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Abstract: In the present work we introduce Bernoulli-Padovan numbers and polynomials. We 
give their generating functions of the Bernoulli-Padovan numbers and polynomials. We 
establish various relations involving the Bernoulli-Padovan numbers and polynomials by 
considering the Pado-derivative. We describe Pado-Bernoulli matrices in terms of the 
Bernoulli-Padovan numbers and polynomials.  We establish a factorisation of the Pado-
Bernoulli matrix by using a generalised Pado-Pascal matrix, and obtain the inverse of the 
Pado-Bernoulli matrix. Also, we give a relationship between the Pado-Bernoulli matrix and 
the Pado-Pascal matrix. 
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INTRODUCTION 
 

Bernoulli numbers were first introduced by Swiss mathematician Jacob Bernoulli (1654-
11705) in his posthumously published book Ars Conjectandi in 1713 [1]. He discovered them while 
working on Faulhaber's formula for the sum of the first n positive integers' nth powers [1]. The 
Bernoulli numbers can be found in Taylor series expansions of tangent, hyperbolic tangent, 
cotangent and hyperbolic cotangent functions, as well as Euler Mac-Laurent formula and 
expressions at certain values of Rieman Zeta function [2]. The Bernoulli numbers can be found in 
nearly every branch of mathematics. Furthermore, they appear in the proof of Fermat's last theorem 
by Kummer’s theorem [3]. 

Bernoulli numbers and polynomials are a very current topic that has been studied by many 
researchers and has several generalisations. The q-expansions of Bernoulli numbers are one of 
them. Ernst [4, 5] published two important studies under the umbral approximation which helped to 
reveal a variety of q-specific matrices such as q-Bernoulli, q-Euler, q-Pascal and q-Bernoulli 
matrices. Zhang's work [6] included information on the Bernoulli matrix and its algebraic 
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properties. Al-Salam [7] and Carlitz [8] defined the q-Bernoulli numbers and polynomials.  Kus et 
al. [9] have used the Fibonacci calculus to reveal the Bernoulli F-polynomials and Fibo-Bernoulli 
matrices.  

The special numbers, polynomials and their generating functions have many applications in 
all branches of mathematics and applied science. Using the generating functions is a very useful 
method; by generating functions for special numbers and polynomials we can derive not only new 
properties of these special numbers and polynomials, we can also give a combinatorial 
interpretation in enumerative combinatorics [10]. The applications of special numbers and 
polynomials may be given in probability and statistics, mathematical physics, engineering and 
cryptology [11, 12]. 

The Bernoulli polynomials  nB x  are defined by the generating function as follows: 
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On the other hand, the Bernoulli polynomial  nB x   can be given by the explicit formula 
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where nB  is nth Bernoulli number and defined by  0n nB B . Also, the Bernoulli numbers are 

defined by the generating function as  
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On the other hand, the Bernoulli numbers nB  can be given by the formula  
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 ,     1n    

with 0 1B  .  
A few terms of the Bernoulli polynomials and numbers are given below: 

 0 1,B x   

 1
1 ,
2

B x x   

  2
2

1 ,
6

B x x x    

  3 2
3

3 1 ,
2 2

B x x x x    

  4 3 2
4

12
30

B x x x x    , 

0 1 2 3 4 5
1 1 11,  ,  ,  0,  ,  0.
2 6 30

B B B B B B         

The Bernoulli polynomials and numbers obey the following relations: 
 

    11 n
n nB x B x nx    , 

   1.n n
d B x n B x
dx  , 
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The Padovan numbers   0n n
P 


 are defined by the third recurrence relation: 

2 3 , ( 3)n n nP P P n     
 
with the initial conditions 0 1 2 1P P P   . The Padovan sequence appears as sequence A000931 on 
the On-Line Encyclopedia of Integer Sequences [13]. Studies on generalised Padovan numbers are 
given by Soykan [14, 15]. 
 
BERNOULLI  P-NUMBERS AND P-POLYNOMIALS 
 

Krot [16] introduced the finite Fibonomial calculus, which is a special case of   extended 
Rota’s finite operator calculus given by Kwaśniewski [17].  In the present work we consider similar 
calculus, which is called Padonomial calculus by using Padovan numbers. 

The main concepts of Padonomial calculus, P-factorial and P-binomial coefficients, are 
defined by  

1 2 1 0!n n n nP P P P PP   ,  0 ! 1P  . 

For 1n k  , 
!

! !
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n k kP

n P
k P P

 
 

 
,  

1
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, and n k  için  0

P

n
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It is clear that the following equalities hold: 
 

P P

n n
k n k
   

      
,  

P P P P

n k n n j
k j j k j

       
              

. 

 
The Padonomial’s theorem (P-analog of binomial theorem) can be given as  

 
0

n
n k n k

P
k P

n
x y x y

k




 
   

 
 . 

