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Abstract:  In this study we first define the tubular involutive surfaces as a new surface form. 
We then investigate singularity, Gaussian curvature and mean curvatures of the tubular 
involutive surfaces and get an interesting relation between these curvatures as 2퐻 =
−(푟퐾 + 1/푟). By calculating the Gaussian and mean curvatures of the tubular involutive 
surfaces, we find the necessary conditions of being flat or minimal of these surfaces. In 
addition, we analyse the necessary and sufficient conditions for parameter curves on the 
surface to be asymptotic, geodesic and line of curvature. Finally, we illustrate our method by 
presenting two examples. 

Keywords:  tubular surface, involute curve, singularity, Frenet frame 
 

INTRODUCTION  
 

Canal surfaces were first described in 1850 by the French mathematician Gaspard Monge 
[1]. The canal surface is defined as the envelope of a moving sphere with a variable radius. If the 
radius function of the movable sphere forming the canal surface is constant, the canal surface is 
called the tubular surface. These types of surfaces are used to represent pipes, ropes, poles and 3-
dimensional castings that we encounter in daily life. Again, these surfaces are useful in planning the 
lines of motion of robots, showing long thin objects, human internal organs, surface modelling for 
computer-aided design and computer-aided manufacturing.  
 Maekawa et al. [2] investigated necessary and sufficient conditions for the nonsingularity of 
tubular surfaces. Blaga [3] considered tubular surfaces as swept surfaces and gave a parametric 
representation of the inverse of a canal surface. Dogan and Yayli [4] defined tubular surface with 
respect to the Bishop frame and gave some characterisations regarding special curves lying on it. 
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Dede [5] defined the tubular surfaces according to the Flc frame. Ates et al. [6] designed the tubular 
surface formed by the spherical indicators of any space curve for the alternate moving frame. 
Akyigit et al. [7] defined the tubular surfaces using the modified orthogonal frame to give 
researchers an alternative perspective. Tubular and canal surfaces have been handled by many 
authors so far [8-16]. Also, in order to synthesise interdisciplinary studies, it is useful to note some 
important studies on ruled surfaces in different spaces [17-37]. 
 In the present paper we define tubular involutive surfaces according to the Frenet frame as a 
new surface form and examine their characteristic properties. In this sense, we first investigate 
singularity, Gaussian and mean curvatures of these surfaces. Then using the Gaussian and mean 
curvatures, we obtain necessary conditions of being flat or minimal of these surfaces. Also, we 
analyse the necessary and sufficient conditions for parameter curves on the surface to be 
asymptotic, geodesic and line of curvature. At the end of this article, we visualise the main idea by 
providing two examples. 
 
PRELIMINARIES 
 

The general concepts in this section are taken from Do Carmo [38]. Let 훾(푠), 푠 ∈ [0, 퐿] be a 
regular 3D curve with curvature 휅(푠) and torsion 휏(푠). In this paper 훾(푠)  denotes the derivative of 
훾(푠) with respect to arc length parameter 푠. We assume that 훾(푠) ≠ 0, which means that 휅(푠) ≠ 0 
and the Frenet frame {푇(푠), 푁(푠), 퐵(푠)} along 훾(푠) is defined. If we assume that 훾(푠) ≠ 0, then 

we can write 푁(푠) = ( )
‖ ( ) ‖

  for the normal vector and 퐵(푠) = 푇(푠) × 푁(푠)  for the binormal 

vector, where 푇(푠) = 훾(푠)  is the tangent vector. The Serret-Frenet equations are given by the 
following relations   

                              
푇 (푠)
푁 (푠)
퐵 (푠)

=
0 휅(푠) 0

−휅(푠) 0 휏(푠)
0 −휏(푠) 0

푇(푠)
푁(푠)
퐵(푠)

 

 
where 휅(푠) = ‖훾(푠) ‖ and 휏(푠) = 〈퐵 (푠), 푁(푠)〉 are called the curvature and torsion of the curve 
훾(푠) respectively. 

