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Abstract:  Under low-temperature stress, reactive oxygen species (ROS) metabolism in 
plants becomes dysregulated, predisposing them to oxidative bursts and accumulation of 
oxygen radicals within plant cells. At this point, perturbations in cellular redox states can 
elicit varying degrees of oxidative damage to plant tissues. Comprehending the production, 
functions and scavenging mechanisms of ROS under low-temperature stress is pivotal for 
studying the mechanism of plants’ cold tolerance. This review provides a comprehensive 
overview of advances in understanding the mechanisms underpinning ROS changes in plants 
subjected to low-temperature stress, which include (1) ROS production, (2) ROS functions 
and (3) ROS scavenging mechanisms. The review systematically summarises the 
physiological responses of plants to low-temperature stress, with a particular focus on ROS 
scavenging mechanisms. It also analyses current research limitations in this realm and 
proposes recommendations for future research directions. 
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_______________________________________________________________________________________ 
 
INTRODUCTION 
 

Plants growing in natural environments inevitably suffer the effects of environmental 
stresses. Environmental factors have an integrated effect on plant growth and development. 
Temperature is an important factor influencing their growth and development. Low-temperature 
stress affects plant growth, development, physiology, biochemistry, hormone homeostasis, and 
other biological processes [1]. Low-temperature stress also affects photosynthesis, disease 
resistance and growth duration of crops, and ultimately affects the quality and yield of crops, 
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thereby influencing agricultural productivity [2]. Similarly, in ornamental plants low-temperature 
stress has adverse effects on plant growth and development, reducing the ornamental and economic 
value of roots, stems, leaves, flowers and fruits [3]. 

Under low-temperature stress, plants' defense mechanisms are rapidly activated in response 
to stress and plant tissue structure may change to some extent, exemplified by denser arrangements 
of leaf tissues and mesophyll cells, reduced intercellular spaces, decreased stomatal density, and 
thickened cell walls [4]. In addition, the roots of maize and wheat are damaged by the excessive 
accumulation of reactive oxygen species (ROS), which affects root proliferation and leads to a 
decrease in crop yield [5]. Physiological and biochemical properties of plants may change under 
low-temperature stress, including enhanced superoxide dismutase (SOD) activity, peroxidase (POD) 
activity, catalase (CAT) activity, and increased malondialdehyde (MDA) content, free proline 
content, soluble sugar content, soluble protein content, and other physiological changes [6]. 
Accumulation of ROS in cells partially accounts for low temperature-induced damage to plants. To 
maintain ROS homeostasis, the antioxidant enzyme systems in plants must scavenge excessive ROS 
to sustain normal physiological functions of cell membranes [7, 8]. Therefore, systematically 
analysing ROS production, functions and scavenging mechanisms in plants is crucial for gaining 
deeper insights into plant responses to low-temperature stress.  

This review systematically summarises plant physiological and biochemical hormone 
responses to low-temperature stress, and systematically analyses ROS production pathways, ROS 
functions, and enzymatic and non-enzymatic ROS scavenging mechanisms in plants under low-
temperature stress (Figure 1). The physiological and molecular mechanisms underlying plant 
responses to low-temperature stress are closely associated with ROS production and elimination. 
This review should serve as a reference for scholars investigating strategies to improve plants’ cold 
tolerance. Additionally, it can also be of benefit for genetic engineering approaches to enhancing 
plants’ cold resistance by optimising ROS scavenging systems. 

 

 

Figure 1.  Effects of low temperature stress on plants 
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EFFECTS OF LOW-TEMPERATURE STRESS ON PLANTS 
 
Plants’ Physiological Responses to Low-temperature Stress 
 

Under low-temperature stress, plant growth and development slow down, and physiological 
and biochemical indexes and molecular regulatory processes also change. With the persistence and 
intensification of the low-temperature environment, plants will make a series of stress responses 
including changes in cell membrane structure, osmoregulatory substances, photosynthesis, plant 
hormone levels and ROS [9]. Plants’ cell membrane biophysical properties can also change. Lipid 
molecules in the cell membrane may become unstable, potentially decreasing cell membrane’s 
fluidity and influencing the fluidity and function of many functional membrane proteins [4]. Low-
temperature may also disrupt membrane lipid interactions and arrangements, thereby modifying cell 
membrane structure and stability.  

