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Abstract:  Zero-inflated distributions are assumed when count observations are characterised 
by an excess frequency of zero. This study utilises the cubic rank transmutation map to extend 
the exponential distribution and obtain a new mixing distribution. The distribution is then 
used to obtain a new mixed Poisson distribution and its zero-inflated form. Different moment-
based mathematical properties of the mixed Poisson distributions and their zero-inflated forms 
are presented. Five count data sets with varying percentages of zero counts are assessed with 
new propositions and with both Poisson and negative binomial distributions (along with their 
respective zero-inflated forms). Performance is compared using both –2LL and chi-square 
goodness of fit. The new proposition outperforms both Poisson and negative binomial 
distributions (and their zero-inflated forms). Results also reveal that zero-inflated forms of the 
new proposition are inferior to their classical form. In most cases the classical negative 
binomial distribution also provides a better fit than its zero-inflated form while the zero-
inflated Poisson distribution outperforms the Poisson distribution. In conclusion, most mixed 
Poisson distributions exhibit the ability to effectively model the observations with excess zero 
and tend to provide a better fit to the count observations with excess zero than their zero-
inflated forms. 

 
Keywords: cubic rank transmutation, count observations, excess zero, mixed Poisson 
distribution, maximum likelihood estimation 

 

INTRODUCTION 
 

When analysing count data, the frequency of observations can be found to be characterised 
by an unusual frequency of zeros. This can give results that are not reliable when applying 
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distributions in their classical forms. The case when there are too few zeros is termed zero-deflation 
while it is termed zero-inflation when there are too many zeros. The zero-deflated feature 
characteristics occur when the observed frequency of zeros in a data set is lower than the expected 
frequency. In the literature this scenario is less frequently reported [1, 2] than the situation where 
zero frequency is substantially higher [3]. 
 In diverse areas of applied statistics, count data analysis takes the central stage. In many 
situations, the classical Poisson distribution is assumed but in many cases there are perceived 
reasons not to utilise the distribution. This usually occurs when the data sets are dispersed or there 
are too many (or too few) zero counts. Generally, zero-modified distributions are assumed when the 
frequency of zero counts in an observation is below (or beyond) expectation. The modification 
process involves paying special attention to the frequency of zeros in the observations. Among the 
common techniques for zero modifications are zero-hurdle (ZH), zero-truncated (ZT) and zero-
inflated (ZI) distributions depending on the nature of zero counts. 

The ZH modification is assumed when the random variable is presumed to have come from 
two segments [4]. In the first segment the variable assumes zero value (zero mass) while it assumes 
positive non-zero values (truncated counts) in the second part. There is a ZT distribution when we 
isolate the probability of having a zero count from the general observations.  

The ZI distribution [5] is useful in modelling observations with several zeros by assigning an 
extra probability to the occurrence of zero counts. The distribution is applicable when excess zeros 
result from two different processes: one in which zeros occur by chance just like ones, twos, etc. 
(sampling zeros); and the other where some data are constrained to be zeros [5, 6]. An example of a 
phenomenon that best illustrates the application of the zero-inflation model is claim frequency. 
Policyholders may have no case of an accident in automobile insurance, depicting a true zero claim. 
There could also be situations when a policyholder is involved in a minor accident and may not 
report it for a claim, indicating a false zero. This is more prominent in systems that practice the 
Bonus Manus System of premium adjustment. A major difference between the ZH and ZI 
distributions is in their conceptualisations of zero counts [7]. Some researchers utilised both 
interchangeably [8, 9]. 

A major demerit in assuming the classical Poisson distribution for count data is the 
assumption of the equality of its mean and variance [10]. Count data are usually overdispersed [11 – 
13]; hence several methods have been introduced for their modelling [14, 15]. The mixed Poisson 
distribution first utilised on the gamma mixing distribution [16] is among the most widely used 
techniques for modelling dispersed observations. The method assumes a mixing distribution for the 
parameter of the Poisson distribution. In obtaining mixed Poisson distribution, different mixing 
distributions have been assumed for the Poisson parameter. Given the probability function of a 
discrete random X with the Poisson distribution as ݂(ߣ|ݔ) and suppose parameter λ is assumed to 
follow a probability distribution function (PDF) given as (ߣ)ߨ, then the mixed Poisson distribution 
is obtained by solving for the conditional distribution of X in equation (1). 

