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Abstract: We study hyper dual numbers and hyper dual number matrices. Firstly, we give
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INTRODUCTION

Dual numbers were introduced in 1873 by Clifford [1]. In 1903 Study [2] defined the
relationship between two lines in Euclidean space as a dual angle and proved that in the E.Study
transformation, which he named himself, each point on the unit dual sphere corresponds exactly to
the directional lines in R3. In this manner it allows the theory of directional lines in R3 to be
examined with the help of dual numbers. Just as the geometry of the Euclidean plane can be
described by complex numbers, the geometry of the Galilean plane

D={z=x+ey: e2=0,¢#0,x,y € R}
can be described by dual numbers, which are extensively used in quantum mechanics and classical
mechanics of screws [3-6].
Matrix representation of dual numbers can be given as
wrey ey
where
0 1

E &

0 0
1s dual unit.
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This mapping is an isomorphism, as the operations here correspond to matrix addition and
multiplication. Thus, we have the matrix forms of Euler formula for dual numbers as given:

1+£9=exp8 (9)]=[(1) 2

This matrix is the rotation matrix in the Galilean plane. For any z = x + ¢y € D, Re(z) = x
is the real part of z and Im(z) = y is the imaginary part of z. The conjugate of a dual number is
denoted by z and defined by z = x — €Y.

The norm of a dual number is defined as

|z| = |x|.

If x = F1, then z is called unit dual number. Note that Ii_l is a unit dual number for z € D with |z| #

0. The square root of a dual number z = x + ¢y is defined as

y
Jx+ey=Vx+e—,x>0.
Y 2Vx

The inverse of the dual number z is

Z -
z7l=— ifx #0.
|z|?

Dual numbers play an important role in the field of robot technology [7]. The concept of
dual numbers is used to show the geometry of lines. Robotic applications can be made with the help
of this one-to-one mapping [8]. Using this advantage of dual numbers in algebra of quaternions,
robotic technology and motion theory have been taken to another dimension [9]. The innovations
brought to technology with the use of number systems in this way are quite remarkable. A list of
references to dual number applications in linear algebra and kinematic and numerical algorithms
can be found [e.g. 10]. One of the number systems that has attracted attention in recent years is the
hyper dual number system. This number system was first given by Fike et al. and Fike and Alonso
[11-13]. Cil [14] worked on hyper dual numbers and their properties and presented it as a master
thesis. Cohen and Shoham [15, 16] applied the hyper dual number system to rigid body kinematics.
Nalbant and Yuce [17] described some new properties of real quaternion matrices. Next, they gave
a Matlab algorithm that easily finds matrix representations of the real quaternion matrices.

Hyper dual numbers are a higher dimensional extension of dual numbers in the same way as
quaternions are a higher dimensional extension of ordinary complex numbers [12]. Fike et al. [11]
focused on the numerical approach and developed a Fortran algorithm to calculate numerically the
velocity and acceleration of the coupler curve of a spherical 4R mechanism. Later, Fike and Alonso
[12] demonstrated the accuracy of hyper dual number calculations by giving a comparison of the
various first and second derivative calculation methods for a simple, analytic function.

Many authors have studied quaternion matrices, split quaternion matrices and hybrid number
matrices [e.g. 18-20]. Considering the studies of matrices, together with the developments in robot
technology and rigid body kinematics, it is clear that the definition and applications of hyper dual
number matrices will make important contributions to robot technology. Hyper dual number
matrices can be written as block matrices whose elements are dual numbers. The inverse, conjugate
and similar properties of hyper dual number matrices that can be written in this way are given in
this study. In this respect, it is thought that these features will play a key role in studies and
applications in kinematic and robotic technology.

In this paper we investigate hyper dual number matrices. Firstly, we give some properties of
hyper dual numbers. Then we introduce hyper dual number matrices and give some of their
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properties. Finally, we define the dual adjoint matrix of hyper dual number matrices and give some
properties of these matrices. Also, we give an application of matrices in the last part.

