Journal of Science and Technology

ISSN 1905-7873
Available online at www.mijst.mju.ac.th

Full Paper

Bernoulli-Padovan polynomials and Pado-Bernoulli matrices

Orhan Dişkaya and Hamza Menken*
Mersin University, Department of Mathematics, Mersin, Turkey
* Corresponding author, e-mail: hmenken@mersin.edu.tr

Received: 2 June 2022 / Accepted: 24 March 2023 / Published: 28 March 2023

Abstract

In the present work we introduce Bernoulli-Padovan numbers and polynomials. We give their generating functions of the Bernoulli-Padovan numbers and polynomials. We establish various relations involving the Bernoulli-Padovan numbers and polynomials by considering the Pado-derivative. We describe Pado-Bernoulli matrices in terms of the Bernoulli-Padovan numbers and polynomials. We establish a factorisation of the PadoBernoulli matrix by using a generalised Pado-Pascal matrix, and obtain the inverse of the Pado-Bernoulli matrix. Also, we give a relationship between the Pado-Bernoulli matrix and the Pado-Pascal matrix.

Keywords: Padovan polynomials, Bernoulli numbers, Pascal matrices, exponential generating function

INTRODUCTION

Bernoulli numbers were first introduced by Swiss mathematician Jacob Bernoulli (165411705) in his posthumously published book Ars Conjectandi in 1713 [1]. He discovered them while working on Faulhaber's formula for the sum of the first n positive integers' $n^{\text {th }}$ powers [1]. The Bernoulli numbers can be found in Taylor series expansions of tangent, hyperbolic tangent, cotangent and hyperbolic cotangent functions, as well as Euler Mac-Laurent formula and expressions at certain values of Rieman Zeta function [2]. The Bernoulli numbers can be found in nearly every branch of mathematics. Furthermore, they appear in the proof of Fermat's last theorem by Kummer's theorem [3].

Bernoulli numbers and polynomials are a very current topic that has been studied by many researchers and has several generalisations. The q-expansions of Bernoulli numbers are one of them. Ernst $[4,5]$ published two important studies under the umbral approximation which helped to reveal a variety of q-specific matrices such as q-Bernoulli, q-Euler, q-Pascal and q-Bernoulli matrices. Zhang's work [6] included information on the Bernoulli matrix and its algebraic
properties. Al-Salam [7] and Carlitz [8] defined the q-Bernoulli numbers and polynomials. Kus et al. [9] have used the Fibonacci calculus to reveal the Bernoulli F-polynomials and Fibo-Bernoulli matrices.

The special numbers, polynomials and their generating functions have many applications in all branches of mathematics and applied science. Using the generating functions is a very useful method; by generating functions for special numbers and polynomials we can derive not only new properties of these special numbers and polynomials, we can also give a combinatorial interpretation in enumerative combinatorics [10]. The applications of special numbers and polynomials may be given in probability and statistics, mathematical physics, engineering and cryptology [11, 12].

The Bernoulli polynomials $B_{n}(x)$ are defined by the generating function as follows:

$$
\frac{t e^{x t}}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!}, n>0
$$

On the other hand, the Bernoulli polynomial $B_{n}(x)$ can be given by the explicit formula

$$
B_{n}(x)=\sum_{r=0}^{n}\binom{n}{r} B_{r} x^{n-r}
$$

where B_{n} is $n^{\text {th }}$ Bernoulli number and defined by $B_{n}=B_{n}(0)$. Also, the Bernoulli numbers are defined by the generating function as

$$
\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!}, \quad(|t|<2 \pi)
$$

On the other hand, the Bernoulli numbers B_{n} can be given by the formula

$$
\sum_{r=0}^{n}\binom{n}{r} B_{r}=B_{n}, \quad(n>1)
$$

with $B_{0}=1$.
A few terms of the Bernoulli polynomials and numbers are given below:
$B_{0}(x)=1$,
$B_{1}(x)=x-\frac{1}{2}$,
$B_{2}(x)=x^{2}-x+\frac{1}{6}$,
$B_{3}(x)=x^{3}-\frac{3}{2} x^{2}+\frac{1}{2} x$,
$B_{4}(x)=x^{4}-2 x^{3}+x^{2}-\frac{1}{30}$,
$B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, B_{3}=0, B_{4}=-\frac{1}{30}, B_{5}=0$.
The Bernoulli polynomials and numbers obey the following relations:

$$
\begin{gathered}
B_{n}(x+1)-B_{n}(x)=n x^{n-1}, \\
\frac{d}{d x} B_{n}(x)=n \cdot B_{n-1}(x),
\end{gathered}
$$

$$
\begin{gathered}
\sum_{r=0}^{n-1}\binom{n}{r} B_{r}(x)=n x^{n-1}, n \geq 1, \\
\sum_{r=0}^{n-1}\binom{n}{r} B_{r}=0, \quad n \geq 2 .
\end{gathered}
$$