Membrane lipid peroxidation can be enhanced by low temperature, resulting in cell 
membrane damage and rupture that irreversibly impairs the cell membrane system [10]. Studies 
have demonstrated that MDA is produced as a by-product of lipid peroxidation in plant membranes. 
MDA level increases in the leaves of various plants, as does cell membrane permeability. Therefore, 
MDA can be employed as an indicator of the extent of cell membrane lipid peroxidation [11]. When 
affected by chilling injury, plant cell membranes are transformed from a liquid crystalline phase into 
a gel phase. Cell membrane fluidity can decrease, the cytoskeleton can rearrange, electrolytes and 
soluble substances can leak, plasma membrane ATPase activity can decrease, and cellular ion 
balance can be disrupted [12]. It appears that cell membranes can rapidly respond and adapt to low-
temperature conditions.   

Under low-temperature stress, plants can produce osmotic adjustment substances to modify 
cell fluid concentration, decrease intra- and extra-cellular osmotic potential and maintain cell 
morphology and structural stability [13]. Osmotic adjustment substances primarily encompass 
inorganic ions such as K+, Ca2+ and Mg2+, as well as organic compounds which include soluble 
proteins, soluble sugars, betaine and free proline [14]. Plants can modulate inorganic ion channel 
activity, sustain or elevate intracellular inorganic ion concentrations, avert disruptions in cellular ion 
homeostasis and enhance cold tolerance [15]. The biosynthesis of organic compounds such as 
soluble proteins, soluble sugars, betaine and free proline can aid plants in sustaining turgor pressure 
and safeguarding cell membrane integrity under low-temperature stress. Concurrently, these organic 
molecules may also stabilise membrane proteins and attenuate membrane lipid peroxidation, 
thereby shielding plant cell membranes from damage [16].  

Photosynthesis constitutes the fundamental life process underlying normal plant growth and 
development. Low-temperature stress can impair photosynthesis in plants, thereby directly 
impacting normal growth and development [17].  Chloroplast is the place where plants carry out 
photosynthesis. It can detect low temperature and represents the organelle most profoundly 
impacted by chilling. Chloroplast response to chilling stress can also be detected by lipid membrane 
systems and photoreceptors, and can induce plants to produce excessive ROS, which in turn impairs 
chloroplast lipid membrane integrity [18]. Chloroplast thylakoid membrane and nucleus constitute 
primary targets of regulatory proteins and metabolites governing the photosynthetic pathway. Low-
temperature stress can inflict damage upon the constituents of thylakoid membranes, the 
photosynthesis-associated organelles as well as the chloroplast structure. The structure and function 
of photosynthetic components also become impaired and compromised. Chilling injury can also 
induce structural alteration in the stomata, which impedes the transport of photosynthetic products 
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such as sucrose and starch, thereby compromising photosynthesis [19]. 
In plants ROS primarily occurs as free radicals and non-free-radical species including 

hydrogen peroxide (H2O2), singlet oxygen (1O2), hydroxyl radical (· OH) and superoxide radical 
(O ) [20]. The overabundance of these radical species can elicit programmed cell death in plants 
and serve as a crucial indicator for assessing and determining chilling resistance when exploring 
plant low-temperature response [21]. In the long process of evolution, plants have formed  
mechanisms for scavenging ROS, including enzymatic scavenging mechanism (antioxidant enzyme 
system), non-enzymatic scavenging mechanism (antioxidant) and other scavenging mechanisms 
[22].  
 
Plant Hormonal Responses to Low-temperature Stress  
 

Phytohormones are signalling molecules that govern the functioning of plant organs and 
play a pivotal role in responding to low-temperature stress. Major plant hormones comprise abscisic 
acid, auxins, cytokinins, gibberellins, ethylene, salicylic acid, jasmonates, brassinosteroids and 
strigolactones [23].  

Studies have demonstrated that abscisic acid, which governs foliar senescence, accumulates 
in leaves and roots of Iris pseudocorus under low-temperature stress [24]. Low-temperature stress 
suppresses the biosynthesis and excretion of auxin, hampering plant growth and morphogenesis. 
However, auxin can respond by interacting with other phytohormones to govern plant cell 
differentiation and organogenesis [25]. cytokinin response factors, CRF2 and CRF3, govern lateral 
root formation in Arabidopsis under low-temperature stress [26]. Overexpression of Cytokinin 
response factor 4 (CRF4) in Arabidopsis presumably plays a role in transient cold acclimation, 
resulting in enhanced freeze tolerance in Arabidopsis [27]. WRKY53 can negatively regulate the 
cold tolerance of rice during the panicle initiation stage by regulating gibberellin levels in rice 
anthers [28]. Transgenic Arabidopsis overexpressing ethylene response factor CdERF1 from 
Cynodon dactylon exhibits enhanced cold tolerance [29].  