HYPER DUAL NUMBERS

A hyper dual number x has the form

X =X1+ X8 + X3Ep + X481&7,
where x4, x,, X3, x, are real numbers while &, €, are dual units. Hyper dual number algebra is a
unitary and commutative ring with four basic elements {1, &, &,, £, &, } that provide the equations

g2 =¢2=0,

&g #0,6, 0,60 # &y,

E185 = £5&;.
On the other hand, hyper dual number X = x; + x,&; + x3&, + x,6,6, can be given in the
following form

X = (x; + &x3) + " (x5 + exy).

Also, hyper dual number is written as the sum of two dual numbers:

X = dl + E*dz,
E=¢, =&,
e2=(e")%=0,

e#+0,e"#0,¢g # €%,
et =¢'e#0,
where €* is called the hyper dual unit and and d;,d, € D. Let us denote the algebra of hyper dual
number by HIDN.
A set of hyper dual numbers can be represented as
HDN = {x = x; + x5, + X386, + X466, ¢ Xq, X5, %3, %X, € R}
The sum and product of hyper dual numbers X = x; + x,&; + X3&;, + X465, andy = y; + y,6, +
Y3&2 T Ya€1&; are
x+y=(x;+y)+ G +y)e + (x3+y3)e; + (x4 +ya)er &,
Xy = x1¥1 + (01y2 + x2y1)€1 + (01y3 + x3y1)€; + (X1 + x2Y3 + X471 + X3Y2) €165
For any hyper dual number X = x; + x,&; + x3&, + X,&,&,, Re(X) = x,is the real part of x and
HDu(x) = x,&, + x3&, + x,&,&, is the hyper dual part of X. The conjugate of a hyper dual number
x is denoted by X and defined by X = x; — X,&; — X3, — X466, Or X = dy — £*d,.
The inner product of X = x; + x&; + X368, + x,61& and Yy =y, + y,61 + V36 + Va&1&
is defined by
(,): HDN x HDN — HDN
xy) — xy) = xy1.
The norm of a hyper dual number x is defined by
|||l : HDN — R

x — [Ixl| = /(x,x) = |x4].

Since an HIDN is a dual number with dual number entries, we use the definition of the
square root of a dual number to compute the square root of the HIDN. So the square root of any
hyper dual number x = d; + €*d, = x; + €x, + €*(x3 + €x,) is found as follows:
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1/d1+£d2—\/_+£ \/d_

X X X X,X
= /X 1+ e4+——¢e+ —4—2—23 e’ ),x, > 0.
x x 2x1  4xj

,x1 >0

1 x, X Xy 2X3X

- 3 4 2X3

Xl=—-Ze—Se"—(5——F")ee",x, #0.
X;  Xi X3 X3 X3

Corollary 1. If x; = 0, there is no inverse of the hyper dual number x = x; + x,&; + x3&, + X, &,.
Theorem 1. The following properties are satisfied for any X,y € HDN.
. XX = XX.
Xy = yX.
e'd = de”, for any d € D.
1
IxII? + llyll? = 3 (lx + ylI* + lIx — ylI*).
Ifx,y3 = —x3Yy,, thenXy =Xy =yX.

lIxyll = [IxI[llyll.
.x =xifand only if x € R.

S

X
lIx1%"
9.There exists a unique representation of the form x = d; + €*d, for any x € HDN, where d,,d, € D.

8.Ifx,x3 =0and x; # 0, thenx™! =

Proof. We prove some of these properties, and others can be proved similarly.
5. Let x93 = —x3y, for X =x; + x5 + x3&, + x4, E HDN and y=y; +y,6 + y386, +
V4€1&, € HDN. Then
Xy = x1y1 — (01y2 + x2y1)& — (01y3 + x3y1)€ — (X1 Vs + X35 + x4Y1 + X3Y2) €16,
=x1y1 — (Y2 +xy1)e1 — (Y3 + x3y1) €2 — (X1Ys — X3Y2 + X471 + X3Y2) €167
= x1y1 — (X1y2 +xy1)e1 — (Y3 + x3y1) 82 — (X1 + X4y1) €18,
Xy = (X; — X281 — X38; — X46182) (V1 — V261 — Y382 — Va&1€2)
= X1Y1 — X1Y2€1 — X1Y3E2 — X1Y4€1€; — X2Y1E1 T X2Y3E1E2 — X3Y1E2 t+ X3Y2€1E2 — X4Y1€1E2
=x1y1 — (12 + xy1)e1 — (Y3 + x3y1) €2 — (X1 + X3Y2 — X3V, + X4Y1)€16;
= x1y1 — (X1y2 + xy1)e1 — (Y3 + x3y1) 82 — (X1 + X4y1) €18,
Since hyper dual numbers are commutative, Xy = y X. Thus, Xy =Xy =yX.