The Pado-exponantial function (P-analog of exponantial) is defined by  
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Hence we write  
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The linear operator :x

PD     such that 1( ) ,   0x n n
P nD x P x n  , is called Pado-derivative. 

Here   denotes the vector space of polynomials over the field of real or complex numbers. 
According to this definition we have 
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Definition 1.  Let 
P

n
k

 
 
 

 be the Padonomial coefficients and  nP   be the nth Padovan number. The 

Bernoulli P  numbers ,n PB  are defined as 
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A few elements of Bernoulli P  numbers ,n PB  are  

0, 1,PB   1, 2,PB   2,
5 ,
2PB   3,

9 ,
2PB   4,

19 ,
3PB   5,

45.
4PB   

 
Theorem 1.  The exponential generating function of the Bernoulli P  numbers ,n PB  is 
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By definition of the Pado-exponential function t

Pe ,  we obtain the desired result, i.e. 

 1
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Definition 2.  Let 
P

n
k

 
 
 

 be the Padonomial coefficients and  nP   be the nth Padovan numbers. The 

Bernoulli P  polynomials are defined as 
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A few elements of Bernoulli P  polynomials are  
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 0, 1,PB x    1, 1,PB x x     2
2,

1 ,
2PB x x x      3 2

3,
12 ,
2PB x x x x     

  4 3 2
0,

12 2 .
3PB x x x x x      

 
Theorem 2.  The exponential generating function of the Bernoulli P  polynomials  ,n PB x  is 

   1t xt
P Pe e

h x
t


 . 
 
Proof.  The proof similar to that of Theorem 1 can be given. 
 
BERNOULLI-PADOVAN  NUMBERS AND  BERNOULLI-PADOVAN  POLYNOMIALS 

 
It is well known that Krot defined and investigated the Bernoulli-Fibonacci numbers and 

Bernoulli-Fibonacci polynomial [16]. Kus et al. [9]  have studied the Bernoulli F-polynomials and 
Fibo-Bernoulli matrices. In the present work we consider similar investigations by using the 
Padovan numbers. 

 
Definition 3. The Bernoulli-Padovan polynomials  P

nB x  are defined by the exponential generating 
function as 
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Also, the Bernoulli-Padovan polynomials can be given by the explicit formula   
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The Bernoulli-Padovan numbers P

nB  are special values of the Bernoulli-Padovan 
polynomials. The following definition shows the exponential generating function of the Bernoulli-
Padovan numbers.  

 
Definition 4.  The exponential generating function of the Bernoulli-Padovan numbers is defined as  
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In other words, the Bernoulli-Padovan numbers P
nB  can be given by the explicit formula  
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with 0 1PB  .  A few elements of the Bernoulli-Padovan polynomials are  
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 0 1,PB x   

 1 1,PB x x   

  2
2

1 ,
2

PB x x x    

  3 2
3

12 ,
2

PB x x x x     

  4 3 2
4

22 2 ,
3

PB x x x x x      

  5 4 3 2
5

53 3 3 2 .
4

PB x x x x x x       
 
A few elements of the Bernoulli–Padovan numbers are   

0 1 2 3 4 5
1 1 2 51,  1,   ,  ,  ,  .
2 2 3 4

P P P P P PB B B B B B          
 
Now we give the relationship between the first few Bernoulli-Padovan polynomials  P

nB x , 
the Bernoulli P-polynomials  ,n PB x  and the classical Bernoulli polynomials by means of graphs in 
Figure 1. 

 

 
Figure 1.  Graphs of  P

nf B x ,  ,n Pg B x  and  nh B x  for 1, 2,3,4n   
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Proposition 1.  The Pado-derivative application for the Bernoulli-Padovan polynomials  P
nB x  is 

given as follows: 
    1 .x P P

P n n nD B x P B x  
 
Proof.  Taking the Pado-derivative of both sides in equality (2), we have  
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The Pado-derivative for the left side can be calculated by using the equality (1). For the right side, it 
is clear that 
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By using the following relations, 
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we obtain the desired result: 
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Proposition 2. The Bernoulli-Padovan polynomials  P

kB x  are calculated by the recurrence 

relation for 1n  as  

 
1

1

0

n
P n
k n

k P

n
B x P x

k






 
 

 
 .         

Proof.  By multiplying all sides of the equality (2) by t
Pe , the following equality is obtained: 
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On the right side of this equality, 
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By the relation 
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we get the desired equality, 
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PADO-BERNOULLI MATRICES 
 

Using a generalised Pado-Pascal matrix, we create a factorisation of the Pado-Bernoulli 
matrix in this section. The Bernoulli P-polynomials are then used to create an interesting matrix. In 
addition, the inverse of the Pado-Bernoulli matrix is obtained. We also show that the Pado-
Bernoulli matrix and the Pado-Pascal matrix have a link. 