The Padovan numbers $\left\{P_{n}\right\}_{n=0}^{\infty}$ are defined by the third recurrence relation:

$$
P_{n}=P_{n-2}+P_{n-3},(n>3)
$$

with the initial conditions $P_{0}=P_{1}=P_{2}=1$. The Padovan sequence appears as sequence A000931 on the On-Line Encyclopedia of Integer Sequences [13]. Studies on generalised Padovan numbers are given by Soykan [14, 15].

BERNOULLI P-NUMBERS AND P-POLYNOMIALS

Krot [16] introduced the finite Fibonomial calculus, which is a special case of ψ-extended Rota's finite operator calculus given by Kwaśniewski [17]. In the present work we consider similar calculus, which is called Padonomial calculus by using Padovan numbers.

The main concepts of Padonomial calculus, P-factorial and P-binomial coefficients, are defined by

$$
P_{n}!=P_{n} P_{n-1} P_{n-2} \ldots P_{1} P_{0}, P_{0}!=1 .
$$

For $n \geq k \geq 1$,

$$
\begin{gathered}
\binom{n}{k}_{P}=\frac{P_{n}!}{P_{n-k}!P_{k}!} \\
\binom{n}{0}_{P}=1, \text { and } n<k \text { için }\binom{n}{k}_{P}=0
\end{gathered}
$$

It is clear that the following equalities hold:

$$
\binom{n}{k}_{P}=\binom{n}{n-k}_{P}, \quad\binom{n}{k}_{P}\binom{k}{j}_{P}=\binom{n}{j}_{P}\binom{n-j}{k-j}_{P} .
$$

The Padonomial's theorem (P -analog of binomial theorem) can be given as

$$
\left(x+_{P} y\right)^{n}=\sum_{k=0}^{n}\binom{n}{k}_{P} x^{k} y^{n-k} .
$$

The Pado-exponantial function (P-analog of exponantial) is defined by

$$
e_{P}^{t}=\sum_{n=0}^{\infty} \frac{t^{n}}{P_{n}!} .
$$

Hence we write

$$
e_{P}^{t x}=\sum_{n=0}^{\infty} \frac{(t x)^{n}}{P_{n}!} .
$$

The linear operator $D_{P}^{x}: \mathrm{P} \rightarrow \mathrm{P}$ such that $D_{P}^{x}\left(x^{n}\right)=P_{n} x^{n-1}, n \geq 0$, is called Pado-derivative. Here P denotes the vector space of polynomials over the field of real or complex numbers. According to this definition we have

Definition 1. Let $\binom{n}{k}_{P}$ be the Padonomial coefficients and P_{n} be the $n^{\text {th }}$ Padovan number. The Bernoulli P-numbers $B_{n, P}$ are defined as

$$
B_{n, P}=\sum_{k=0}^{n} \frac{1}{P_{k+1}}\binom{n}{k}_{P} .
$$

A few elements of Bernoulli P-numbers $B_{n, P}$ are

$$
B_{0, P}=1, B_{1, P}=2, B_{2, P}=\frac{5}{2}, B_{3, P}=\frac{9}{2}, B_{4, P}=\frac{19}{3}, B_{5, P}=\frac{45}{4} .
$$

Theorem 1. The exponential generating function of the Bernoulli P-numbers $B_{n, P}$ is

$$
g(x)=\frac{\left(e_{P}^{t}-1\right) e_{P}^{t}}{t}
$$

Proof. Let $g(x)=\sum_{n=0}^{\infty} B_{n, P} \frac{t^{n}}{P_{n}!}$. By the definition of $B_{n, P}$, we write

$$
\begin{aligned}
\sum_{n=0}^{\infty} B_{n, P} \frac{t^{n}}{P_{n}!} & =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{1}{P_{k+1}}\binom{n}{k}\right) \frac{t^{n}}{P_{n}!} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{1}{P_{k+1}} \frac{P_{n}!}{P_{n-k}!P_{k}!} \frac{1}{P_{n}!}\right) t^{n} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{1}{P_{k+1}!} \frac{1}{P_{n-k}!}\right) t^{n} \\
& =\left(\sum_{n=0}^{\infty} \frac{t^{n}}{P_{n+1}!}\right)\left(\sum_{n=0}^{\infty} \frac{t^{n}}{P_{n}!}\right) \\
& =\frac{1}{t}\left(\sum_{n=0}^{\infty} \frac{t^{n+1}}{P_{n+1}!}\right)\left(\sum_{n=0}^{\infty} \frac{t^{n}}{P_{n}!}\right) \\
& =\frac{1}{t}\left(\sum_{n=0}^{\infty} \frac{t^{n}}{P_{n}!}-1\right)\left(\sum_{n=0}^{\infty} \frac{t^{n}}{P_{n}!}\right)
\end{aligned}
$$