8. Letx,x; = 0and x; # 0 for X = x; + x,&; + x3&, + x,6,6, € HIDN. Thus, we obtain

a1 x X3 <x4 2x,X3 X1 Xy X3 X4
X~ = =& &~ —— 3 |8a& T 3-8 T 28 288
x1 x3 xf X1 X1 Foxf X1 X1
x1 - x2£1 - X3£2 - X4£1£2 i
= > = .
X3 lIxI[2

Theorem 2. Every hyper dual number can be represented by a 2 X 2 dual matrix [14].

Proof. Let x € HIDN. Then there exist dual numbers d; and d, such that x = d; + €*d, by
theorem 1(9). The linear map f;: HDN — HDN is defined by f;(y) = Xy for ally € HDN. This
map is bijective and
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(1) =1(d, + *d,) =d, + £*d,,

fi(e) =¢e*(d, + £°dy) = €*d;.
With this transformation, hyper dual numbers are defined as subset of the matrix ring M, (D), the
set of 2 X 2 dual matrices:
d 0
d, dy
HDN and HIDN' are basically the same. Note that

HDN' = {[ ] t dy,d; € ]D)}.

d, 0
d, d,

is bijective and preserves the operations. Furthermore, ||x||? = Re(det x).

M:x=d1+£*d2e]HI]D)N—>x’=[ ]e]HI]D)N’

Theorem 3. Every hyper dual number can be represented by a 4 X 4 real matrix [14].

Proof. The linear map ¢, : HDN — HDN is defined by ¢4(y) = Xy for any y € HDN, where
X = X1 + X8 + X3& + x,61&,. This map is bijective and
Ox(1) = (1 + x38, + X385 + x46165)1 = x1 + X368, + X368, + X468,
Ox(&1) = (01 + X281 + X386, + X4818)81 = X181 + X3818,
Ox(&2) = (x1 + X281 + x38; + X4818) &, = X186, + X268,
Ox(€182) = (X1 + X281 + X358, + X48182) 618, = X181 8.
With this transformation, hyper dual numbers are defined as subset of the matrix ring M, (R), the

set of 4 X 4 dual matrices:

xx 0 0 O
x, x; 0 0
x3 0 x4 O
X4 X3 Xy Xq

]H[IDN" = ¢ X1,X2,X3,Xy ER.

HDN and HDN" are essentially the same.

HYPER DUAL NUMBER MATRICES

The set of m Xn matrices with hyper dual number entries, which is denoted by
M, ., (HIDN) with ordinary matrix addition and multiplication, is a ring with unity. The set of
hyper dual number matrices can be represented by

M., (HDN) = {A = (a,) : a,, € HDN},
M, (HDN) = {A = A, + A,&, + Ase, + Ageiey + Ay, Ay Az, Ay € My (R)}
or
My (HDN) = {A = D, + &*D; : (£")? = 0,Dy,D; € My, (D)}.
Right and left scalar multiplication are defined by
Ax = (azx) and XA = (xay;)
respectively, for A = (ag) € M, x, (HDN) and x € HIDN.
The following are satisfied:
x(AB) = (xA)B,
(Ax)B = A(xB),
(xy)A = x(yA),
for A,B € M,,,,,, (HDN) and x,y € HDN. M,,, ., (HDN) is a module over the ring HIDN.
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For A = (ay) € M,,,,,(HDN) , A= (a,;) € M,,,(HDN) is the conjugate of A ;
AT = (a,;) € M,,,,,,(HDN) is the transpose of A; and A* = (A)T € M,,,,,, (HDN) is the conjugate
transpose of A. Also, since it can be written as A = D; + €*D,, the conjugate of A can be given as
D, — &*D,. For a square hyper dual number matrix A € M,,,.,,(HDN), if AA* = A*A, then A is
called normal matrix; if A = A, then A is called hermitian matrix; if AA* = I,,, then A is called
unitary matrix. For B € M,,,.,, (HDN), if AB = BA = I,,, then A is called invertible matrix and B is
called the inverse of A.