Salycylic acid can potentiate the chilling tolerance of Vitisriparia × V. labrusca by 
modifying photosynthesis, antioxidant systems and expression of chilling-responsive genes [30]. 
Jasmonate cooperates with other phytohormone signalling cascades such as auxin, ethylene and 
gibberellin to reinforce plant chilling tolerance [31]. In addition to potentiating basal chilling 
tolerance, brassinosteroid also contributes to attained freeze tolerance in Arabidopsis, which 
encompasses intricate molecular and biochemical shifts elicited by chilling yet non-freezing 
temperature [32]. Glutathione reductase 24 is a synthetic strigolactone analog. Investigations have 
demonstrated that compared to untreated rapeseed seedlings, those treated with the reductase can 
upregulate their cell viability, soluble protein and proline levels, boost antioxidant enzyme 
activities, thus suppressing the production of ROS, enhance photosynthesis, decrease the relative 
conductance of the seedlings, and substantially mitigate the impact of chilling stress on the 
seedlings [33]. Numerous studies have shown that hormones play an important role in plant 
response to low-temperature stress, but improving plant cold tolerance requires complex 
physiological, biochemical and molecular mechanisms. 

 
PRODUCTION AND FUNCTIONS OF ROS UNDER LOW-TEMPERATURE STRESS 
 
ROS Production             
 

ROS refers to several metabolically produced oxygen derivatives with relatively high 
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reactivity. A multitude of ROS exist in nature, but those commonly examined in studies generally 
encompass O , 1O2, · OH and H2O2. [34]. Under low-temperature stress, plants generate a plethora 
of ROS intracellularly. ROS refers to a class of oxygen derivatives with unstable electronic 
configurations which possess oxidative capacity to react with molecules such as proteins, nucleic 
acids, lipids and enzymes within the plant system, demolishing their structures and functions and 
eliciting oxidative impairment in cells [35]. Therefore, ROS production constitutes one of the 
pivotal causal factors in low-temperature stress-induced damage in plants.  

Plants are capable of generating ROS in several sites including chloroplasts, mitochondria, 
peroxisomes, photosynthetic membranes, apoplasts and cell walls. Likewise, plants produce ROS 
through diverse locations and pathways, but the types of ROS generated are primarily O and H2O2 
(Table 1). Under light conditions, chloroplasts and peroxisomes are the major producers of ROS. 
Under dark conditions, mitochondria are the primary ROS generators [36]. Chloroplasts and 
mitochondria are pivotal sites for photosynthesis and respiration in plants. They transduce light or 
chemical energy into ATP and nicotinamide adenine dinucleotide phosphate (NADPH) via electron 
transport chains (ETC). The ETC represents one of the primary metabolic pathways for generating 
cellular ATP, with oxygen being the ultimate electron acceptor. Under low-temperature stress, 
mismatching between the rates of photosynthesis and respiration leads to electron accumulation or 
leakage in the ETC, enabling oxygen molecules to capture certain electrons and generate superoxide 
anion [37]. 1O2 is a natural by-product of photosynthesis, formed primarily in photosystem II even 
under low light conditions. On the surface of the outer mitochondrial membrane, CuZn-SOD 
decomposes O2 into H2O2 spontaneously. Complexes I and III of the mitochondrial electron 
transport chain can generate O . In aqueous solutions, O  can be further reduced by SOD 
dismutation to H2O2 [38]. 

 
  Table 1.  Pathways of ROS production in plants 
 

ROS production pathway Location of ROS production ROS type Reference 
Photosynthesis ETC, photosystems I and II  Chloroplast O , 1O2, H2O2 [39, 40] 
Respiration ETC, complex I and III of mitochondrial 
ETC, SOD dismutation Mitochondria O , H2O2 [41] 

Polyamine oxidase Peroxisome O , H2O2 [42] 
Fatty acid β-oxidation Peroxisome H2O2 [43] 
Glycolate oxidase Peroxisome H2O2 [44] 
Flavin oxidase Peroxisome H2O2 [45] 
Xanthine oxidase Peroxisome O  [36] 
NADPH oxidase, germin-like oxalate oxidases Cell wall O , H2O2 [35] 
Cytochrome P450 Cytoplasm and endoplasmic reticulum H2O2 [46] 
Amine oxidase Apoplast H2O2 [47] 