By definition of the Pado-exponential function e_{P}^{t}, we obtain the desired result, i.e.

$$
g(x)=\frac{\left(e_{P}^{t}-1\right) e_{P}^{t}}{t}
$$

Definition 2. Let $\binom{n}{k}_{P}$ be the Padonomial coefficients and P_{n} be the $n^{\text {th }}$ Padovan numbers. The Bernoulli P - polynomials are defined as

$$
B_{n, P}(x)=\sum_{k=0}^{n} \frac{1}{P_{k+1}}\binom{n}{k}_{P} x^{n-k} .
$$

A few elements of Bernoulli P - polynomials are
$B_{0, P}(x)=1$,
$B_{1, P}(x)=x+1$,
$B_{2, P}(x)=x^{2}+x+\frac{1}{2}$,
$B_{3, P}(x)=x^{3}+2 x^{2}+x+\frac{1}{2}$,
$B_{0, P}(x)=x^{4}+2 x^{3}+2 x^{2}+x+\frac{1}{3}$.

Theorem 2. The exponential generating function of the Bernoulli P-polynomials $B_{n, P}(x)$ is

$$
h(x)=\frac{\left(e_{P}^{t}-1\right) e_{P}^{x t}}{t} .
$$

Proof. The proof similar to that of Theorem 1 can be given.

BERNOULLI-PADOVAN NUMBERS AND BERNOULLI-PADOVAN POLYNOMIALS

It is well known that Krot defined and investigated the Bernoulli-Fibonacci numbers and Bernoulli-Fibonacci polynomial [16]. Kus et al. [9] have studied the Bernoulli F-polynomials and Fibo-Bernoulli matrices. In the present work we consider similar investigations by using the Padovan numbers.

Definition 3. The Bernoulli-Padovan polynomials $B_{n}^{P}(x)$ are defined by the exponential generating function as

$$
\begin{equation*}
\frac{t e_{P}^{t x}}{e_{P}^{t}-1}=\sum_{n=0}^{\infty} B_{n}^{P}(x) \frac{t^{n}}{P_{n}!} \tag{2}
\end{equation*}
$$

Also, the Bernoulli-Padovan polynomials can be given by the explicit formula

$$
B_{n}^{P}(x)=\sum_{r=0}^{n}\binom{n}{r}_{P} B_{r}^{P} x^{n-r}
$$

with $B_{0}^{P}(x)=1$. In fact, we can write

$$
\frac{t e_{P}^{t x}}{e_{P}^{t}-1}=\left(\sum_{n=0}^{\infty} B_{n}^{P} \frac{t^{n}}{P_{n}!}\right)\left(\sum_{n=0}^{\infty} \frac{t^{n} x^{n}}{P_{n}!}\right)=\sum_{n=0}^{\infty}\left(\sum_{r=0}^{n} B_{r}^{P} \frac{t^{r}}{P_{r}!} \cdot \frac{t^{n-r} x^{n-r}}{P_{n-r}!}\right)
$$

Hence we have

$$
\sum_{n=0}^{\infty} B_{n}^{P}(x) \frac{t^{n}}{P_{n}!}=\sum_{n=0}^{\infty}\left(\sum_{r=0}^{n} B_{r}^{P} \frac{x^{n-r}}{P_{n-r}!P_{r}!}\right) t^{n} .
$$

The Bernoulli-Padovan numbers B_{n}^{P} are special values of the Bernoulli-Padovan polynomials. The following definition shows the exponential generating function of the BernoulliPadovan numbers.