௫ܲ = න (ߣ|ݔ)݂
ஶ



 (1)                                                                                              ߣ݀(ߣ)ߨ

  
A detailed survey of different choices of (ߣ)ߨ is provided [10]. Also, different mathematical 

properties of the mixed Poisson distribution are provided [17].  
 When the exponential distribution is assumed as the mixing distribution, the geometric 
distribution is the resulting mixed Poisson distribution. To improve the flexibility of the mixing 
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distributions, this study utilises the cubic transmutation map [18] to extend the exponential 
distribution and obtain a new mixing distribution. Different forms of extended exponential 
distributions pervade the literature. These distributions have been applied in economics, reliability, 
industry, and engineering [19 – 21]. Most of these distributions have different forms of failure rate 
(unlike the classical exponential distribution with constant failure rate) making them more suitable 
for modelling observations with different shapes. In the mixed Poisson paradigm, the shapes of any 
mixing distribution mimic those of the resulting mixed Poisson distribution [17]. Also, the tail 
properties of the mixing distribution have a resemblance with those of the obtained mixed Poisson 
distribution [22, 23]. The choice of the transmuted exponential distribution in this study is to allow 
more flexibility inherent in the extended exponential distribution for the newly proposed mixed 
Poisson distribution. The zero-inflated form of the new proposition is also obtained. The 
performance of the new proposition is assessed on count observations with a higher frequency of 
zero and comparisons are made with the Poisson and the negative binomial distributions (along with 
their zero-inflated forms). 
 
CUBIC RANK TRANSMUTED EXPONENTIAL DISTRIBUTION 
 
 The exponential distribution plays an important role in the probability distribution theory 
with applications of its different extended forms in lifetime observation modelling and reliability 
analysis [20, 21, 24]. If a random variable ߣ follows an exponential distribution with parameter ߠ, 
then its distribution function (CDF) is  

(ߣ)ܩ = 1 − ݁ିఏఒ; ߠ          > ߣ   ,0 > 0.                                                                                              (2) 
  
If a baseline distribution has the distribution function as defined in equation (2), its cubic rank 
transmutation map [18] has the CDF of the form:  

(ߣ)ܨ = (1 − (ߣ)ܩ( + ൯ଶ(ߣ)ܩ൫3
− ൯ଷ(ߣ)ܩ൫2

.                                                                         (3) 
  

The cubic transmuted exponential (CTE) distribution is obtained by inserting equation (2) 
into equation (3).  Hence the CDF and PDF of the CTE distribution are respectively obtained as  

(ߣ)ܨ = 1 − ݁ିఏఒ + ఏఒି݁ + ଷఏఒି݁2 − ଶఏఒି݁3 ,                                                                         (4) 
(ߣ)݂ = ఏఒ൫1ି݁ߠ −  + ఏఒି݁6 −  ଶఏఒ൯.                                                                                   (5)ି݁6

  
The shapes of the PDF for the CTE distribution for different values of λ are presented in Figure 1. 
The distribution is skewed and unimodal for different parameter combinations. 
 

 
Figure 1.  Shapes of PDF for CTE distribution   
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Moment and Moment Generating Function of CTE Distribution 
 
Proposition 1.  If a random variable ߣ has a CTE distribution as defined in equation (5), the rth 
moment is obtained as  

(ߣ)ܧ = ൬1 −  +
3
2 −

2
3 ൰

!ݎ
ߠ .                                                                                              (6) 

 
Proof: 

(ߣ)ܧ = න (ߣ)݂ߣ
ஶ



ߣ݀  = න ఏఒି݁ߠߣ

ஶ



൫1 −  + ఏఒି݁6 −  ߣ݀ ଶఏఒ൯ି݁6

= ߠ න ݁ିఏఒߣ

ஶ



ߣ݀ − ߠ න ݁ିఏఒߣ

ஶ



ߣ݀ + ߠ6 න ݁ିଶఏఒߣ

ஶ



ߣ݀ − ߠ6 න ݁ିଷఏఒߣ

ஶ



 ߣ݀

=
!ݎ
ߠ −

!ݎ
ߠ +

!ݎ3
(ߠ2) −

!ݎ2
(ߠ3) = ൬1 −  +

3
2 −

2
3 ൰

!ݎ
ߠ . 