 

Peroxisomes are the major sites for decomposing peroxides in plants. They contain enzymes 
such as CAT that can convert peroxides to H2O and O2 [42]. Fatty acid, glycolate oxidase and flavin 
oxidase can also react with O  to produce H2O2 [43-45]. Under low-temperature stress, due to the 
imbalance of peroxide concentrations inside and outside the peroxisome, it undergoes an 
autocatalytic reaction to release peroxides. POD is an important antioxidant enzyme in cells that can 
catalyse the degradation of ROS such as H2O2. Under low-temperature stress, decreased POD 
activity leads to H2O2 accumulation, stimulating ROS accumulation and oxidative stress responses 
[48].  

NADPH oxidase is an important enzyme system on the cell membrane that can convert 
substrates such as O2 and NADPH into O  and NADP+ in plants. Studies have shown that under 
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low-temperature stress, increased NADPH oxidase enzyme activity exacerbates ROS accumulation, 
leading to oxidative stress responses [49]. The cell membrane is an important interface for plants to 
exchange substances and information with the external environment. They contain various 
membrane-bound proteins and membrane-bound enzymes involved in signal transduction and 
metabolic regulation. Under low-temperature stress, decreased membrane fluidity and increased 
permeability can lead to enhanced or aberrant expression of some membrane-bound enzymes such 
as NADPH oxidase on the cell membrane, promoting the production of ROS [50]. 
 
ROS Functions  
 

When ROS levels exceed the maximum tolerance of plant cells, they can cause varying 
degrees of damage to cells, such as lipid, protein and DNA damage [51]. Cell membranes or 
organelle membranes are particularly susceptible to ROS damage known as lipid peroxidation due 
to high polyunsaturated fatty acid content. ROS-induced lipid peroxidation plays a key role in cell 
death including apoptosis, autophagy and ferroptosis. When pathogens attack plants, plant cells 
have higher levels of cellular oxidation than normal. High levels of cellular oxidation induce plants 
to activate their own protective mechanisms. At this time, cells undergo a series of allergic 
reactions, causing programmed cell death or necrosis of plant cells, eventually preventing plant 
pathogens from further invading plant tissues [52]. In rice researchers found an immune suppression 
network centred on Ca2+ sensors. The RESISTANCE OF RICE TO DISEASES1 (ROD1) gene 
promotes ROS scavenging by stimulating CAT activity and enhancing rice resistance [53]. In corn 
the mitogen-activated protein kinase gene ZmMKK1, ectopically expressed in tobacco, increases the 
activity of antioxidant enzymes in mutants, increases the accumulation of osmotic regulators, and 
stimulates the up-regulation of ROS-related genes, thereby enhancing tolerance to low temperatures 
[13].  

In Arabidopsis CAT genes catalyse the decomposition of H2O2. CAT2 is an important 
participant in removing H2O2 produced under abiotic stress in Arabidopsis. CAT3 and CAT2 are the 
main scavengers of H2O2. CAT3 promotes the balance of ROS in plants under light conditions while 
CAT2 promotes ROS homeostasis in the dark [54]. The SOD gene family is involved in scavenging 
ROS in tea trees under low-temperature stress and plays an important role in responding to low-
temperature stress. It is speculated that the microRNA398 family genes of Camellia sinensis (csn-
miR398a-3p-1) negatively regulating the expression of Cu/Zn-SOD4 may be a key regulatory 
mechanism for tea trees under low-temperature stress [55]. Ascorbate peroxidase (APX) is 
indispensable in the synthesis of L-ascorbic acid (AsA), which plays an important role in plant 
resistance to adversity stress by scavenging ROS. Under low-temperature stress, the CaAPX gene in 
Camellia azalea is ectopically expressed in tobacco. The gene expression is significantly up-
regulated and the tolerance to cold damage is enhanced. In addition, the CaAPX gene could have 
coordinated ROS signal transduction under low-temperature stress and increased the activity of 
ROS scavenging enzymes [56].  