Definition 4. The exponential generating function of the Bernoulli-Padovan numbers is defined as

$$
\frac{t}{e_{P}^{t}-1}=\sum_{n=0}^{\infty} B_{n}^{P} \frac{t^{n}}{P_{n}!}
$$

In other words, the Bernoulli-Padovan numbers B_{n}^{P} can be given by the explicit formula

$$
B_{n}^{P}=\sum_{r=0}^{n}\binom{n}{r}_{P} B_{r}^{P},(n>1),
$$

with $B_{0}^{P}=1$. A few elements of the Bernoulli-Padovan polynomials are
$B_{0}^{P}(x)=1$,
$B_{1}^{P}(x)=x-1$,
$B_{2}^{P}(x)=x^{2}-x+\frac{1}{2}$,
$B_{3}^{P}(x)=x^{3}-2 x^{2}+x-\frac{1}{2}$,
$B_{4}^{P}(x)=x^{4}-2 x^{3}+2 x^{2}-x+\frac{2}{3}$,
$B_{5}^{P}(x)=x^{5}-3 x^{4}+3 x^{3}-3 x^{2}+2 x-\frac{5}{4}$.
A few elements of the Bernoulli-Padovan numbers are

$$
B_{0}^{P}=1, B_{1}^{P}=-1, B_{2}^{P}=\frac{1}{2}, B_{3}^{P}=-\frac{1}{2}, B_{4}^{P}=\frac{2}{3}, B_{5}^{P}=-\frac{5}{4} .
$$

Now we give the relationship between the first few Bernoulli-Padovan polynomials $B_{n}^{P}(x)$, the Bernoulli P-polynomials $B_{n, P}(x)$ and the classical Bernoulli polynomials by means of graphs in Figure 1.

Figure 1. Graphs of $f=B_{n}^{P}(x), g=B_{n, P}(x)$ and $h=B_{n}(x)$ for $n=1,2,3,4$

Proposition 1. The Pado-derivative application for the Bernoulli-Padovan polynomials $B_{n}^{P}(x)$ is given as follows:

$$
D_{P}^{x}\left(B_{n}^{P}(x)\right)=P_{n} B_{n-1}^{P}(x)
$$

Proof. Taking the Pado-derivative of both sides in equality (2), we have

$$
\begin{aligned}
D_{P}^{x}\left(\frac{t e_{P}^{t x}}{e_{P}^{t}-1}\right) & =D_{P}^{x}\left(\sum_{n=0}^{\infty} B_{n}^{P}(x) \frac{t^{n}}{P_{n}!}\right) \\
\frac{t D_{P}^{x}\left(e_{P}^{t x}\right)}{e_{P}^{t}-1} & =D_{P}^{x}\left(B_{0}^{P}(x)+B_{1}^{P}(x) \frac{t}{P_{1}!}+B_{2}^{P}(x) \frac{t^{2}}{P_{2}!}+\cdots\right)
\end{aligned}
$$

The Pado-derivative for the left side can be calculated by using the equality (1). For the right side, it is clear that

$$
D_{P}^{x}\left(B_{0}^{P}(x)\right)=D_{P}^{x}(1)=0
$$

Then

$$
\begin{aligned}
& t \frac{t e_{P}^{t x}}{e_{P}^{t}-1}=\sum_{k=1}^{\infty} D_{P}^{x}\left(B_{k}^{P}(x)\right) \frac{t^{k}}{P_{k}!} \\
& t \sum_{n=0}^{\infty} B_{n}^{P}(x) \frac{t^{n}}{P_{n}!}=\sum_{k=1}^{\infty} D_{P}^{x}\left(B_{k}^{P}(x)\right) \frac{t^{k}}{P_{k}!} . \\
& \sum_{n=0}^{\infty} B_{n}^{P}(x) \frac{t^{n+1}}{P_{n}!}=\sum_{k=1}^{\infty} D_{P}^{x}\left(B_{k}^{P}(x)\right) \frac{t^{k}}{P_{k}!}
\end{aligned}
$$

By using the following relations,

$$
\begin{aligned}
& \sum_{n=0}^{\infty} B_{n}^{P}(x) \frac{t^{n+1}}{P_{n}!}=\sum_{n=0}^{\infty} D_{P}^{x}\left(B_{n+1}^{P}(x)\right) \frac{t^{n+1}}{P_{n+1}!} \\
& \sum_{n=0}^{\infty} B_{n}^{P}(x) \frac{t^{n+1}}{P_{n}!}=\sum_{n=0}^{\infty} D_{P}^{x}\left(B_{n+1}^{P}(x)\right) \frac{1}{P_{n+1}} \frac{t^{n+1}}{P_{n}!}
\end{aligned}
$$

we obtain the desired result:

$$
D_{P}^{x}\left(B_{n}^{P}(x)\right)=P_{n} B_{n-1}^{P}(x)
$$

Proposition 2. The Bernoulli-Padovan polynomials $B_{k}^{P}(x)$ are calculated by the recurrence relation for $n \geq 1$ as

$$
\sum_{k=0}^{n-1}\binom{n}{k}_{P} B_{k}^{P}(x)=P_{n} x^{n-1}
$$

Proof. By multiplying all sides of the equality (2) by e_{P}^{t}, the following equality is obtained:

$$
\frac{t e_{P}^{t x} e_{P}^{t}}{e_{P}^{t}-1}=\sum_{n=0}^{\infty} B_{n}^{P}(x) e_{P}^{t} \frac{t^{n}}{P_{n}!}
$$

