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Abstract: In the present work we introduce Bernoulli-Padovan numbers and polynomials. We
give their generating functions of the Bernoulli-Padovan numbers and polynomials. We
establish various relations involving the Bernoulli-Padovan numbers and polynomials by
considering the Pado-derivative. We describe Pado-Bernoulli matrices in terms of the
Bernoulli-Padovan numbers and polynomials. We establish a factorisation of the Pado-
Bernoulli matrix by using a generalised Pado-Pascal matrix, and obtain the inverse of the
Pado-Bernoulli matrix. Also, we give a relationship between the Pado-Bernoulli matrix and
the Pado-Pascal matrix.
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INTRODUCTION

Bernoulli numbers were first introduced by Swiss mathematician Jacob Bernoulli (1654-
11705) in his posthumously published book Ars Conjectandi in 1713 [1]. He discovered them while
working on Faulhaber's formula for the sum of the first n positive integers' n'" powers [1]. The
Bernoulli numbers can be found in Taylor series expansions of tangent, hyperbolic tangent,
cotangent and hyperbolic cotangent functions, as well as Euler Mac-Laurent formula and
expressions at certain values of Rieman Zeta function [2]. The Bernoulli numbers can be found in
nearly every branch of mathematics. Furthermore, they appear in the proof of Fermat's last theorem
by Kummer’s theorem [3].

Bernoulli numbers and polynomials are a very current topic that has been studied by many
researchers and has several generalisations. The g-expansions of Bernoulli numbers are one of
them. Ernst [4, 5] published two important studies under the umbral approximation which helped to
reveal a variety of g-specific matrices such as g-Bernoulli, g-Euler, g-Pascal and g-Bernoulli
matrices. Zhang's work [6] included information on the Bernoulli matrix and its algebraic
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properties. Al-Salam [7] and Carlitz [8] defined the g-Bernoulli numbers and polynomials. Kus et
al. [9] have used the Fibonacci calculus to reveal the Bernoulli F-polynomials and Fibo-Bernoulli
matrices.

The special numbers, polynomials and their generating functions have many applications in
all branches of mathematics and applied science. Using the generating functions is a very useful
method; by generating functions for special numbers and polynomials we can derive not only new
properties of these special numbers and polynomials, we can also give a combinatorial
interpretation in enumerative combinatorics [10]. The applications of special numbers and
polynomials may be given in probability and statistics, mathematical physics, engineering and
cryptology [11, 12].

The Bernoulli polynomials B, (x) are defined by the generating function as follows:

Xt 00 n
te 1:Zzgn(x)t—', n>0.
n=0 .

e — n

On the other hand, the Bernoulli polynomial B, (x) can be given by the explicit formula

B,(x)= Z.;U]Bx

where B, is n™ Bernoulli number and defined by B, =B, (0) Also, the Bernoulli numbers are
defined by the generating function as
t = t"
=>»B —, t<2rm).
TR (<)

On the other hand, the Bernoulli numbers B, can be given by the formula

S -5 (n>1)

r=0 r

with By =1.

A few terms of the Bernoulli polynomials and numbers are given below:

B, (x) =x’ —%xz +%x,

1
B =x'-2x"+x"——,
L(x)=x X +Xx 30

1 1 1

Bozl, B]Z—E, Bzzg, B3=0, B4=—— B =0.

s 5

The Bernoulli polynomials and numbers obey the following relations:

B, (x+1)-B,(x)=m""

d

EB" (x) =n.B, (x),
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-
S (JB, (x) =nx"", n>1,
r=0
n

-1 n
B =0, n>2.
r=0 r

The Padovan numbers {P, }:; , are defined by the third recurrence relation:

P =P ,+F ,;,(n>3)

S

with the initial conditions F, = B, = P, =1. The Padovan sequence appears as sequence A000931 on

the On-Line Encyclopedia of Integer Sequences [13]. Studies on generalised Padovan numbers are
given by Soykan [14, 15].