In Malus baccata ectopic expression of the MbCBF2 gene in Arabidopsis significantly 
enhances the cold tolerance of transgenic Arabidopsis. The high expression of MbCBF2 also 
promotes increase in chlorophyll and proline content in transgenic Arabidopsis, increases the 
activities of SOD, POD and CAT, and reduces MDA content. This indicates that the MbCBF2 gene 
can positively regulate Arabidopsis tolerance to low temperature [57]. In addition, CBF genes can 
also bind to cis-elements in the COR gene promoter to activate the expression of COR genes and 
participate in the plant’s response to low-temperature stress [58].  
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AsA is an antioxidant implicated in Actinidia eriantha as a basic leucine zipper domain  
transcription factor AcePosF21, which participates in AsA biosynthesis. It can promote the 
production of more AsA in plants, thereby neutralising excess ROS under low-temperature stress 
[59]. In Chrysanthemum morifolium overexpression of the glutathione peroxidase gene (DgGPX1) 
results in increased activity of glutathione peroxidase (GPX/GSH-Px), which helps scavenge excess 
ROS in plant tissues, thereby enhancing the cold tolerance of transgenic chrysanthemum [48]. In 
addition, ROS can also act as signalling molecules which affect the oxidation-reduction state inside 
and outside plant cells and participate in plant response to low-temperature stress [60]. 

In summary, the functions of ROS in plants under low-temperature stress are mainly 
manifested in four aspects: (1) as signalling molecules, participating in low-temperature-induced 
signal transduction pathways such as calcium signalling and mitogen-activated protein kinase 
signalling, regulating the expression of downstream genes; (2) as transcription factors, directly or 
indirectly affecting the transcription levels of genes related to low temperature responses, such as 
antioxidant enzyme genes APX, CAT, SOD, and cold-induced genes CBF and COR; (3) as 
antioxidants, protecting cells from damage by scavenging excess ROS such as AsA and 
glutathione; and (4) as regulatory factors which affect cell physiological metabolism by altering the 
oxidation-reduction state inside and outside cells.  

 
SCAVENGING MECHANISMS OF ROS UNDER LOW-TEMPERATURE STRESS 
 
Enzymatic ROS Scavenging Mechanisms           
 

In the enzymatic ROS scavenging system, the main antioxidant enzymes involved in 
scavenging ROS include SOD, POD, CAT, GPX/GSH-Px, APX, dehydroascorbate reductase 
(DHAR), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), glutathione S-
transferase (GST), thioredoxins (TRX) and glutaredoxins (GRX) [61]. These ROS scavenging 
enzymes are distributed in different parts of plants and work together to scavenge ROS in plant 
tissues. The differences in ROS types scavenged by different enzymes and plant responses are 
shown in Table 2.  

Under low-temperature stress, SOD in plant cells first acts to convert excess O  into H2O2 
and oxygen O2. If Cu+2/Fe+3 exists in plant cells, O  can be converted into · OH through the Haber-
Weiss cycle (Figure 2). According to the different auxiliary metal factors, SOD can be divided into 
copper-zinc SOD (Cu/Zn-SOD), manganese SOD (Mn-SOD) and iron SOD (Fe-SOD), and their 
mechanisms of action in plants vary [70]. In Festuca arundinacea, overexpression of CuZnSOD and 
APX genes can increase the antioxidant enzyme activity in chloroplasts and scavenge excess ROS 
and enhance plant tolerance to abiotic stresses [71]. In Daucus carota, 2 FeSODs, 2 MnSODs and 5 
Cu/ZnSODs (CuZnSOD) have been identified. The increased expression of SOD gene family 
indicates that it plays an important role in enhancing plant cold tolerance. POD can catalyse the 
oxidation reaction of various reductants involved in H2O2 and reduce H2O2 to H2O (Figure 2). It can 
also coordinate with SOD and CAT to scavenge excess free radicals in plants [72].  

Under low-temperature stress, the relative conductivity of H2O2 in Triticum aestivum 
‘Dongnongdongmai 1’ increases significantly. ABA improves the cold tolerance of wheat leaves and 
stems by increasing the contents of CAT, SOD, POD, APX, GR, DHAR and MDHAR [73]. CAT is 
a heme-containing tetrameric enzyme. Under low temperature stress, CAT can decompose H2O2 in 
plant tissues into H2O and O2; it is an indispensable enzyme for scavenging ROS in plants under 
low-temperature stress (Figure 2) [74]. In sweet potato the activities of antioxidant enzymes such as 
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APX, SOD, CAT and GR increase rapidly in response to low-temperature stress to scavenge excess 
ROS and enhance cold tolerance [74].  

