0 1 /2

ˆ2 ,z z      

where /2z  is the   quantile of the standard normal distribution. Then the (1 )100%  two-sided 

BC bootstrap CI for   is 

 
* *

( ) ( )
ˆ ˆ, ,BC j kCI             (6) 

where 1j B     and 2 ,k B     while  x  is the ceiling function of .x   

 
RESULTS AND DISCUSSION 
 

Simulation Study and Results 
 

The non-parametric bootstrap two-sided CIs for the IOD of a ZTPL distribution was 

considered in this study. Using R [31] version 4.3.1 and boot package [36], a Monte Carlo 

simulation study was designed to encompass cases with different sample sizes ( n  = 02, 02, 02, 02, 

022 and 200). The true values of parameter ( )  were set as 0.25, 0.5, 1.258627, 2 and 3, and the 

IODs were 4.7969, 2.5091, 1.0000, 0.6136 and 0.3965 respectively. The bootstrap replication ( )B  

was set at 2,000. A set of bootstrap samples, each of size ,n  was generated from the original 

sample. The process of generating these samples was repeated 1,000 times. The nominal confidence 

level (1 )  was chosen at 0.95, without any loss of generality. We compared the performance of 
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non-parametric bootstrap CIs by assessing their coverage probabilities and average lengths. In this 

study we can conclude that the coverage probability is greater than or equal to the nominal 

confidence level when the estimated coverage probability is greater than or equal to 2.939 by using 

the one-proportion z-test with a significance level of 2.25. Moreover, the bootstrap CI with the 

minimum average length can be used to estimate the parameter more precisely. The R source code 

for the simulation study is available in the literature [37]. 

The results of the simulation study are organised and presented in Table 1. For values of n  

equal to 02, 02 and 02, the coverage probabilities of all three non-parametric bootstrap CIs exhibit a  

 

Table 1.  Coverage probability and average length of 95% non-parametric bootstrap CIs for IOD of 