Let 훾(푠) and 훾̅(푠), 푠 ∈ [0, 퐿] be two curves such that 훾̅(푠) intersects the tangents of 훾(푠)  
orthogonally. Then 훾̅(푠) is called an involute of 훾(푠). An involute of a curve 훾(푠) with arc length 푠 
is given by                                           
                                                          훾̅: 훾̅(푠) = 훾(푠) + 휇푇(푠),                                                          (1) 
 
where 휇 = 푐 − 푠 , 푐  being a real constant, and 푇(푠)  is the unit tangent vector of 훾: 훾(푠) . For 
convenience, we suppose that 휇 ≠ 0. If 훾̅ is the involute of 훾, then the relationship between the 
Frenet frames of involute-evolute curve pair  (훾̅, 훾) is given by  
    

                                                   
푇∗(푠)
푁∗(푠)
퐵∗(푠)

=
0 1 0

−푠푖푛휃 0 푐표푠휃
푐표푠휃 0 푠푖푛휃

푇(푠)
푁(푠)
퐵(푠)

,                                         (2) 

 
where 휃 is the angle between 푇(푠) and 퐵∗(푠).   

A canal surface is briefly called the envelope of a one-parameter family of spheres. More 
precisely, it can be defined as the envelope of a moving sphere of variable radius, with a curve 
(spine curve) 훾(푠)  as the orbit of its centre  and a radius function 푟(푠) . If 푟(푠)  is a constant 
function, then the canal surface is called a tubular surface. For example, if 훾(푠) is a circle, then the 
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corresponding tubular surface is a torus. The tubular base surface 푄(푠, 휗), which passes through a 
given 3D space curve 훾(푠), can be expressed as 

 
                                     푀: 푄(푠, 휗) = 훾(푠) + 푟 푐표푠휗푁(푠) + 푠푖푛휗퐵(푠) ,                              (3) 
 
where 푁(푠) and 퐵(푠) are the principal normal and binormal vectors of 훾(푠) respectively.  
 
TUBULAR INVOLUTIVE SURFACE WITH FRENET FRAME 
 

In this section we define a new type of tubular surfaces. We assume that the spine curve of 
the tubular surface is the involute curve 훾̅ and call this surface a tubular involutive surface 푄(푠, 휗). 
We can easily write the following equation according to the connection between the 푄(푠, 휗) and a 
family of spheres which are great circles 퐶  of the unit spheres lying in the sub-space 
푆푝{푁∗(푠), 퐵∗(푠)} of the spine curve 훾̅(푠) (Figure 1): 

 
                                   푀: 푄(푠, 휗) = 훾̅(푠) + 푟 푐표푠휗푁∗(푠) + 푠푖푛휗퐵∗(푠) .                                       (4)                                
 
Using equations (1) and (2) in equation (4), we get the equation of 푀 as follows: 
 
                              푀: 푄(푠, 휗) = 훾(푠) + 휇푇(푠) + 푟 푠푖푛휓푇(푠) + 푐표푠휓퐵(푠) ,                       (5)                             

where 휓 = 휗 − 휃 is the angle between 퐵 and the position vector 푄⃗ of the characteristic circles 퐶   
lying in the plane spanned by {푁∗, 퐵∗} (Figure 2). 
       

 

 

  
     Figure 1.  Representation of the surface  푀              Figure 2.  Frenet frame of (훾̅, 훾) and 퐶  
 

Properties of Tubular Involutive Surfaces 
 

In this section the geometric properties of the tubular involutive surfaces with Frenet frame 
is examined and the conditions of being minimal or flat are determined. Afterward, the conditions 
for parameter curves on the surface of being geodesic, asymptotic and line of curvature are 
investigated. 