 
    Table 2.  Main antioxidant enzymes scavenging ROS in plants 

Antioxidant 
enzyme 

Location where ROS 
scavenging occurs ROS type Description of ROS scavenging process Reference 

SOD 
Chloroplast, Cytosol, 
Mitochondria, 
Peroxisome, Apoplast 

O , H2O2 
MeCu/ZnSOD and MeCAT1 can significantly enhance 
ROS scavenging ability and thus reduce accumulation 
of H2O2. 

[62] 

POD  Cell wall, Cytosol, 
Vacuole H2O2 

Transgenic Ipomoea batatas overexpressing lignin-
forming peroxidase (IbLfp) gene has enhanced cold 
tolerance.   

[63] 

CAT Peroxisome H2O2 
Overexpressing ScCAT1 gene from Saccharum 
spontaneum in Nicotiana benthamian enhances plant 
stress resistance by removing excess toxic ROS.  

[64] 

GPX/ 
GSH-Px Cytosol ROOH, 

H2O2 
Overexpressing DgGPX1d gene in Chrysanthemum 
morifolium increases GPX activity.  [48] 

APX 
Chloroplast, Cytosol, 
Mitochondria, 
Peroxisome, Apoplast 

H2O2 

In transgenic Manihot esculenta, co-expressing SOD, 
MeCu/ZnSOD and MeAPX2 can activate cassava's 
antioxidant defense system by scavenging ROS and 
enhance its cold tolerance.  

[65] 

DHAR, 
GR, GST Chloroplast O , H2O2 

Co-expressing DHAR, GST and GR in tobacco 
increases regeneration of reduced ascorbate and 
glutathione and participate in scavenging of O  and 
H2O2.  

[66] 

MDHAR Chloroplast 
 O , H2O2 

Transcription of MDHAR gene in Trifolium repens 
rapidly activates participation of plant's antioxidant 
defense mechanism, reducing its ROS content. 

[67] 

TRX Chloroplast 
 O , H2O2 The h-type thioredoxin gene LmTrxh2 isolated from 

Lobularia maritima enhances ROS scavenging ability. [68] 

GRX Cell wall, Chloroplast H2O2 

Overexpressing RtGRL1 from Reaumuria trigyna in 
Arabidopsis increases glutathione biosynthesis, 
glutathione-dependent detoxification of ROS, and 
proline content under stress.  

[69] 

  

 
Figure 2.  Enzymatic ROS scavenging mechanisms 

 
In addition, H2O2 in plants can generate highly oxidising · OH through the Fenton reaction 

(Figure 2). Hydroxyl radicals have extremely strong oxidising capacity, which can damage plant 
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cell membranes, proteins, nucleic acids and other molecules, but can also kill invading pathogens or 
activate plant defense responses, thus helping plants cope with cold damage [75]. GPX can reduce 
H2O2 in plant tissues to H2O and catalyse the conversion of reduced glutathione (GSH) to oxidised 
glutathione (GSSG), thereby reducing hydrogen peroxide in plant tissues to harmless hydroxy 
compounds, protecting biological membranes from damage by ROS, and maintaining normal 
cellular functions (Figure 2) [76]. APX is one of the main enzymes that scavenge H2O2 in plants. It 
uses reduced AsA as a substrate to decompose H2O2 that harms plant tissues into non-toxic H2O and 
O2 [77]. In rice overexpression of the ascorbate peroxidase gene OsAPXa can enhance the H2O2 
scavenging ability and increase the cold tolerance of rice [78]. 

In addition, APX, MDHAR, DHAR and GR are involved in the AsA-GSH cycle. In this 
cycle APX acts as a deoxygenase to reduce H2O2 to H2O, producing monodehydroascorbic acid 
(MDHA) molecules in the reduction process [79]. In photosystem I, MDHA can be converted to 
AsA and dehydroascorbic acid (DHA) via MDHAR or ferredoxin. DHA is reduced to AsA by 
DHAR, consuming GSH and producing oxidised glutathione, which is reduced to GSH by GR 
using NADPH as an electron donor. As reductases, DHAR and MDHAR play an important role in 
the AsA-GSH cycle and are important enzymes for scavenging ROS (Figure 3) [79]. 