BERNOULLI P-NUMBERS AND P-POLYNOMIALS

Krot [16] introduced the finite Fibonomial calculus, which is a special case of v — extended

Rota’s finite operator calculus given by Kwasniewski [17]. In the present work we consider similar
calculus, which is called Padonomial calculus by using Padovan numbers.
The main concepts of Padonomial calculus, P-factorial and P-binomial coefficients, are
defined by
P!=PP P ,..RF, PB!=1.

170>

(nJ P!
k), P_'B!

" =1,and n<k igin " =0.
0), k),

It 1s clear that the following equalities hold:

a0 GLOL-CLGE),

The Padonomial’s theorem (P-analog of binomial theorem) can be given as

For n>k>1,

n (N e
(x+P y) =Z(kJ xFynE.
k=0 P
The Pado-exponantial function (P-analog of exponantial) is defined by

e}zz;!.

n=0 4,

Hence we write

ep :i(tx)‘ :

n=0 n*

The linear operator Dj :P — P such that D}(x")=Px"", n>0, is called Pado-derivative.

Here P denotes the vector space of polynomials over the field of real or complex numbers.
According to this definition we have
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D; (e ) =tey . (1)
Definition 1. Let (ZJ be the Padonomial coefficients and P, be the n™ Padovan number. The
P

Bernoulli P—numbers B, , are defined as

| n
)
k=0 % f+1 P

A few elements of Bernoulli P —numbers B, , are

5 9 19 45
B,,=1, B ,=2, Byp==, Bip==, Bp=—, Bsp :T'
Theorem 1. The exponential generating function of the Bernoulli P —numbers B p IS

g(X)=—(e;_tl)e; :

Proof. Let g(x):i;Bn,P ;:'. By the definition of B, ,, we write
~ t" & 1 (n "
2P i ;E@Ja!

sy L AL L }
S\&E, P IRIB]

— N N 1 1 n

_nz::; k:OmPn k!}

n=0 B, ' n=0 R, '
By definition of the Pado-exponential function e,,, we obtain the desired result, i.e.
e, —1)e,
g(x)= (e =t)er.
Definition 2. Let (ZJ be the Padonomial coefficients and P, be the n™ Padovan numbers. The
P
Bernoulli P —polynomials are defined as

- 1 n n—k
B ) .
v (%) k=0 (kjp g

A few elements of Bernoulli P —polynomials are
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BO,P(X):L BLP()C):)C-FL qup(x)=x2+x+%, B3qP(x)=x3+2x2+x+%,
B, , (x) =x"+2x7 +2x7 + x+§.
Theorem 2. The exponential generating function of the Bernoulli P —polynomials B, , (x) 1s
el‘ _1 exl‘
h(x)= Q i
t
Proof. The proof similar to that of Theorem 1 can be given.

BERNOULLI-PADOVAN NUMBERS AND BERNOULLI-PADOVAN POLYNOMIALS

It is well known that Krot defined and investigated the Bernoulli-Fibonacci numbers and
Bernoulli-Fibonacci polynomial [16]. Kus et al. [9] have studied the Bernoulli F-polynomials and
Fibo-Bernoulli matrices. In the present work we consider similar investigations by using the
Padovan numbers.

Definition 3. The Bernoulli-Padovan polynomials B, (x) are defined by the exponential generating
function as

=Y B (x) @
Also, the Bernoulli-Padovan polynomials can be given by the explicit formula

B3] g

r=0 r

with B; (x)=1. In fact, we can write

tey ot 2 " x" N T N A
= B = B * .
e, —1 [Z; "P!j[,,z_:;P!] Z;[O "R! P! ]

Hence we have

[o'e} tn B o0 n P xn—r \
Sue-3 S )

The Bernoulli-Padovan numbers Bf are special values of the Bernoulli-Padovan

polynomials. The following definition shows the exponential generating function of the Bernoulli-
Padovan numbers.