 
Proposition 2.  If a random variable ߣ has a CTE distribution, the moment generating function is 
obtained as  

൫݁௧ఒ൯ܧ =
ߠ

ߠ − ݐ −
ߠ

ߠ − ݐ +
ߠ6

ߠ2 − ݐ −
ߠ6

ߠ3 −  (7)                                                                              . ݐ
 
Proof: 

൫݁௧ఒ൯ܧ = න ݁௧ఒ

ஶ



ߣ݀ (ߣ)݂ = න ݁௧ఒ

ஶ



ఏఒ൫1ି݁ߠ −  + ఏఒି݁6 −  ߣଶఏఒ൯݀ି݁6

= න ఒ(ఏି௧)ି݁ߠ − ఒ(ఏି௧)ି݁ߠ + ఒ(ଶఏି௧)ି݁ߠ6 − ఒ(ଷఏି௧)ି݁ߠ6

ஶ



 ߣ݀

= ߠ න ݁ି(ఏି௧)ఒ

ஶ



ߣ݀ − ߠ න ݁ି(ఏି௧)ఒ

ஶ



+ ߣ݀ ߠ6 න ݁ି(ଶఏି௧)ఒ

ஶ



ߣ݀ − ߠ6 න ݁ି(ଷఏି௧)ఒ

ஶ



 ߣ݀

=
ߠ

ߠ − ݐ −
ߠ

ߠ − ݐ +
ߠ6

ߠ2 − ݐ −
ߠ6

ߠ3 −  . ݐ
  
MIXED POISSON TRANSMUTED EXPONENTIAL DISTRIBUTION 
 
Proposition 3.  Given that ܺ~ܲ(ߣ)݊ݏݏ݅, where λ has the PDF as given in equation (5), the 
probability mass function  (PMF) of the mixed Poisson transmuted exponential distribution 
(MPTED) is obtained as  

௫ܲ =
1)ߠ − (

(1 + ௫ାଵ(ߠ +
ߠ6

(1 + ௫ାଵ(ߠ2 −
ߠ6

(1 + ௫ାଵ(ߠ3 .                                                                   (8) 
 
Proof: 

௫ܲ = න
௫݁ିఒߣ

!ݔ .
ஶ



ߣ݀(ߣ)݂ = න
௫݁ିఒߣ

!ݔ .
ஶ



ఏఒ൫1ି݁ߠ −  + ఏఒି݁6 −  ߣ݀ ଶఏఒ൯ି݁6

=
1
!ݔ

න ௫ߣ

ஶ



൫ି݁ߠ(ଵାఏ)ఒ − ఒ(ଵାఏ)ି݁ߠ + ఒ(ଵାଶఏ)ି݁ߠ6 −  ߣ݀ ఒ൯(ଵାଷఏ)ି݁ߠ6

=
1
!ݔ ൬

!ݔߠ
(1 + ௫ାଵ(ߠ −

!ݔߠ
(1 + ௫ାଵ(ߠ +

!ݔߠ6
(1 + ௫ାଵ(ߠ2 −

!ݔߠ6
(1 +  ௫ାଵ൰(ߠ3
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=
1)ߠ − (

(1 + ௫ାଵ(ߠ +
ߠ6

(1 + ௫ାଵ(ߠ2 −
ߠ6

(1 +  . ௫ାଵ(ߠ3

 
 The shapes of the PMF of the MPTED (Figure 2) show that for different values of the 
parameters of the distribution, it is unimodal, positively skewed, and can model observations with 
many zeros. 
 

  
Figure 2.  Shapes of PMF for MPTED 

 
Proposition 4.  Given that ݂(ߣ) is the mixing distribution of a random variable X with the MPTED, 
the probability generating function (PGF) of mixed Poisson distribution is defined [25] as  

௫ܲ(ݖ) = න ݁ఒ(௭ିଵ)݂(ߣ)݀ߣ
ஶ



 

= න ݁ఒ(௭ିଵ) ି݁ߠఏఒ൫1 −  + ఏఒି݁6 − ߣ݀ ଶఏఒ൯ି݁6
ஶ



 

= ߠ න ൫݁ି(ଵି௭ାఏ)ఒ − ఒ(ଵି௭ାఏ)ି݁ + ఒ(ଵି௭ାଶఏ)ି݁6 − ߣ݀ ఒ൯(ଵି௭ାଷఏ)ି݁6
ஶ



 

= ߠ න ൬
1

(1 + ߠ − (ݖ ݁ି௩ −


(1 + ߠ − (ݖ ݁ି௩ +
6

(1 + ߠ2 − (ݖ ݁ି௩ −
6

(1 + ߠ3 − (ݖ ݁ି௩൰ ݒ݀
ஶ



 