 

  
Figure 3.  ROS scavenging mechanism based on AsA-GSH cycle in chloroplasts 

 

In plants GST is directly involved in the scavenging of ROS and reduces oxidative damage. 
Under low-temperature stress, seven GSTs (CmaGSTU3, CmaGSTU7, CmaGSTU8, CmaGSTU9, 
CmaGSTU11, CmaGSTU12 and CmaGSTU14) in Cucurbita maxima are highly expressed, 
indicating that the GST gene family plays an important role in plants' response to low-temperature 
stress [80]. Overexpression of the cytosolic redox protein thioredoxin h2 (Trx-h2) gene in 
Arabidopsis can activate cold-responsive (COR) genes. The transgenic lines show stronger cold 
tolerance, indicating that the TRX gene plays an important role in improving plant’s cold tolerance 
[81]. GRX are common oxidoreductases in plants that utilise the reducing power of GSH to reduce 
disulfide bonds of substrate proteins and maintain cellular redox homeostasis. Studies have shown 
that expressing the Arabidopsis AtGRXS17 gene in tomatoes improves the cold tolerance of their 
antioxidant enzyme activity, reduces H2O2 accumulation and enhances the cold tolerance of 
transgenic tomatoes [82]. 
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Non-enzymatic ROS Scavenging Mechanisms  
 

Under low-temperature stress, a large number of non-enzymatic antioxidants existing in 
plant cells will respond rapidly and work together with enzymatic antioxidants to scavenge excess 
ROS. Non-enzymatic ROS scavenging antioxidants include AsA, GSH, carotenoid, 
tocopherol/vitamin E, proline and flavonoids (Table 3). 

 
Table 3.  Non-enzymatic antioxidants scavenging ROS in plants 
 
Non-enzymatic 
antioxidant 

Location where ROS 
scavenging occurs ROS type Description of ROS scavenging process Reference 

AsA  
Chloroplast, Cytosol, 
Mitochondria, 
Peroxisome, Apoplast 

O , · OH, 
H2O2 

Under frost stress, exogenous proline, SA and AsA 
treatments significantly increase the antioxidant 
enzyme activity in grapes. AsA has the best effect in 
improving grape freeze tolerance.  

[84] 

GSH 
Chloroplast, Cytosol, 
Mitochondria, 
Peroxisome, Apoplast 

1O2, · OH, 
H2O2 

Exogenous GSH can activate AsA-GSH cycle in plants 
and enhance plant antioxidant capacity. [85] 

Carotenoids  Chloroplast 1O2 Carotenoid content negatively correlates with plant 
cold tolerance. [86] 

Tocopherols 
/Vitamin E Membranes  ROOH, O21 A lack of tocopherol reduces the plant’s cold tolerance. [87] 

Proline  Chloroplast O , · OH Proline works together with other enzymatic and non-
enzymatic antioxidants to scavenge ROS in plants. [88] 

Flavonoids Cell wall H2O2 Cold stress promotes accumulation of flavonoids in 
plants and enhances ROS scavenging ability. [89] 

 

AsA is a water-soluble antioxidant that can maximise the scavenging of excess ROS in 
plants. Under low-temperature stress, the AsA content in plants significantly increases, rapidly 
scavenging excess ROS. In tomatoes exogenous AsA effectively scavenges H2O2 by modulating the 
metabolism, osmolytes, antioxidants and the transcriptional regulation of catalase, and heat shocks 
proteins, reducing low-temperature stress damage and enhancing cold tolerance [83]. The AsA-GSH 
cycle shown in Figure 3 is an important mechanism for enzymatic and non-enzymatic antioxidants 
in scavenging ROS in plants. 

Carotenoids are plant pigments that can scavenge 1O2 and other harmful free radicals 
generated during photosynthesis and act as antioxidants. In low-temperature treated mangoes, 
carotenoid content decreases with decreasing temperature. When the carotenoid content is too high, 
it may lead to a decrease in antioxidant capacity in the plant, promote oxidation reactions, and be 
unfavourable for the plant to resist low-temperature stress [90]. 

Tocopherol/vitamin E is a lipid-soluble antioxidant and the major antioxidant in biological 
membranes [86]. Under low-temperature stress, tocopherol-deficient Arabidopsis thaliana mutants 
exhibit significant physiological changes compared with the wild type. Among them, in vte1 and 
vte2 mutants, anthocyanin content, growth, fruiting ability and photosynthetic electron transport rate 
decrease while photoassimilate export, soluble sugar level and starch content increase, indicating 
that tocopherol plays an important role in plant responses to low-temperature stress [91]. 