Definition 4. The exponential generating function of the Bernoulli-Padovan numbers is defined as
t 00 P tn
=>»B :
ep—1 ,,Z:.; " P!
In other words, the Bernoulli-Padovan numbers Bf can be given by the explicit formula

Bf:i(i] B, (n>1),
,

r=0

with B] =1. A few elements of the Bernoulli-Padovan polynomials are
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By (x)=1,
B/ (x)=x-1,

Bf(x) =x’ —x+%,

Bf(x)=x3—2x2+x—%,
P 4 3 2 2
B/ (x)=x"-2x"+2x —x+§,
B (x)=x"=3x"+3x’ -3x° +2x—%.

A few elements of the Bernoulli-Padovan numbers are
1 1, 2 5

BOP=1’ BIP=_15 B2P=_5 BSP=__5 B4 =_’ BP=__.

2 2 > 4

60

Now we give the relationship between the first few Bernoulli-Padovan polynomials B (x),

the Bernoulli P-polynomials B, , (x) and the classical Bernoulli polynomials by means of graphs in

Figure 1.

Figure 1. Graphs of f =B, (x), g=B,,(x) and h=B,(x) for n=1,2,3,4
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Proposition 1. The Pado-derivative application for the Bernoulli-Padovan polynomials Bf (x) is

given as follows:
D; (B (x))= BB/ (x).

Proof. Taking the Pado-derivative of both sides in equality (2), we have

X te;f _ X S P tn
Dp(e;_lj—DP(;;Bn (x)P!]

tD; (e ¢ £
—e’;(_;) = D,’;(Bo”(x)wl” (x)E+BZP (x)§+---].

The Pado-derivative for the left side can be calculated by using the equality (1). For the right side, it
is clear that

D; (87 (x)) = D3 (1)=0.

Then
=3 i (B ()
e -1 & P\ Pk P
> B (x) = 303 (8] (0) £
=R AN = EE A
) » tn+1 B 0 N » t_
;Bn (x) Pl —;DP(Bk (x))pkv
By using the following relations,
n+] 0 tn+]
> B (x) = 3 D (B ()5
n=0 n ! n=0 n+l*
0 n+] Dx 1 tn+] >
z0 n ' z ( ”+] )Pn+l Pn'

we obtain the desired result:
D; (B (x))= BB/ (x).

Proposition 2. The Bernoulli-Padovan polynomials B/ (x) are calculated by the recurrence
relation for n>1 as

S n P n—1

z i B, (x):Pn x".

k=0 P

Proof. By multiplying all sides of the equality (2) by e}, the following equality is obtained:

x t

lepe,
= B
er—1 Z(;

:

Hence we have
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Dy (€)= (B (3)¢s B ()1
D[zjj—)J 58! (3)eh -8 ()
gtnDé('x " :g(B:(x)e;_Bf(x))g'
Zt};x. | =:ZOB:(x)eP%—gB: (x) ; .

So we get

Then we obtain

By the relation

we get the desired equality,

PADO-BERNOULLI MATRICES

Using a generalised Pado-Pascal matrix, we create a factorisation of the Pado-Bernoulli
matrix in this section. The Bernoulli P-polynomials are then used to create an interesting matrix. In
addition, the inverse of the Pado-Bernoulli matrix is obtained. We also show that the Pado-
Bernoulli matrix and the Pado-Pascal matrix have a link.

The nxn Pascal matrix PC, = (cy) is defined [18, 19] as



63
Maejo Int. J. Sci. Technol. 2023, 17(01), 55-67

-1y
iz,

G = [1_1]
0, if i<j.