=
ߠ

(1 + ߠ − (ݖ −
ߠ

(1 + ߠ − (ݖ +
ߠ6

(1 + ߠ2 − (ݖ −
ߠ6

(1 + ߠ3 −  . (ݖ
 
Hence the PGF of the MPTED is  

௫ܲ(ݖ) =
1)ߠ − (

(1 + ߠ − (ݖ +
ߠ6

1 + ߠ2 − ݖ −
ߠ6

1 + ߠ3 − ݖ .                                                                                   (9) 

  
 The moment generating function (MGF) for the distribution is obtained by replacing z with 
݁௧ in equation (9). Hence the MGF is obtained as 
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(ݐ)ܯ =

1)ߠ − (
(1 + ߠ − ݁௧) +

ߠ6
1 + ߠ2 − ݁௧ −

ߠ6
1 + ߠ3 − ݁௧  .                                                                        (10) 

 
 Using (10), the first four moments for the MPTED are presented in equations (11) to (14):  
(ܺ)ܧ =

6 − 
ߠ6 .                                                                       .                                                                       (11) 

(ଶܺ)ܧ =
36 − 17 − ߠ3 + ߠ18

ଶߠ18                                                                                                              (12) 

(ଷܺ)ܧ =
216 − 151 − ଶߠ6 + ଶߠ36 − ߠ102 + ߠ216

ଷߠ36                                                                  (13) 

(ସܺ)ܧ =
1296 − ଷߠ9 − ଶߠ357 + ଷߠ54 − ߠ1359 + ଶߠ756 − 1085 + ߠ1944

ସߠ54                  (14) 
 
The skewness and kurtosis for the MPTED are obtained using the moment-based relationships [26] 
respectively as  

ܵ =
(ଷܺ)ܧ − (ܺ)ܧ(ଶܺ)ܧ3 + 2൫ܧ(ܺ)൯ଷ

൫ܸܽݎ(ܺ)൯
ଷ
ଶ

 

ݑܭ =
(ସܺ)ܧ − (ܺ)ܧ(ଷܺ)ܧ4 + ൯ଶ(ܺ)ܧ൫(ଶܺ)ܧ6

− 3൫ܧ(ܺ)൯ସ

൫ܸܽݎ(ܺ)൯ଶ  . 

 
 The degree of dispersion in observations is measured with the dispersion index (DI).  If the 
DI is greater than 1, it implies an over-dispersion; when it is less than 1, it indicates an under-
dispersion; and there is an equi-dispersion when it is equal to 1. The measure is obtained from the 

ratio of the variance and the mean, i.e. (ே)
ா(ே)

. Table 1 shows simulation results of some parameters 

of the MPTED to assess the behaviour of its skewness, kurtosis and DI.  
 

Table 1.  Skewness, kurtosis and DI for some parameters of MPTED 

 Skewness Kurtosis DI 
ߠ  = ߠ 0.2 = ߠ 0.5 = ߠ 8.0 = ߠ 0.2 = ߠ 0.5 = ߠ 8.0 = ߠ 0.2 = ߠ 0.5 = 8.0 

 = −0.8 1.730 1.852 3.237 6.939 7.543 15.480 7.490 3.596 1.162 
 = −0.5 1.838 1.932 3.278 7.649 8.138 15.775 6.994 3.397 1.150 

 = 0.0 2.008 2.041 3.333 9.033 9.167 16.111 6.000 3.000 1.125 
 = 0.5 2.081 2.040 3.364 10.253 9.743 16.069 4.750 2.500 1.094 
 = 0.8 1.913 1.869 3.361 9.620 8.879 15.706 3.846 2.138 1.071 

 
Remarks 
 

i. When  is fixed, both skewness and kurtosis increase as parameter ߠ increases. 
ii. When  is fixed, the DI decreases as ߠ increases. 
iii. When ߠ is fixed, the skewness and the kurtosis increase as parameter  increases. 
iv. When ߠ is fixed, the DI decreases as  increases. 