Considering all this, if D; is normal matrix and D; D; — D;DJ = D;D, + D,D;, then A is
normal matrix. If D; is unitary matrix and D,D; = D;D; , then A is unitary matrix. If D; is
hermitian matrix and —D, = D;, then A is hermitian matrix.

Theorem 4. Let A,B € M,,,,,(HDN). If AB = I,,, then BA = I,,.

Proof. Let AB=1, for A=A, + Aye; + Aze, + Aye 6, € M5, (HDN) and B = B; + B,&;, +
Bse, + Bye &, € M, (HDN). From this we get
AB = A,B, + (A;B, + A;B,)e; + (A;B3s + A3By)e, + (A;By + AyB5 + AyBy + A3B,)e 65,
SO
A1By =1,
A1By, + AyBy = 1,
AB; + A3B, =1,
AB, + AyB; + AyB; + A3B, = I,.
Since A;, Bj, i,j = 1, ...,4 are n X n real matrices, we get
B, = Afl'
B, = —AT'A;B; = —AT'A,ATY,
B; = —A7'A;B; = —AT'A3ATY,
B, = —A7'(A;B;3 + AyBy + A3By) = —AT (A AT AATY + ALATH — A3 AT AR ATY)
from real matrix properties. Thus, we obtain
BA = B,A; + (B,A; + B;Ay)e; + (B3A; + B1Aj)e,
+(B,A; + B3A, + B1A, + ByAz)e €,
= AT'A; + (CAT ARATT Ay + AT A ey + (AT A3 AT AL + AT Ag) e,
AT (—AAT A AT + ARATT — A3ATT AR AT A,
—AT A3AT Ay + ATTA, — AT AR AT Asles g

= I,.

Theorem 5. If the real matrix A, is invertible (detA; # 0), A is also invertible and the inverse is
A7 = ATHA + (A,ATYA; + A3 AT Ay e 5, AT
for A= Al + A2€1 + A3€2 + A461€2 € Man(]H[]D)N)

Proof. Let AB =1, for A=A, + Ay, + Aze, + Aye 6, € M, (HDN) and B = B, + B,&; +
Bse, + Byg e, € M, (HHDN). In this case if we calculate B when AB = I,,, we get the inverse of
A. Since
AB = A,B; + (A;B, + A,B,)e; + (A;B; + A3By)e, + (A1B, + A,B; + AyBy + A3B,)e &,
=I,+ 0,6 +0,5 + 0,88
and
AB, =1, = B, = A7},
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AB, + A,B; =0, > B, = —A7A,A7Y,
AiB; + A3B; = 0, > By = —A7A;A7Y,
AiBy + AyBs + AyB; + A3B, = 0,, = B, = —AT7 N (—A,ATTA; AT + ALATY — A3ATTALATY),
we get
A7l = A7t — AT7A,AT e — ATTAZAT e, — ATH(—A,ATTASATY + AL AT — A3ATTALATD) g 6,
or
A1 = ATHA + (A,ATYA; + A3 ATY Ay e 65| ATL

2 - 61 + 382 _561 + 282 - 46162

Example 1. LetA = [3 +& —& + &8 1+ 5&, — 3¢5

] be a hyper dual number matrix.

Then the inverse of A is
A_l — 1[ 2 - 1481 + 382 + 286162 1081 - 482 + 6162 ]
4 _6 + 4081 + 2382 - 3216162 4 - 3081 - 882 + 1736162 )

We can really multiply A by the matrix A~! to see that the result is the identity matrix.

Theorem 6. If the dual matrix D, is invertible (detD; # 0), A is also invertible and the inverse is
A" =D (D, —&"Dy)D;
forA = Dl + E*Dz € Man(]H[]D)N)

Proof. Let AB =1, for A=D; + ¢*D, € M,,,.,,(HDN) and B = K; + £*K, € M,,,.,,(HDN) . In
this case if we calculate B when AB = [,,, we get the inverse of A. Since
AB = DK, + D1Kye* + D,K " =1, + €0,

and

DK, = I, = K, = D",

DK, + D,K;, =0, = K, = —D;'D,D;?,
we get

A™! = D;Y(D, — £*D,)D; 1.