Definition 5. For the mtegers i, j and n, 1<, j<n, the generalised nxn Pado-Pascal matrix

PP,[x]=(PP,(x:i,)) is defined as

i—1 .
i s
N Y

0, if i<j
For example
10 0 0 O]
x 1 0 0 O
PR[x]=|x¥* x 1 0 0.
¥ 2 2x 1 0
_x4 2x° 4x° 2x 1]

Definition 6. For 7> 2, the inverse of the generalised Pado-Pascal matrix PP, [x] = (PPW‘l (x;0, ] ))

1s defined as

i—1 o
b_. X, if i,
PP (x5, j) = il ( j—ljp fizJ

0, if i<,
where b =1and b =-— :_:bk (ZJ . For example
P
1 0 0 O]
—X 1 0 0 O
PP [x]= 0 —x 0 0.
2 0 2x 1 0
_—3x4 4x° 0 —2x 1]

Definition 7. For the integers i,j and n , 1<i j<n , the Pado-Bernoulli matrix

PB, [x] = (PBn (x;i,j)) is defined as
] e iz

PB, (x;i,j)=\j-1), ™"

0, ifi<j,

where B, , (x ) is the n'" Bernoulli P-polynomial. For example
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1 0 0
x+1 1 0
PBS[x]z X +x+d x+1 1
X +2x° +x+2 2x° +2x+1 2x+2
|x*+20° 4207+ x+ 4 200 +4x7 42041 4x7 +4x+2 2x+42

0
0
0
1

0
0
0.
0
1_
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Using the Padonomial coefficients, we now create a special matrix. The factorised Pado-

Bernoulli matrix is then obtained using the extended Pado-Pascal matrix.

Definition 8. Let P be the n™ Padovan number. For the integers i, j and n,and 1<i, j<n, the

0,(P)= [ py:| matrix is defined as

1 (i—l] iz
—_— . , 1 l_],
Py =1E_ . \J-1),

0, if i<].
For example

_— = = O
N =)
S ==
- o o o o

[\
—~~
~
N—"
Il
W= W= = = =

Proposition 3. For every positive integer# ,

1 n
S(4) s r,
k), " P

k=0 k+1

is true, where &, , is the Kronecker delta symbol.

Theorem 3. Let B, be the n™ Bernoulli-Padovan numbers. ;' (P) = [qy} . The inverse of the

nxn

0(P)= |:py. }M matrix is

i—1 P o .
. B_,, ifiz],
g, =\J—1),
0, if i<j.
Proof.

(0 (P10, (P), =T aur,

t(i—-1 k-1
k=j k-1 P Pk—j+l ]_1 P
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where for i=j

n

i—1

n
1), 2

)80

. ] Pn!én,o’
Jj=1),

P
n—k

=(
|

’ (Q;] (P)o, (p)) =1 and for i #J, (Q,D (P)
ij

1 0 0 0

-1 1 0 0

O (P)=| 3 -1 1 0

-1 1 2 1

2 -1 2 =2

1
Pk+l

— o O O O
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0,(P)) =0. For example

i

Theorem 4. Let PBH[X] be the Pado-Bernoulli matrix and PP, [X] be a generalised Pado-Pascal

matrix. Then

Proof.

For example

1
x+1
X +x+3

X +2x° +x+3

xt+2x + 257 +x+3

PB[x)=PR[0.(P).

(Pp,[x]O,(P ) Ztkpk/

b

—

L=

1
2x
4x°

0

0

1
2x+2
2%’ +4x7 +2x+1 4x* +4x+2

X
2
2x

2x°

— o O O

w

= 8 =

2x

x+1
2x% +2x+1

—Jj+l1

(x)

1

- o O O O

W= R= Rm =

S O O T

p—

2x+2

k-1
j—1

vl

_ == = O
N =)
S ==
- o o o o
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CONCLUSIONS

In this study the relations of the Padovan numbers and polynomials with Bernoulli numbers
have been established and the Bernoulli-Padovan numbers and polynomials have been obtained.
The various equalities of the Bernoulli-Padovan numbers and polynomials have been given. The
Pado-derivative is used to prove the stated equalities. Inspired by the definition of Pascal matrix, the
Pado-Pascal matrix is defined. The Pado-Bernoulli matrix has been obtained by using the Pado-
Pascal matrix. Finally, a relationship between the Pado-Pascal matrix and the Pado-Bernoulli matrix
has been established. The Pado-Bernoulli matrix can be used in cryptology by interpreting the terms
on finite fields.
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