 
Maximum Likelihood Estimation of MPTED 
 
 Assuming ݔଵ, ,ଶݔ … , ,)  are random samples of size n drawn from the MPTEDݔ  the ,(ߠ
log-likelihood function for the distribution is obtained as  

௫ܲ =
1)ߠ − (

(1 + ௫ାଵ(ߠ +
ߠ6

(1 + ௫ାଵ(ߠ2 −
ߠ6

(1 +  ௫ାଵ(ߠ3
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ℒ = ෑ ܲ(௫)



ୀଵ

= ෑ ቆ
1)ߠ − (

(1 + ௫ାଵ(ߠ +
ߠ6

(1 + ௫ାଵ(ߠ2 −
ߠ6

(1 + ௫ାଵቇ(ߠ3


ୀଵ

 

 
ℓ = ݈݃ ℒ = ∑ ݈݃ ቀ ఏ(ଵି)

(ଵାఏ)ೣశభ + ఏ
(ଵାଶఏ)ೣశభ − ఏ

(ଵାଷఏ)ೣశభቁ
ୀଵ .  

  
The estimators for (, ,̂) denoted with ,(ߠ  ), are the solutions of the function using the optimrߠ
package [27] in the R-language [28]. 
 
Zero-Inflated MPTED 
 
Proposition 5.  If a random variable X has an MPTED with PMF as given in equation (8), and if the 
inflation parameter is denoted with ܽ , then a discrete random variable ܺ  has a zero-inflated 
MPTED (ZI-MPTED) if its PMF is defined as  

௫ܲ
 = ൜ܽ + (1 − ܽ) ܲ, ݔ = 0

(1 − ܽ) ௫ܲ , ݔ = 1,2,3, … 
 
This is obtained as  

௫ܲ
 =

⎩
⎪
⎨

⎪
⎧ ܽ + (1 − ܽ) ቆ

1)ߠ − (
(1 + (ߠ +

ߠ6
(1 + (ߠ2 −

ߠ6
(1 + ቇ(ߠ3 , ݔ = 0

(1 − ܽ) ቆ
1)ߠ − (

(1 + ௫ାଵ(ߠ +
ߠ6

(1 + ௫ାଵ(ߠ2 −
ߠ6

(1 + ௫ାଵቇ(ߠ3 , ݔ = 1,2,3, …
                       (15) 

 Proof: 
Since the PMF of the MPTED is given as ௫ܲ = ఏ(ଵି)

(ଵାఏ)ೣశభ + ఏ
(ଵାଶఏ)ೣశభ − ఏ

(ଵାଷఏ)ೣశభ  and its 

realisation at ݔ = 0 is obtained as ܲ = ఏ(ଵି)
(ଵାఏ)

+ ఏ
(ଵାଶఏ)

− ఏ
(ଵାଷఏ)

.  Hence the result. 
 
Mathematical Properties of ZI-MPTED 
 
 Recall that the PGF of the MPTED is given in equation (9) as ௫ܲ(ݖ). Therefore, the PGF of 
the ZI-MPTED, denoted by ௫ܲ

(ݖ), is obtained using ܲ
(ݖ) = (1 − ܽ) ௫ܲ(ݖ): 

 

௫ܲ
(ݖ) = (1 − ܽ) ቆ

1)ߠ − (
(1 + ߠ − (ݖ +

ߠ6
1 + ߠ2 − ݖ −

ߠ6
1 + ߠ3 −  ቇ.                                                      (16)ݖ

 
The corresponding MGF is expressed as  

௫ܯ
(ݐ) = (1 − ܽ) ቆ

1)ߠ − (
1 + ߠ − ݁௧ +

ߠ6
1 + ߠ2 − ݁௧ −

ߠ6
1 + ߠ3 − ݁௧ቇ.                                                   (17) 

 
The first four moments of the ZI-MPTED are obtained as  

݉ଵ = (1 − ܽ)
6 − 

ߠ6                                                                                                                                   (18) 
 

݉ଶ = (1 − ܽ)
36 − 17 − ߠ3 + ߠ18

ଶߠ18                                                                                                  (19)  
 

݉ଷ = (1 − ܽ)
216 − 151 − ଶߠ6 + ଶߠ36 − ߠ102 + ߠ216

ଷߠ36                                                      (20) 
 

݉ସ = (1 − ܽ)
1296 − ଷߠ9 − ଶߠ357 + ଷߠ54 − ߠ1359 + ଶߠ756 − 1085 + ߠ1944

ସߠ54 .     (21) 
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Simulated skewness, kurtosis and DI for some combinations of parameters of the ZI-MPTED are 
presented in Tables 2 and 3.  