Hence we have

$$
\begin{aligned}
\frac{t e_{P}^{t x}}{e_{P}^{t}-1}\left(e_{P}^{t}-1\right) & =\sum_{n=0}^{\infty}\left(B_{n}^{P}(x) e_{P}^{t}-B_{n}^{P}(x)\right) \frac{t^{n}}{P_{n}!} \\
t e_{P}^{t x} & =\sum_{n=0}^{\infty}\left(B_{n}^{P}(x) e_{P}^{t}-B_{n}^{P}(x)\right) \frac{t^{n}}{P_{n}!}
\end{aligned}
$$

$$
\begin{gathered}
D_{P}^{x}\left(e_{P}^{t x}\right)=\sum_{n=0}^{\infty}\left(B_{n}^{P}(x) e_{P}^{t}-B_{n}^{P}(x)\right) \frac{t^{n}}{P_{n}!} \\
D_{P}^{x}\left(\sum_{n=0}^{\infty} \frac{(t x)^{n}}{P_{n}!}\right)=\sum_{n=0}^{\infty}\left(B_{n}^{P}(x) e_{P}^{t}-B_{n}^{P}(x)\right) \frac{t^{n}}{P_{n}!} \\
\sum_{n=0}^{\infty} \frac{t^{n} D_{P}^{x}(x)^{n}}{P_{n}!}=\sum_{n=0}^{\infty}\left(B_{n}^{P}(x) e_{P}^{t}-B_{n}^{P}(x)\right) \frac{t^{n}}{P_{n}!} \\
\sum_{n=0}^{\infty} \frac{t^{n} P_{n} x^{n-1}}{P_{n}!}=\sum_{k=0}^{\infty} B_{k}^{P}(x) e_{P}^{t} \frac{t^{k}}{P_{k}!}-\sum_{n=0}^{\infty} B_{n}^{P}(x) \frac{t^{n}}{P_{n}!} .
\end{gathered}
$$

On the right side of this equality,

$$
\begin{aligned}
\sum_{k=0}^{\infty} B_{k}^{P}(x) e_{P}^{t} \frac{t^{k}}{P_{k}!} & =\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} B_{k}^{P}(x) \frac{t^{l}}{P_{l}!} \cdot \frac{t^{k}}{P_{k}!} \\
& =\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} B_{k}^{P}(x) \frac{t^{l+k}}{P_{l}!P_{k}!} \\
& =\sum_{n=0}^{\infty} \frac{1}{P_{n}!} \sum_{k=0}^{\infty} B_{k}^{P}(x) \frac{t^{n} P_{n}!}{P_{n-k}!P_{k}!} \\
& =\sum_{n=0}^{\infty} \frac{t^{n}}{P_{n}!}\left(\sum_{k=0}^{n}\binom{n}{k} B_{k}^{P}(x)\right) .
\end{aligned}
$$

So we get

$$
\sum_{n=0}^{\infty} \frac{t^{n} P_{n} x^{n-1}}{P_{n}!}=\sum_{n=0}^{\infty} \frac{t^{n}}{P_{n}!}\left(\sum_{k=0}^{n}\binom{n}{k}_{P} B_{k}^{P}(x)\right)-\sum_{n=0}^{\infty} B_{n}^{P}(x) \frac{t^{n}}{P_{n}!} .
$$

Then we obtain

$$
\sum_{k=0}^{n}\binom{n}{k}_{P} B_{k}^{P}(x)-B_{n}^{P}(x)=P_{n} x^{n-1}
$$

By the relation

$$
\sum_{k=0}^{n-1}\binom{n}{k}_{P} B_{k}^{P}(x)+\binom{n}{n}_{P} B_{n}^{P}(x)-B_{n}^{P}(x)=P_{n} x^{n-1}
$$

we get the desired equality,

$$
\sum_{k=0}^{n-1}\binom{n}{k}_{P} B_{k}^{P}(x)=P_{n} x^{n-1}
$$

PADO-BERNOULLI MATRICES

Using a generalised Pado-Pascal matrix, we create a factorisation of the Pado-Bernoulli matrix in this section. The Bernoulli P-polynomials are then used to create an interesting matrix. In addition, the inverse of the Pado-Bernoulli matrix is obtained. We also show that the PadoBernoulli matrix and the Pado-Pascal matrix have a link.