The surface 푀 at a distance 푟 (푟 > 0) from the spine curve 훾̅ is represented by equation (5). 
If we take the partial derivatives of 푀 with respect to 푠 and 휗, we get the following tangent vectors 
of 푀   

                                                   푄 = −푟휃 푐표푠휓푇 + 훿푁 + 푟휃 푠푖푛휓퐵                                              
푄 = 푟푐표푠휓푇 − 푟푠푖푛휓퐵 ,                                                                   

  (6) 

푻∗ 

휸 

푩∗ 
푵∗ 

푪흀 

푂 푩 
푩∗  푸(풔, 흑) 

흑 − 휽   

푻∗ = 푵 

T 

푵∗ 

휸(풔)
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where  
                                                      훿: 훿(푠, 휗) = 휇휅 + 푟(휅푠푖푛휓 − 휏푐표푠휓).                                        (7) 
 
By taking the vector product of 푄  and 푄 , we get  
 
                                                        푄 × 푄 =  −푟훿(푠푖푛휓푇 + 푐표푠휓퐵).                                          (8) 
Thus,  
                                                                  ‖푄 × 푄 ‖ =  푟|훿|.                                                          (9) 
From equations (8) and (9), we can get the unit normal vector of 푀:  
                                                     휉(푠, 휗) = ×

‖ × ‖
= ±(푠푖푛휓푇 + 푐표푠휓퐵).                                 (10) 

 
We know well that the condition 푄 × 푄 = 0 indicates singular points for a surface. Then using 
equation (8), we can give the following result for the surface 푀. 
 
Corollary 1. The tubular involutive surface 푀 has singular points if and only if the conditions 훿 =
0 is satisfied. 
  

Using equation (6), the components of the first fundamental form are obtained by 
 

                                                                
퐸 = 〈푄 , 푄 〉 = 푟 휃′ + 훿 ,
퐹 = 〈푄 , 푄 〉 = −푟 휃 ,         
퐺 = 〈푄 , 푄 〉 = 푟 .               

                                          (11) 

 
Theorem 1.  Tubular involutive surface 푀 is a regular surface if and only if 훿 is not equal to zero. 
 
Proof:  If the surface 푀 is a regular surface, then we know that  퐸퐺 − 퐹 ≠ 0. By using equation 
(11), we can write 
                                                                          퐸퐺 − 퐹 = 푟 훿  
for the surface 푀.  Since 푟 > 0, we get  
                                                                                    훿 ≠ 0.  
Conversely, if 훿 is not equal to zero, then we can easily see that the surface is regular. Thus, we 
give the following corollary.   
Corollary 2.  푀 is a regular surface if and only if 푟 ≠  . 

 
To obtain the components of the second fundamental form of 푀, we must calculate the 

following:  

                    

⎩
⎪
⎨

⎪
⎧푄 = − 푟휃 푐표푠휓 + 푟휃 푠푖푛휓 +  훿휅 푇 + (훿 − 푟휃 휅푐표푠휓 − 푟휃 휏푠푖푛휓)푁   

  + 훿휏 + 푟휃 푠푖푛휓 − 푟휃 푐표푠휓 퐵,                                                             
푄 = 푟휃 푠푖푛휓푇 + 훿 푁 + 푟휃 푐표푠휓퐵,                                                                       
푄 = −푟푠푖푛휓푇 − 푟푐표푠휓퐵,                                                                                         

      (12)    

where 
               훿 = −휅 + 휇휅 + 푟푠푖푛휓(휅 − 휃 휏) − 푟푐표푠휓(휏 + 휃 휅),   훿 = 푟(휅푐표푠휓 + 휏푠푖푛휓). 
 
Thus we can give the following theorem. 
 