 
Table 2.  Skewness, kurtosis and DI for some parameters of ZI-MPTED when ܽ = 0.2 

 Skewness Kurtosis DI 
ߠ  = ߠ 0.2 = ߠ 0.5 = ߠ 8.0 = ߠ 0.2 = ߠ 0.5 = ߠ 8.0 = ߠ 0.2 = ߠ 0.5 = 8.0 

 = −0.8 1.966 2.123 3.711 7.906 8.786 19.554 8.624 4.049 1.191 
 = −0.5 2.057 2.195 3.756 8.614 9.407 19.931 8.077 3.831 1.177 

 = 0.0 2.187 2.285 3.817 9.893 10.419 20.370 7.000 3.400 1.150 
 = 0.5 2.194 2.257 3.852 10.730 10.812 20.346 5.667 2.867 1.117 
 = 0.8 1.984 2.072 3.849 9.697 9.708 19.919 4.713 2.485 1.093 

 
Table 3.  Skewness, kurtosis and DI for some parameters of ZI-MPTED when ܽ = 0.9 

 Skewness Kurtosis DI 
ߠ  = ߠ 0.2 = ߠ 0.5 = ߠ 8.0 = ߠ 0.2 = ߠ 0.5 = ߠ 8.0 = ߠ 0.2 = ߠ 0.5 = 8.0 

 = −0.8 6.605 7.021 11.390 58.073 65.795 163.641 12.590 5.636 1.290 
 = −0.5 6.729 7.135 11.509 61.213 68.862 166.822 11.869 5.347 1.272 

 = 0.0 6.858 7.246 11.677 65.762 73.042 170.737 10.500 4.800 1.238 
 = 0.5 6.706 7.104 11.774 65.633 72.398 171.232 8.875 4.150 1.197 
 = 0.8 6.240 6.709 11.773 57.297 64.552 168.457 7.746 3.698 1.169 

 
Remarks 
 

i. The behaviour of the simulations is similar to the one obtained for the MPTED in Table 1. 
ii. The ZI-MPTED has a higher value of all statistics when compared with the MPTED.  
iii. Increase in the value of the zero-inflation parameter increases all statistics. 

 
Maximum Likelihood Estimation of ZI-MPTED 
 
 Given a random sample of size n (ݔଵ, ,ଶݔ … ,  ) from the ZI-MPTED with PMF ௫ܲ indexedݔ
with (ߠ, , ܽ) where ܽ is the zero-inflation parameter, then parameters of the distribution can be 
estimated using the maximum likelihood estimation (MLE) method. The likelihood function is 
defined as  
ℒ(ߠ, , ܽ) = ෑ(ܽ + (1 − ܽ) ܲ)

బ

ෑ൫(1 − ܽ) ௫ܲ൯
భ

, 

 
where ݊ is the frequency of zero in the observation; ݊ଵ is the frequency of non-zero observations; 
݊ = (݊ + ݊ଵ); ܲ is the realisation of ௫ܲ at ݔ = 0. The log-likelihood function is obtained as  

ℓ = log ℒ(ߠ, , ܽ) = ݊ ln(ܽ + (1 − ܽ) ܲ) + ݊ଵ ln(1 − ܽ) + ቌ ln( ௫ܲ)
భ

ቍ 

 

= ݊ ln ቆܽ + (1 − ܽ) ቀఏ(ଵି)
(ଵାఏ) + ఏ

(ଵାଶఏ) − ఏ
(ଵାଷఏ)

ቁቇ + ݊ଵ ln(1 − ܽ) + ∑ ln ቆቀ ఏ(ଵି)
(ଵାఏ)ೣశభ + ఏ

(ଵାଶఏ)ೣశభ − ఏ
(ଵାଷఏ)ೣశభቁቇభ .  

 
߲ℓ
߲ܽ =

݊(1 − ܲ)
ܽ + (1 − ܽ) ܲ

−
݊ଵ

(1 − ܽ) 
 

ොܽ =
݊

݊ଵ
−

݊ଵ

݊ ൬ ܲ

1 − ܲ
൰. 
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The MLE for parameter space (θ, p) are obtained numerically by solving பℓ
ப

= 0 and பℓ
ப୮

= 0. 

Solutions for these estimates contain non-linear equations. This makes it difficult to obtain 
analytical solutions. Using the optimr package [27] in the R-language [28], non-linear algorithms 
are used to obtain the estimates. 
 