The $n \times n$ Pascal matrix $P C_{n}=\left(c_{i j}\right)$ is defined $[18,19]$ as

$$
c_{i j}=\left\{\begin{array}{r}
\binom{i-1}{j-1}, \text { if } i \geq j \\
0, \text { if } i<j
\end{array}\right.
$$

Definition 5. For the integers i, j and $n, 1 \leq i, j \leq n$, the generalised $n \times n$ Pado-Pascal matrix $P P_{n}[x]=\left(P P_{n}(x ; i, j)\right)$ is defined as

$$
P P_{n}(x ; i, j)= \begin{cases}\binom{i-1}{j-1}_{P} x^{i-j}, & \text { if } \quad i \geq j, \\ 0, & \text { if } i<j .\end{cases}
$$

For example

$$
P P_{5}[x]=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
x & 1 & 0 & 0 & 0 \\
x^{2} & x & 1 & 0 & 0 \\
x^{3} & 2 x^{2} & 2 x & 1 & 0 \\
x^{4} & 2 x^{3} & 4 x^{2} & 2 x & 1
\end{array}\right]
$$

Definition 6. For $n \geq 2$, the inverse of the generalised Pado-Pascal matrix $P P_{n}^{-1}[x]=\left(P P_{n}^{-1}(x ; i, j)\right)$ is defined as

$$
P P_{n}^{-1}(x ; i, j)=\left\{\begin{array}{cc}
b_{i-j+1}\binom{i-1}{j-1}_{P} x^{i-j}, & \text { if } i \geq j \\
0, & \text { if } i<j
\end{array}\right.
$$

where $b_{1}=1$ and $b_{n}=-\sum_{k=1}^{n-1} b_{k}\binom{n}{k}_{P}$. For example

$$
P P_{5}^{-1}[x]=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
-x & 1 & 0 & 0 & 0 \\
0 & -x & 1 & 0 & 0 \\
2 x^{3} & 0 & -2 x & 1 & 0 \\
-3 x^{4} & 4 x^{3} & 0 & -2 x & 1
\end{array}\right] .
$$

Definition 7. For the integers i, j and $n, 1 \leq i, j \leq n$, the Pado-Bernoulli matrix $P B_{n}[x]=\left(P B_{n}(x ; i, j)\right)$ is defined as

$$
P B_{n}(x ; i, j)=\left\{\begin{array}{cc}
\binom{i-1}{j-1}_{P} B_{i-j, P}(x), & \text { if } i \geq j, \\
0, & \text { if } i<j,
\end{array}\right.
$$

where $B_{n, P}(x)$ is the $n^{\text {th }}$ Bernoulli P-polynomial. For example

$$
P B_{5}[x]=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
x+1 & 1 & 0 & 0 & 0 \\
x^{2}+x+\frac{1}{2} & x+1 & 1 & 0 & 0 \\
x^{3}+2 x^{2}+x+\frac{1}{2} & 2 x^{2}+2 x+1 & 2 x+2 & 1 & 0 \\
x^{4}+2 x^{3}+2 x^{2}+x+\frac{1}{3} & 2 x^{3}+4 x^{2}+2 x+1 & 4 x^{2}+4 x+2 & 2 x+2 & 1
\end{array}\right] .
$$

Using the Padonomial coefficients, we now create a special matrix. The factorised PadoBernoulli matrix is then obtained using the extended Pado-Pascal matrix.
Definition 8. Let P_{n} be the $n^{\text {th }}$ Padovan number. For the integers i, j and n, and $1 \leq i, j \leq n$, the $Q_{n}(P)=\left[p_{i j}\right]_{n \times n}$ matrix is defined as

$$
p_{i j}=\left\{\begin{array}{cc}
\frac{1}{P_{i-j+1}}\binom{i-1}{j-1}_{P}, & \text { if } i \geq j, \\
0, & \text { if } i<j
\end{array}\right.
$$

For example

$$
Q_{5}(P)=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
\frac{1}{2} & 1 & 1 & 0 & 0 \\
\frac{1}{2} & 1 & 2 & 1 & 0 \\
\frac{1}{3} & 1 & 2 & 2 & 1
\end{array}\right]
$$