ZTPL distribution  
  

n      
Coverage probability  Average length 

PB SB BC  PB SB BC 

20 0.25 4.7969 0.902 0.901 0.910  3.0111 3.0086 3.0342 

 0.5 2.5091 0.910 0.900 0.911  1.7938 1.7945 1.8056 

 1.258627 1.0000 0.909 0.909 0.918  0.9851 0.9857 0.9943 

 2 0.6136 0.896 0.881 0.924  0.7212 0.7223 0.7365 

 3 0.3965 0.899 0.892 0.938  0.5640 0.5644 0.5887 

40 0.25 4.7969 0.936 0.934 0.938  2.1718 2.1732 2.1826 

 0.5 2.5091 0.944* 0.935 0.944*  1.3280 1.3269 1.3309 

 1.258627 1.0000 0.931 0.913 0.937  0.7296 0.7294 0.7331 

 2 0.6136 0.913 0.892 0.918  0.5412 0.5406 0.5460 

 3 0.3965 0.919 0.919 0.940*  0.4202 0.4203 0.4261 

60 0.25 4.7969 0.922 0.925 0.926  1.7745 1.7783 1.7804 

 0.5 2.5091 0.942* 0.938 0.939*  1.0771 1.0765 1.0798 

 1.258627 1.0000 0.919 0.919 0.925  0.5952 0.5958 0.5978 

 2 0.6136 0.936 0.940* 0.938  0.4469 0.4468 0.4489 

 3 0.3965 0.937 0.920 0.943*  0.3528 0.3528 0.3557 

80 0.25 4.7969 0.940* 0.943* 0.941*  1.5534 1.5524 1.5583 

 0.5 2.5091 0.949* 0.946* 0.944*  0.9398 0.9398 0.9411 

 1.258627 1.0000 0.939* 0.931 0.947*  0.5237 0.5245 0.5253 

 2 0.6136 0.949* 0.936 0.952*  0.3926 0.3923 0.3943 

 3 0.3965 0.939* 0.923 0.952*  0.3011 0.3006 0.3023 

100 0.25 4.7969 0.935 0.935 0.936  1.3828 1.3835 1.3849 

 0.5 2.5091 0.939* 0.941* 0.942*  0.8536 0.8538 0.8555 

 1.258627 1.0000 0.944* 0.946* 0.950*  0.4696 0.4697 0.4711 

 2 0.6136 0.946* 0.935 0.946*  0.3513 0.3508 0.3529 

 3 0.3965 0.931 0.922 0.931  0.2741 0.2737 0.2751 

200 0.25 4.7969 0.948* 0.950* 0.951*  0.9836 0.9842 0.9849 

 0.5 2.5091 0.951* 0.946* 0.951*  0.6008 0.6014 0.6017 

 1.258627 1.0000 0.947* 0.946* 0.944*  0.3335 0.3334 0.3336 

 2 0.6136 0.936 0.934 0.934  0.2515 0.2510 0.2515 

 3 0.3965 0.948* 0.946* 0.951*  0.1922 0.1923 0.1926 
 
* Empirical coverage probability is greater than or equal to nominal confidence level. 
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tendency to be below 0.95, thereby failing to attain the expected nominal confidence level. 

Nevertheless, the BC bootstrap CI exhibits superior performance compared to the others under these 

conditions in terms of coverage probability. For values of n  equal to 80, 100 and 200, the non-

parametric bootstrap CIs achieve coverage probabilities that are in close proximity to the specified 

confidence level. Additionally, these intervals exhibit similar average lengths. As a result, the 

coverage probabilities of the CIs tend to rise with increasing sample sizes and become closer to the 

nominal confidence level of 0.95. 

Moreover, as the value of the IOD is decreased, the average length of the CIs decreases due 

to the relationship between the IOD and .  As expected, the average lengths of all three bootstrap 

CIs decrease as the sample size increases. Even though the PB and SB CIs’ average lengths are 

shorter when the sample size is small ( n   20), this results in a poor coverage probability value that 

is much lower than the nominal confidence level. The BC bootstrap CI exhibits superior 

performance in terms of coverage probability even when dealing with small sample sizes, provided 

that the IOD of the ZTPL distribution is not excessively large. 

 

Empirical Applications of Non-parametric Bootstrap CIs 
 

Two actual count data sets are utilised to illustrate the suitability of non-parametric bootstrap 

CIs in estimating the IOD of a ZTPL distribution. 
 
Immunogold assay example 
 

This example utilises the count of sites containing particles obtained from the immunogold 

assay data collected by Cullen et al. [37]. The sample mean and standard deviation for this data set 

of 198 observations, shown in Table 2, are 1.576 and 0.891 respectively. The Chi-squared statistic 

for the Chi-squared goodness-of-fit test [38] is 0.5467, and the p-value is 0.7608. Consequently, a 

ZTPL distribution with ̂   2.1831 is appropriate for this data set. The point estimator of the IOD is 

0.5586. The data set demonstrates the phenomenon of under-dispersion because the IOD is less than 

1. The 95% non-parametric bootstrap CIs for the IOD of a ZTPL distribution are presented in Table 

3. Because the average length of the BC bootstrap CI is shorter than that of the PB and SB CIs, the 

results are consistent with the simulation results. 

 

Table 2.  Number of counts of particle-containing sites found in immunogold assay 
 

Number of particles 1 2 3  4 

Observed frequency 122 50 18 8 

Expected frequency 124.7689 46.7604 17.0663 9.4044 

 

Table 3.  95% Non-parametric bootstrap CIs and corresponding lengths using 
                  all intervals for IOD in immunogold assay example   

Method CI Length 

PB (0.4501, 0.6754) 0.2253 

SB (0.4421, 0.6723) 0.2302 

BC (0.4488, 0.6733) 0.2245 
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Demographic example 
 

Shanker et al. [39] present in Table 4 the demographic data regarding the number of fertile 

mothers who have experienced at least one infant death. The total sample size is 135. The Chi-

squared statistic is 3.3797, whereas the p-value for the Chi-squared goodness-of-fit test is 0.1845 

[38].  As a result, a ZTPL distribution with ̂  equal to 2.0891 is an appropriate choice for this data 

set. The point estimator of the IOD is 0.6039. The data set exhibits under-dispersion as indicated by 

an IOD value of less than 0. Table 5 contains the 95% non-parametric bootstrap CIs for the IOD of 

a ZTPL distribution that have been calculated using the bootstrap method. The BC bootstrap CI is 

shorter than the PB and SB CIs; therefore the findings match the simulated results for n   100 and 

   2. 