APPLICATIONS 
 
 The new propositions are examined on different count data sets. The first set of data is the 
frequency of one-year automobile insurance policies for Australian vehicle owners [26]. The second 
examined set of data is the 63,299 insurance count data from Belgium in 1993. The data have been 
previously utilised [29]. The third data set is the claim frequency of policyholders of a Turkish 
insurance company between 2012 – 2014. The data have been used on the Poisson-Shanker 
distribution [30] and on the zero-inflated modelling of claim frequency [31]. The fourth data set has 
been assessed on different Poisson-related distributions [32]. The fifth data set is the distribution of 
mistakes in copying groups of random digits [33]. The data set has also been used on the Poisson-
Lindley and its different generalisations [34, 35].  
 The five data sets are assessed on the MPTED, ZI-MPTED, Poisson distribution, ZI Poisson 
(ZIP) distribution, negative binomial (NB) distribution, and ZI negative binomial (ZINB) 
distribution. Both –2LL and the chi-square goodness of fit are used for model comparison. 
 
RESULTS 
 
 Tables 4 to 8 show results of applications of both mixed Poisson distribution and its zero-
inflated form (along with the Poisson and NB distributions) on five different data sets with varying 
percentages of zeros. From Table 4, the MPTED provides the best fit for the first data set, while its 
zero-inflated form has the worst fit. It is also observed that the NB distribution performs better than 
the ZINB distribution. The ZIP distribution, however, performs better than the classical Poisson 
distribution. 
 For the second data set (Table 5), the MPTED has the least –2LL, followed by the NB 
distribution. The ZI-MPTED does not provide a good fit with the highest chi-square and –2LL. It is 
also noted that the ZIP distribution performs better than the Poisson distribution. 
 For Tables 6 to 8 (data sets III, IV and V), it is generally observed that 

(i) the MPTED gives the best fit to the data sets; 
(ii) the ZI-MPTED provides the worst fit to the data set; 
(iii) the classical NB distribution outperforms the ZINB distribution in four out of the five 

assessed data sets; 
(iv) the ZIP distribution outperforms the classical Poisson distribution in all cases. 
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Table 4.  Parameter estimates on Australian claim frequency 

Observation Frequency MPTED ZI–MPTED Poisson ZIP NB ZINB 
0 63232 63230.71 63231.79 63091.61 63230.49 63230.60 63317.89 
1 4333 4332.75 4600.87 4593.07 4325.83 4330.57 4252.49 
2 271 273.75 23.24 167.19 286.59 276.48 261.98 
3 18 17.54 0.10 4.06 12.66 17.22 21.45 
4 2 1.16 0.00 0.07 0.42 1.06 1.97 

Estimate 
 =12.815ߠ

 0.405=̂
  

 =273.314ߠ
 1.593-=̂

ොܽ=-13.792 

 =0.133ߠ =0.073ߠ
 0.451=̂

 =1.157ߠ
 0.941=̂

 =0.007ߠ
 0.878=̂

ොܽ=-76.060 
-2 LL 36099.12 37714.42 36203.00 36104.40 36099.36 36211.16 

χ2 0.64 15499.49 177.66 9.07 0.98 2.51 
  

Table 5.  Parameter estimates on Belgian claim frequency 

Observation Frequency MPTED ZI–MPTED Poisson ZIP NB ZINB 
0 57178 57182.90 57178.05 56949.763 57177.48 57188.34 57249.63 
1 5617 5591.26 6061.41 6019.590 5584.80 5581.31 5558.90 
2 446 479.55 59.03 318.135 504.87 485.28 438.37 
3 50 41.21 0.50 11.209 30.43 40.47 45.91 
4 8 3.70 0.00 0.296 1.38 3.30 5.40 

Estimate 
 =8.548ߠ
 0.579=̂

  

 =140.070ߠ
 1.530-=̂
ොܽ=-9.899 

 =0.181ߠ =0.106ߠ
 0.415=̂

 =1.279ߠ
 0.924=̂

 =0.008ߠ
 0.844=̂

ොܽ=-71.130 
-2 LL 44126.50 46666.92 44301.08 44150.60 44128.62 44273.14 

χ2 2.34 23673.56 413.84 51.55 12.33 2.44 
 

Table 6.  Parameter estimates on Turkish claim frequency 

Observation Frequency MPTED ZI–MPTED Poisson ZIP NB ZINB 
0 8544 8547.09 8543.99 8292.42 8544.19 8543.47 8561.78 
1 1796 1789.79 2138.11 2201.64 1759.23 1795.62 1807.66 
2 370 376.79 125.13 292.27 430.75 375.71 331.89 
3 81 79.27 6.45 25.87 70.31 78.50 81.03 
4 23 16.65 0.30 1.72 8.61 16.39 22.23 