Theorem 2.  The Gaussian and mean curvatures of the tubular involutive surface 푀 are respectively 

                                                           
퐾 = ,             

퐻 = ( ) .   
                                                     (13) 

  



 
Maejo Int. J. Sci. Technol. 2023, 17(02), 96-106  
 

 

100

Proof:  From equation (12) we can compute the components 퐿 = 〈푄 , 휉〉, 푀 = 〈푄 , 휉〉 and 푁 =
〈푄 , 휉〉 of the second fundamental form as  

                                                         
퐿 = −푟휃 + 훿(휏푐표푠휓 − 휅푠푖푛휓),
푀 = 푟휃 ,                                             
푁 = −푟.                                               

                                       (14) 

 
We know well that the Gaussian and mean curvatures of a surface are given by   
            
                                           퐾 = 푘 푘 = ,   퐻 = (푘 + 푘 ) =

( )
 ,                        (15) 

where 푘 , 푘  are the principal curvatures of the surface 푀. By using equations (11), (14) in (15), the 
Gaussian and mean curvatures of the tubular involutive surface 푀 are obtained by 
 
                                                                퐾 =            
and 

                                                              퐻 = ( ) .     
 
Remark 1.  Observe that using equation (7), the Gaussian and mean curvatures of the tubular 
involutive surface 푀 can be expressed as   

퐾 =
훿 − 휇휅

푟 훿  ,        

퐻 =
휇휅 − 2훿

2푟훿  ,      
 

 
where 휇 = 푐 − 푠 and 푐 is a real constant.  

Theorem 3.  The Gaussian curvature 퐾 and the mean curvature 퐻 of the tubular involutive surface 
푀 satisfy 

퐻 = − 푟퐾 + . 
 
Proof:  Using equation (13) or Remark 1, the theorem is easily proved. 
 
Corollary 3.  The principal curvatures of the surface 푀 are given by   
 

푘 = −푟퐾 ,    

푘 = −
1
푟 .      

 

 
Proof:  We know that the roots of the quadratic equation   
                                                                  푘 − 2푘퐻 + 퐾 = 0  
for the surface 푀 are the principal curvatures of  
 

푘 = 퐻 + √퐻 − 퐾   and   푘 = 퐻 − √퐻 − 퐾.  
Thus, from equations (7), (13) and the last equalities, we can give the principal curvatures of 푀 as 
follows: 

푘 = = −푟 = −푟퐾   and   푘 = −  .  
 
Theorem 4.  Let 푀 be a regular tubular involutive surface in 피 . 푀 is a flat surface if and only if    
                                                                  휓 = 푎푟푐푡푎푛 ,                                                            (16) 
 
where 휓 = 휗 − 휃 is the angle between 퐵 and the position vector of the circles 퐶 . 



 
Maejo Int. J. Sci. Technol. 2023, 17(02), 96-106  
 

 

101

 
Proof:  We know that if the surface 푀 is a flat surface, then the Gaussian curvature of 푀 vanishes, 
Thus, from equation (13)  we can write   
                                                          퐾 = 0 ⇒ 휅푠푖푛휓 − 휏푐표푠휓 = 0. 
 Direct computation gives 

                                                                    휓 = 푎푟푐푡푎푛 . 
 
In particular, a similar result is valid if the parameter curves of 푀 is a line of curvature. 
 
Theorem 5.  Let 푀 be a regular tubular involutive surface in 피 . 푀 is a minimal surface if and only 
if    
                                                   푟 =

 
.                                                                           (17) 

 
Proof:  If the surface 푀 is a minimal, then 퐻 = 0. From equation (13), the proof is clear. 
 
Theorem 6.  Let 푀 be a regular tubular involutive surface in 피 . The parameter curves of 푀 have 
the following properties:  
(ii) The 푠 parameter curve of the surface 푀 is an asymptotic curve if and only if 
 
                                                           푟 = ( ) ,   (휃 ≠ 0)                                              (18) 

or 
                                                        휃 =

√
∫ 훿(휏푐표푠휓 − 휅푠푖푛휓)푑푠.                                           (19) 

 
(ii) The 휗 parameter curve of the surface 푀 cannot be an asymptotic curve. 
 