 

Table 4.  Number of fertile mothers who have experienced at least one child death 
 

Number of child deaths 1 2 3  4 

Observed frequency 89 25 11 10 

Expected frequency 83.4486 32.3222 12.1818 7.0474 

 

               Table 5.  95% Non-parametric bootstrap CIs and corresponding lengths using  

               all intervals for IOD in demographic example                             
 

Method CI Length 

PB (0.4279, 0.7477) 0.3198 

   SB (0.4127, 0.7372) 0.3245 

BC (0.4408, 0.7595) 0.3187 

 

Discussion 
 

Based on the simulation results, all three bootstrap CIs functioned well in all scenarios with 

large sample sizes ( 80).n   The average lengths remained largely unchanged and the coverage 

probabilities were close to the nominal confidence level. However, when dealing with small sample 

sizes (n 02, 02 and 02), all three bootstrap CIs displayed coverage probabilities that were below 

the nominal confidence level. In addition, when both the sample size and the IOD value increased, 

the average lengths of all the bootstrap CIs decreased. The findings of this research do not exhibit 

any substantial differences when compared to previous studies because there are theoretical reasons 

to generally prefer BC bootstrap CIs. The present methodology has the potential to assist scientists 

in comparing the IOD across different samples or experimental conditions, allowing them to assess 

variations in the spatial distribution of labelled entities. For example, scientists may compare IOD 

values between healthy and diseased tissues or between treated and untreated samples to understand 

changes in the distribution pattern. Furthermore, the IOD can serve as a quality control metric for 

immunogold assay experiments. Consistent IOD values across replicates indicate reliable and 

reproducible results, while large variations may signal issues with experimental procedures or 

sample preparation. 

One limitation of this study is that the non-parametric bootstrap CIs are not exact, but they 

exhibit consistency, indicating that the coverage probability tends to approach 0.95 as the sample 

sizes increase. Furthermore, the computation of three non-parametric bootstrap CIs is difficult and 

requires significant computational resources. However, there exist several R packages that can be 

utilised for the computation of bootstrap CIs. These packages include the boot package [36], 
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bootstrap package [40], semEff package [41] and BootES package [42]. Users have the freedom to 

download these packages as R is an open-source software. It would be advantageous to focus the 

comparative examination of alternative CI estimations in relation to the bootstrap CIs reported in 

this research in future investigations. The construction of CIs for functions of parameters, such as 

the difference and the ratio of the IOD, is of interest. Additionally, there is a lack of statistical 

theoretical research regarding hypothesis testing for the IOD of the ZTPL distribution. The 

bootstrap CIs examined in this study can be utilised for alternative distributions. These topics may 

require additional examination in future studies. 

 
CONCLUSIONS 
 

The IOD quantifies the measure of variability or dispersion within a probability distribution. 

Within the framework of the ZTPL distribution, the IOD can provide valuable insights into the 

extent of spread within the distribution. Bootstrap CIs offer several benefits including their 

robustness, flexibility and capacity to make conclusions without relying on a particular data 

distribution. They exhibit strong performance with non-Gaussian data and in scenarios where 

traditional parametric approaches are unsuitable. In addition, they offer a method that does not rely 

on a specific model to estimate the distribution of statistics obtained by sampling, and they are 

relatively simple to put into practice. The results indicate that the size of the sample has a 

significant influence on the performance of the bootstrap CIs. The coverage probabilities of all non-

parametric bootstrap CIs are significantly below the desired confidence level of 0.95 when the 

sample sizes are 02, 02 and 60. For sample sizes greater than or equal to 80, there are no significant 

differences observed in the coverage probabilities and average lengths obtained from all non-

parametric bootstrap CIs. Based on the present research outcomes, the BC bootstrap CI exhibits 

superior performance across a wide range of scenarios.  
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