Estimate 
 =3.782ߠ

 0.024-=̂
  

 =22.455ߠ
 1.492-=̂
ොܽ=-3.006 

 =0.490ߠ =0.266ߠ
 0.458=̂

 =1.009ߠ
 0.792=̂

 =0.006ߠ
 0.635=̂

ොܽ=-82.430 
-2 LL 14059.43 15752.81 14306.32 14077.82 14059.43 14114.12 

χ2 2.61 3086.72 484.41 35.02 2.84 4.51 
 
Table 7.  Parameter estimates on Yeast cell count per square 

Observation Frequency MPTED ZI–MPTED Poisson ZIP NB ZINB 
0 128 127.39 128.51 118.06 128.00 126.73 180.68 
1 37 38.72 50.00 54.30 38.35 42.08 4.51 
2 18 16.03 7.44 12.49 15.49 12.84 1.15 
3 3 3.92 0.94 1.91 4.17 3.80 0.39 
4 1 0.77 0.11 0.22 0.84 1.11 0.15 

Estimate 
 =5.245ߠ

 8.556-=̂
  

 =9.116ߠ
 2.083-=̂
ොܽ=-1.467 

 =0.808ߠ =0.460ߠ
 0.431=̂

 =1.195ߠ
 0.722=̂

 =0.004ߠ
 0.490=̂

ොܽ=-11.720 
-2 LL 337.40 391.17 347.66 337.60 340.05 344.10 

χ2 0.60 30.52 12.16 0.81 2.88 517.31 
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Table 8.  Parameter estimates on distribution of mistakes in copying groups of random digits 

 Observation Frequency MPTED ZI–MPTED Poisson ZIP NB ZINB 
0 35 34.96 35.00 27.41 35.00 33.95 35.08 
1 11 10.95 16.51 21.47 11.25 14.49 14.75 
2 8 8.61 6.07 8.41 8.04 6.39 5.07 
3 4 3.70 1.81 2.20 3.83 2.85 2.32 
4 2 1.25 0.47 0.43 1.37 1.28 1.19 

Estimate 
 =2.814ߠ

 7.254-=̂
 =3.609ߠ

 2.709-=̂
ොܽ=-0.521 

 =1.430ߠ =0.783ߠ
 0.452=̂

 =0.938ߠ
 0.545=̂

 =0.003ߠ
 0.315=̂

ොܽ=-128.10 
-2 LL 144.05 172.62 155.09 143.84 146.74 149.91 

χ2 0.52 10.14 14.44 0.30 2.15 4.43 
 
 
DISCUSSION AND CONCLUSIONS 
 

Using the cubic rank transmutation map [18] on the classical exponential distribution to 
obtain a new mixing distribution, this study proposes a new mixed Poisson distribution (MPTED) 
and its zero-inflated form. Different moment-based mathematical properties of the new propositions 
are presented. Comparisons are made with five data sets with varying percentages of zero counts.  

Since the data sets assessed are plagued with relatively higher percentages of zero 
observations, it is assumed that the zero-inflated distribution will give a better fit. Results obtained, 
however, show that the MPTED gives a better fit to the data set than its zero-inflated forms. Results 
also reveal that the classical NB distribution also provides a better fit than its zero-inflated form in 
most cases while the zero-inflated Poisson distribution outperforms the classical Poisson 
distribution. 

An assessment of the shapes of the MPTED shows that in its classical form, the distribution 
can efficiently be utilised to model observations with excess zeros. Thus, introducing a special form 
that gives special attention to excess zeros will negate the already zero-modified form of the 
distribution. Also, since the NB distribution is a mixed Poisson distribution (when the gamma 
distribution is assumed as the mixing distribution), it tends to effectively model observations with 
excess zeros, and thus, its zero-inflated form may also give unnecessary attention to the already 
zero-modified natural form of the distribution. 

Unlike the mixed Poisson distribution, the classical Poisson distribution does not give 
special attention to zero observations and it makes sense to modify it when observations are plagued 
with excess zeros. This is noticed in the results where the ZIP distribution gives a better fit than the 
classical Poisson distribution when applied to the five count data sets. 
 Results from this study have shown that most mixed Poisson distributions are naturally in 
zero-inflated forms. They tend to provide a good fit to count observations with excess zeros. 
Obtaining their zero-inflated forms may be counter-productive. 
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