Proposition 3. For every positive integer n,

$$
\sum_{k=0}^{n}\binom{n}{k}_{P} B_{n-k}^{P} \frac{1}{P_{k+1}}=P_{n}!\delta_{n, 0}
$$

is true, where $\delta_{n, m}$ is the Kronecker delta symbol.
Theorem 3. Let B_{n}^{P} be the $n^{\text {th }}$ Bernoulli-Padovan numbers. $Q_{n}^{-1}(P)=\left[q_{i j}\right]_{n \times n}$. The inverse of the $Q(P)=\left[p_{i j}\right]_{n \times n}$ matrix is

$$
q_{i j}=\left\{\begin{array}{cc}
\binom{i-1}{j-1}_{P} B_{i-j}^{P}, & \text { if } i \geq j \\
0, & \text { if } i<j
\end{array}\right.
$$

Proof.

$$
\begin{aligned}
& \left(Q_{n}^{-1}(P) Q_{n}(P)\right)_{i j}=\sum_{k=j}^{i} q_{i k} p_{k j} \\
& =\sum_{k=j}^{i}\binom{i-1}{k-1}_{P} B_{i-k}^{P} \frac{1}{P_{k-j+1}}\binom{k-1}{j-1}_{P} \\
& =\sum_{k=j}^{i}\binom{i-1}{j-1}_{P}\binom{i-j}{k-j}_{P} B_{i-k}^{P} \frac{1}{P_{k-j+1}} \\
& =\binom{i-1}{j-1}_{P}^{i-j} \sum_{k=0}^{i-j}\binom{i-j}{k}_{P} B_{i-j-k}^{P} \frac{1}{P_{k+1}}
\end{aligned}
$$

$$
\begin{aligned}
& =\binom{i-1}{j-1}_{P} \sum_{k=0}^{n}\binom{n}{k}_{P} B_{n-k}^{P} \frac{1}{P_{k+1}} \\
& =\binom{i-1}{j-1}_{P} P_{n}!\delta_{n, 0},
\end{aligned}
$$

where for $i=j,\left(Q_{n}^{-1}(P) Q_{n}(P)\right)_{i j}=1$ and for $i \neq j,\left(Q_{n}^{-1}(P) Q_{n}(P)\right)_{i j}=0$. For example

$$
Q_{5}^{-1}(P)=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 \\
\frac{1}{2} & -1 & 1 & 0 & 0 \\
-\frac{1}{2} & 1 & -2 & 1 & 0 \\
\frac{2}{3} & -1 & 2 & -2 & 1
\end{array}\right]
$$

Theorem 4. Let $P B_{n}[x]$ be the Pado-Bernoulli matrix and $P P_{n}[x]$ be a generalised Pado-Pascal matrix. Then

$$
P B_{n}[x]=P P_{n}[x] Q_{n}(P)
$$

Proof.

$$
\begin{aligned}
\left(P P_{n}[x] Q_{n}(P)\right)_{i j} & =\sum_{k=j}^{i} t_{i k} p_{k j} \\
& =\sum_{k=j}^{i}\binom{i-1}{k-1}_{P} x^{i-k} \frac{1}{P_{k-j+1}}\binom{k-1}{j-1}_{P} \\
& =\binom{i-1}{j-1}_{P}^{i-j} \sum_{k=0} \frac{1}{P_{k-j+1}}\binom{i-j}{k}_{P} x^{i-j-k} \\
& =\binom{i-1}{j-1}_{P} B_{i-j, P}(x) \\
& =\left(P B_{n}[x]\right)_{i j} .
\end{aligned}
$$

For example

$$
\begin{array}{r}
P P_{5}[x] Q_{5}(P)=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
x & 1 & 0 & 0 & 0 \\
x^{2} & x & 1 & 0 & 0 \\
x^{3} & 2 x^{2} & 2 x & 1 & 0 \\
x^{4} & 2 x^{3} & 4 x^{2} & 2 x & 1
\end{array}\right]\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
\frac{1}{2} & 1 & 1 & 0 & 0 \\
\frac{1}{2} & 1 & 2 & 1 & 0 \\
\frac{1}{3} & 1 & 2 & 2 & 1
\end{array}\right] \\
=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
x+1 & 1 & 0 & 0 & 0 \\
x^{2}+x+\frac{1}{2} & x+1 & 1 & 0 & 0 \\
x^{3}+2 x^{2}+x+\frac{1}{2} & 2 x^{2}+2 x+1 & 2 x+2 & 1 & 0 \\
x^{4}+2 x^{3}+2 x^{2}+x+\frac{1}{3} & 2 x^{3}+4 x^{2}+2 x+1 & 4 x^{2}+4 x+2 & 2 x+2 & 1
\end{array}\right]=P B_{5}[x] .
\end{array}
$$