The n n  Pascal matrix  n ijPC c  is defined [18, 19] as 
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1
,   ,

1
        0,   .

ij

i
if i j

c j
if i j

  
   

 

 

 
Definition 5.  For the integers ,i j  and n ,  1 ,i j n  , the generalised n n  Pado-Pascal matrix 

    ; ,n nPP x PP x i j  is defined as 
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jPP x i j
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For example 

  2
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3 2

4 3 2

1 0 0 0 0
1 0 0 0

1 0 0
2 2 1 0
2 4 2 1

x
PP x x x

x x x
x x x x
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Definition 6. For 2n  , the inverse of the generalised Pado-Pascal matrix     1 1 ; ,n nPP x PP x i j   

is defined as 
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 1
5

3

4 3

1 0 0 0 0
1 0 0 0

0 1 0 0
2 0 2 1 0
3 4 0 2 1

x
PP x x

x x
x x x
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Definition 7. For the integers ,i j  and n , 1 ,i j n  , the Pado-Bernoulli matrix 

    ; ,n nPB x PB x i j  is defined as 

   ,

1
,     ,

1; ,
        0,                     ,

i j P
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i
B x if i j

jPB x i j
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where  ,n PB x  is the nth Bernoulli P-polynomial. For example 
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  2 1
5 2

3 2 21
2

4 3 2 3 2 21
3

1 0 0 0 0
1 1 0 0 0

1 1 0 0
2 2 2 1 2 2 1 0

2 2 2 4 2 1 4 4 2 2 2 1

x
x x xPB x

x x x x x x
x x x x x x x x x x

 
  
   
       
           

. 

 
Using the Padonomial coefficients, we now create a special matrix. The factorised Pado-

Bernoulli matrix is then obtained using the extended Pado-Pascal matrix. 
 
Definition 8.  Let nP   be the nth Padovan number. For the integers ,i j  and n , and 1 ,i j n  , the 

 n ij n n
Q P p


     matrix is defined as 
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For example 
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5 2

1
2
1
3

1 0 0 0 0
1 1 0 0 0

1 1 0 0
1 2 1 0
1 2 2 1

Q P
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Proposition 3.  For every positive integer n ,   
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is true, where ,n m  is the Kronecker delta symbol. 
 
Theorem 3.  Let P

nB  be the nth Bernoulli-Padovan numbers.  1
n ij n n

Q P q


    . The inverse of the 
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     matrix is  

1
,     ,

1
        0,             .

P
i j

ij P

i
B if i j

jq
if i j



  
   

 

 

Proof.  
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0 1

,0

1 1
1

1
! ,
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n k

k kP P

n n
P

i n
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j k P

i
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j



 

   
       

 
   


 

 
where for i j ,     1 1n n ij

Q P Q P   and for i j ,     1 0n n ij
Q P Q P  .  For example 

 

 1 1
5 2

1
2

2
3

1 0 0 0 0
1 1 0 0 0

1 1 0 0
1 2 1 0
1 2 2 1

Q P

 
  
 
   
   

. 

 
Theorem 4.  Let  nPB x  be the Pado-Bernoulli matrix and  nPP x  be a generalised Pado-Pascal 

matrix. Then 

     n n nPB x PP x Q P . 

Proof.  
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0 1
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1 1
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i j P
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n ij

B x
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For example 

    2 1
5 5 2

3 2 1
2

4 3 2 1
3

1 0 0 0 01 0 0 0 0
1 1 0 0 01 0 0 0

1 1 0 01 0 0
1 2 1 02 2 1 0
1 2 2 12 4 2 1

x
PP x Q P x x

x x x
x x x x

  
  
  
  
  
  
     

 

 2 1
52

3 2 21
2

4 3 2 3 2 21
3

1 0 0 0 0
1 1 0 0 0

1 1 0 0
2 2 2 1 2 2 1 0

2 2 2 4 2 1 4 4 2 2 2 1

x
x x x PB x

x x x x x x
x x x x x x x x x x

 
  
    
       
           

. 
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CONCLUSIONS   
 

In this study the relations of the Padovan numbers and polynomials with Bernoulli numbers 
have been established and the Bernoulli-Padovan numbers and polynomials have been obtained. 
The various equalities of the Bernoulli-Padovan numbers and polynomials have been given. The 
Pado-derivative is used to prove the stated equalities. Inspired by the definition of Pascal matrix, the 
Pado-Pascal matrix is defined. The Pado-Bernoulli matrix has been obtained by using the Pado-
Pascal matrix. Finally, a relationship between the Pado-Pascal matrix and the Pado-Bernoulli matrix 
has been established. The Pado-Bernoulli matrix can be used in cryptology by interpreting the terms 
on finite fields. 
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