Proof:  (i) The 푠 parameter curves are asymptotic curves on 푀 if and only if  

〈휉, 푄 〉 = 0 ⇔ −푟휃 + 훿(휏푐표푠휓 − 휅푠푖푛휓) = 0.  
Using this last equation, we can easily obtain equations (18) and (19) for the surface 푀. 
 
(ii) Since the equality 〈휉, 푄 〉 = −푟 ≠ 0 holds, the 휗 parameter curve cannot be an asymptotic 
curve.  
 
Theorem 7.  Let 푀 be a regular tubular involutive surface in 피 . The parameter curves of 푀 have 
the following properties:    
(i) The 푠 parameter curve of the surface 푀 is a geodesic curve if and only if 
                                   

                                       
(훿 + 푟휃 휅푐표푠 휓 − 푟휃 휏푠푖푛휓)(푐표푠휓 − 푠푖푛휓) = 0
푟휃 + 훿휅푐표푠휓 + 훿휏푠푖푛휓 = 0 .                                                                   (20) 

 
(ii) The 휗 parameter curve of the surface 푀 is always a geodesic curve. 
 
Proof: (i) For the 푠  parameter curve of the surface 푀  to be geodesic curves, a necessary and 
sufficient condition is that 휉 × 푄 = 0. In this case we obtain the following relations for the 푠 
parameter curve:  

                              
휉 × 푄 = (훿 푐표푠휓 − 푟휃 휅푐표푠 휓 − 푟휃 휏푠푖푛휓푐표푠휓)푇

    +(푟휃 + 훿휅푐표푠휓 + 훿휏푠푖푛휓)푁       
                               +(훿 푠푖푛휓 − 푟휃 휅푐표푠휓푠푖푛휓 − 푟휃 휏푠푖푛 휓)퐵 = 0.

 

 
Because {푇, 푁, 퐵} are linearly independent, we have the following equalities: 
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훿 푐표푠휓 − 푟휃 휅푐표푠 휓 − 푟휃 휏푠푖푛휓푐표푠휓 = 0,
푟휃 + 훿휅푐표푠휓 + 훿휏푠푖푛휓 = 0,                         
훿 푠푖푛휓 − 푟휃 휅푐표푠휓푠푖푛휓 − 푟휃 휏푠푖푛 휓 = 0.

                          (21) 

If the first and last equation are arranged, we have   
                                           (훿 + 푟휃 휅푐표푠 휓 − 푟휃 휏푠푖푛휓)(푐표푠휓 − 푠푖푛휓) = 0.  
Thus, this last equation and the second equality in equation (21) together give the desired result for 
the 푠 parameter curve.  
 
(ii) Since the equality 휉 × 푄 = 0 holds, the 휗 parameter curve is always a geodesic curve. 
 
Theorem 8.  Let 푀 be a regular tubular involutive surface in 피 . The parameter curves of 푀 is a 
line of curvature if and only if 휃 is a constant angle. 
 
Proof:  We know that the parameter curves on the surface 푀 are also a line of curvature if and only 
if 퐹 = 푀. Thus, we have from equations (11) and (14)  
                                                          −푟 휃 = 0 and 푟휃 = 0. 
The common solution of the above two relations is that 휃 is a constant angle.  

 
Using this last result and equations (11) and (14), we can give the following result. 

 
Corollary 4.  If we assume that the parameter curves of the surface 푀 are its lines of curvature, 
then the components of the first and the second fundamental forms on the surface 푀  are given by   
                퐸 = 훿 ,   퐹 = 0,   퐺 = 푟    and   퐿 = 훿(휏푐표푠휓 − 휅푠푖푛휓),   푀 = 0,   푁 = −푟. 
 
EXAMPLES 
 
Example 1.  Let 훼: 훼(푠) = (푐표푠푠, 푠푖푛푠, 0 ) be a unit speed circle. We can compute the Frenet 
apparatus of 훼 as follows: 

푇 = (−푠푖푛푠, 푐표푠푠, 0)     
푁 = (−푐표푠푠, −푠푖푛푠, 0 )
퐵 = (0,0,1)                     
휅 = 1, 휏 = 0.                   