CONCLUSIONS

In this study the relations of the Padovan numbers and polynomials with Bernoulli numbers have been established and the Bernoulli-Padovan numbers and polynomials have been obtained. The various equalities of the Bernoulli-Padovan numbers and polynomials have been given. The Pado-derivative is used to prove the stated equalities. Inspired by the definition of Pascal matrix, the Pado-Pascal matrix is defined. The Pado-Bernoulli matrix has been obtained by using the PadoPascal matrix. Finally, a relationship between the Pado-Pascal matrix and the Pado-Bernoulli matrix has been established. The Pado-Bernoulli matrix can be used in cryptology by interpreting the terms on finite fields.

ACKNOWLEDGEMENT

The authors wish to thank the referees for useful comments and suggestions.

REFERENCES

1. T. L. Kitagawa, "The origin of the Bernoulli numbers: Mathematics in Basel and Edo in the early eighteenth century", Math. Intell., 2022, 44, 46-56.
2. E. Y. Deeba and D. M. Rodriguez, "Bernoulli numbers and trigonometric functions", Int. J. Math. Ed. Sci. Technol., 1990, 21, 275-282.
3. E. E. Kummer, "General proof of Fermat's theorem that the equation $x^{\lambda}+y^{\lambda}=z^{\lambda}$ cannot be solved by integers for all those power exponents λ which are odd prime numbers and do not appear as factors in the numerators of the first $1 / 2(\lambda)$ Bernoulli numbers", J. Reine Angew. Math., 1850, 40, 130-138 (in German).
4. T. Ernst, " q-Pascal and q-Bernoulli matrices and umbral approach", D. M. Report, 2008, Department of Mathematics, Uppsala University, Sweden.
5. T. Ernst, "On several q-special matrices, including the q-Bernoulli and q-Euler matrices", Linear Algebra Appl., 2018, 542, 422-440.
6. Z. Zhang and J. Whang, "Bernoulli matrix and its algebraic properties", Discrete Appl. Math., 2006, 154, 1622-1632.
7. W. A. Al-Salam, " q-Bernoulli numbers and polynomials", Math. Nachr., 1959, 17, 239-260.
8. L. Carlitz, " q-Bernoulli numbers and polynomials", Duke Math. J., 1948, 15, 987-1000.
9. S. Kuş, N. Tuglu and T. Kim, "Bernoulli F-polynomials and Fibo-Bernoulli matrices", $A d v$. Differ. Equ., 2019, Art.no. 145.
10. M. Bóna, "Introduction to Enumerative and Analytic Combinatorics", $2^{\text {nd }}$ Edn., CRC Press, Boca Raton, 2015.
11. E. Avaroglu, O. Diskaya and H. Menken, "The classical aes-like cryptology via the fibonacci polynomial matrix", Turkish J. Eng., 2020, 4, 123-128.
12. M. Asci and S. Aydinyuz, " k-Order Fibonacci polynomials on AES-like cryptology", Comput. Model. Eng. Sci., 2022, DOI: 10.32604/cmes.2022.017898.
13. N. J. A. Sloane, "The on-line encyclopedia of integer sequences", 1964, https://oeis.org/A000931 (Accessed: May 2022)
14. Y. Soykan, "A study on generalized Jacobsthal-Padovan numbers", Earthline J. Math. Sci., 2020, 4, 227-251.
15. Y. Soykan, "On generalized Padovan numbers", 2021, https://www.preprints.org/manuscript/ 202110.0101/download/final_file (Accessed: May 2022)
16. E. Krot, "An introduction to finite fibonomial calculus", Central Eur. J. Math., 2004, 2, 754766.
17. A. K. Kwaśniewski, "Towards ψ-extension of Rota's finite operator calculus", Rep. Math. Phys., 2001, 48, 305-342.
18. R. Brawer and M. Pirovino, "The linear algebra of the Pascal matrix", Linear Algebra Appl., 1992, 174, 13-23.
19. G. S. Call and D. J. Velleman, "Pascal's matrices", Amer. Math. Monthly, 1993, 100, 372-376.
© 2023 by Maejo University, San Sai, Chiang Mai, 50290 Thailand. Reproduction is permitted for noncommercial purposes.