Proline is an indispensable non-enzymatic antioxidant that reduces ROS-induced damage by 
effectively scavenging · OH [89]. Another study shows that proline-rich proteins play an important 
role in plant resistance to low-temperature stress. OsPRP1 gene knockout rice mutants are more 
sensitive to low temperature. Under low-temperature stress, the activities of antioxidants in the 
mutants are lower, and the contents of proline, chlorophyll, ABA and AsA are also lower than those 
in wild-type rice. The cold tolerance of the mutant rice is decreased, indicating that the OsPRP1 
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enhances the cold tolerance of plants by regulating changes in antioxidants [92]. 
Flavonoids are a class of secondary metabolites widely present in plants, usually found in 

plant vacuoles. They are common antioxidants that scavenge ROS in plants. They can localise and 
neutralise ROS before excess ROS damage cells. Studies have shown that low-temperature stress 
enhances the biosynthesis of flavonoids as well as that of anthocyanins and related metabolic 
pathways in Citrus sinensis, thereby enhancing the plant's cold tolerance [93]. In Camellia sinensis 
down-regulation of the CsUGT78A14 gene results in decreased flavonols accumulation and ROS 
scavenging ability. Up-regulation of the same gene increases flavonols accumulation and enhances 
ROS scavenging ability and cold tolerance in the plant, indicating that flavonoid antioxidants play 
an important role in scavenging ROS [94]. 
 
Other ROS Scavenging Mechanisms  
 

Soluble sugars directly influence the generation rate of ROS by regulating ROS production 
metabolic pathways such as mitochondrial respiration and photosynthesis [95]. Photorespiration 
produces H2O2 involved in signal transduction and gene expression in plants. At the same time, it is 
also considered an important part of the plant stress response to prevent ROS accumulation, which 
can alleviate oxidative stress under cold and other abiotic stress conditions [96]. Uncoupled 
mitochondrial respiration participates in the scavenging of ROS and NO, regulating the balance of 
ROS in plants. The energy and reducing equivalents produced by mitochondrial respiration provide 
energy for antioxidant enzymes and antioxidant substances to scavenge excess ROS and maintain 
the dynamic balance of ROS [97]. 

 
DISCUSSION AND FUTURE OBJECTIVES 
 

Low temperature is a limiting factor for the normal growth and development of many plants. 
The ROS scavenging system is an important mechanism for plants to resist low-temperature stress 
and enhance cold tolerance. Rapidly scavenging excess ROS in plants can effectively reduce the 
impact of low temperature on plants and enhance plant cold tolerance [21]. Therefore, it is 
necessary to clarify the production pathways, functions and scavenging mechanisms of ROS so as 
to enhance the ability of plants to resist low temperature.  

Under low-temperature stress, ROS has complex and diverse production pathways. The 
production mechanisms and interconnection between different ROS production pathways are still 
unclear and can be further studied in the future. In addition, ROS can serve as signalling molecules, 
transcription factors, antioxidants and regulators in plants. The signal transduction mechanisms of 
different ROS, the molecular mechanisms of transcription factor functions, the biological function 
differences of antioxidants and regulators, and their interrelationships also need to be further 
studied. 

Enzymatic and non-enzymatic antioxidants play an important role in scavenging excess 
ROS in plants. As research deepens, some enzymatic reactions and scavenging mechanisms have 
gradually become clearer. However, the differences in ROS scavenging ability and variation 
patterns of different ROS scavenging enzymes and non-enzymatic antioxidants are still unclear. In 
addition, the process of ROS scavenging in plants often involves the synergistic action of multiple 
antioxidant enzymes and antioxidants. The signal transduction mechanisms between different 
antioxidant enzymes and antioxidants are unclear. In addition to enzymatic and non-enzymatic 
antioxidants, increasing evidence shows that soluble sugars including disaccharides, cotton 
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oligosaccharides and fructans have dual roles in scavenging ROS [95]. In summary, the mechanism 
of ROS scavenging in plants under low-temperature stress is a complex process that requires the 
synergistic action of multiple ROS scavenging mechanisms and related signalling pathways. In the 
future, we should focus on the study of the interrelationships and signal transduction mechanisms of 
enzymatic, non-enzymatic and other ROS scavenging processes. A deeper understanding of these 
mechanisms will help us not only to better understand the mechanism of plant responses to 
environmental stresses, but also to provide new ideas for maintaining the health and efficient 
growth of plants. 
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