 

The involute curve 훼  
                                           훼: 훼(푠) = (푐표푠푠 + 푠푠푖푛푠, 푠푖푛푠 − 푠푐표푠푠, 0 )                                         (22)  
can be obtained by taking 푐 = 0 in equation (1). Using equations (3) and (5), the tubular surface 푅 
around the curve 훼 and tubular involutive surface 푅 around the involute curve 훼 are given by the 
equation  
                      푅: 푅(푠, 휗) = (푐표푠푠, 푠푖푛푠, 0 ) + 푟(−푐표푠푠푐표푠휗, −푠푖푛푠푐표푠휗, 푠푖푛휗 )                          (23) 
and 
            푅: 푅(푠, 휗) = (푐표푠푠 + 푠푠푖푛푠, 푠푖푛푠 − 푠푐표푠푠, 0 ) + 푟(−푠푖푛푠푠푖푛휓, 푐표푠푠푠푖푛휓, 푐표푠휓)           (24)   
 
where 휓 = 휗 − 휃. The graphs of the surfaces 푅 and 푅 are shown in Figures 3 and 4; 휃 = , 푟 = 1 
and  −5 ≤ 푠, 휗 ≤ 5.  
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Figure 3. Tubular surface 푅 and 훼 (red)    Figure 4. Tubular involutive surface 푅 and 훼 (black) 
 
Example 2.  Let 훾: 훾(푠) = −

√
푐표푠푠, −

√
푠푖푛푠,

√
  be a unit speed circular helix. Then it is easy 

to show that  

⎩
⎪
⎨

⎪
⎧ 푇 =

√
푠푖푛푠, −

√
푐표푠푠,

√
푁 = (푐표푠푠, 푠푖푛푠, 0 )                    

퐵 = −
√

푠푖푛푠,
√

푐표푠푠,
√

휅 = 휏 =
√

               .                    

  

 
From equation (1), the involute curve of 훾̅ can be given as  
                                         훾̅: 훾̅(푠) =

√
(−푐표푠푠 + 휇푠푖푛푠, −푠푖푛푠 − 휇푐표푠푠, 푐 )                                 (25) 

where 휇 = 푐 − 푠, 푐 being a real constant. From equations (3) and (5), the tubular surface 푆 around 
the curve 훾 and tubular involutive surface 푆̅ around the involute curve 훾̅ are given by the equation 
  
                           푆: 푆(푠, 휗) = −

√
푐표푠푠, −

√
푠푖푛푠,

√
  

                                          +푟 푐표푠휗푐표푠푠 −
√

푠푖푛휗푠푖푛푠, 푐표푠휗푠푖푛푠 +
√

푠푖푛휗푐표푠푠,
√

푠푖푛휗        (26) 

and 
                          푆̅: 푆̅(푠, 휗) =

√
(−푐표푠푠 + 휇푠푖푛푠, −푠푖푛푠 − 휇푐표푠푠, 푐 )       

                                            +
√

푟(푠푖푛푠(푠푖푛휓 − 푐표푠휓), 푐표푠푠(푐표푠휓 − 푠푖푛휓), 푠푖푛휓 + 푐표푠휓),      (27) 
 
where 휓 = 휗 − 휃. The graphs of the surfaces 푆 and 푆̅ are shown in Figures 5 and 6;  휃 = , 푟 =
0.5, 푐 = 5 and −5 ≤ 푠, 휗 ≤ 5.  
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Figure 5.  Tubular surface 푆 and 훾 (red)        Figure 6. Tubular involutive surface 푆̅ and 훾̅ (black) 
 
CONCLUSIONS   
 

We have presented a new approach to constructing tubular surfaces by using the involute 
curve of a 3D space curve. This study may open new horizons for studying tubular and canal 
surface construction derived from special curves and alternative frames. 
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