1+e—¢* 3+ €€
e 4+eer—2 1+4+¢°
number matrix A can be written as

Example 2. Let A = [2 ] be a hyper dual number matrix. Hyper dual

nemsen <[ Jeel,, 1

If D, — £*D, and D! are calculated, it is found respectively as follows:

1+e+¢* 3 —¢e&?
D, —&*D, =
1T [—2—26*—66* 1—6*]
and

pi=[7-¢ 3=7)
49114 —2¢ 7+ 6¢

Therefore, the inverse of A is

19 13
7—¢&+4+13¢* +7££* 3 — 18¢&* —766* - 21

-1 _ p-1 _ o* -1 _
At =D;'(D, — €*D,)D; 19 59 37
14—26—26*—766* 7+6£—£*+7££*
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We can really multiply A by the matrix A~! to see that the result is the identity matrix.

Definition 1. A hyper dual number matrix that exists inversely is called a hyper dual regular
matrix. Otherwise, it is called hyper dual singular matrix.

Theorem 7. Let A,B € M,,,,,(HDN) and x € HIDN. Then the following are satisfied:

T _
.(A) =(@A");
(AT =(ADT and (AB)T = BTAT;

-1 S

JIfA,AT A + A3ATA, = 0,then (A) = (A™1);
.(A+B)T =AT + BT =BT + AT;
. (AB)" = B*A*;
.If A,B; = —A3B,, then AB = A B;
.If A; and B, are invertible, then (AB)™! = B~1A™1;
. If A, is invertible, then (A*)~! = (A™1)*.

R NN N AW N =

Proof. We prove a few of these properties and others can be proved similarly.
1.Let A = Al + A2€1 + A3€2 + A461€2 € Man(]H[]D)N) Then
—\T
(A) = (A — Ayey — Az — Ay )"
= A’{ - A}‘El - A’ggz - A;Il_‘glgz
= (AT).
3. LCtA = Al + AzEl + A362 + A461£2 € Man(]H[DN) and AzAI1A3 + A3AI1A2 = O Then
—\ -1
(A) = (A — Aye; — Aze, — Agery) 7"
= AT A + (A,A71 A5 + A3AT Ay 6] AT
= A7 AATL
On the other hand, for A =A; +A,&; + Aze, + Aye e, € M, »,,(HDN) and A,A7%A; +

A3A7A, = 0, we can obtain

(A1) = [A7Y[A + (4,471 45 + A3 AT Ay e 6, ATY]

= A7 AA7Y = ATTAATL
Thus, we get

— -1 _—
(A) = (A1) ifA,AT A5 + A3AT1A, = 0.

5. Let A=A, + Aye; + Aze, + Ayee;, € M, (HDN) and B = B; + B,&; + B3e, + B,g1€;, €
M, ., (HDN). Then
(AB)" = [A;B; + (A1B, + A;B1)e; + (A1B3 + A3B1)e; + (A1By + A;Bs + AyBy + A3B;) e8]
= [A1B; — (A1B; + A;B1)e; — (A1B3 + A3B)e; — (A1By + AyB3 + AyBy + A3Bz)5152]T
= B{ AT — (B3 AT + B{A})e; — (B3 AT + B{A3)e;, — (Bi AL + B3A; + B{AL + B3 AY)ese,
= (Bf — Bje; — Bj &, — Bie1&;,)(A] — Aje; — Aze, — A 8;)
= B*A".
8. LetA =A, + Aye; + Ase, + Ayeg e, € M, (HDN) and A, is invertible. Then
(A")™ = (A] — AJe, — Ale, — Are )7t
= (AD7'[AT + (A2(AD) A3 + A3(AD 1 AD e8| (4D
= (AT)T[AT + (A2(ATD)TAT + A3(ATD)TAD 6,1 (AT)T
= [AT'[A + (A3AT'A7 + AZAT ADe &) AT
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= [ATM[A + (4,474, + A AT A))e, 8, | AT
= (A1),

Real Matrix Representation of Hyper Dual Numbers

Let A=A, + Ay, + Aze, + Aye e, € M5, (HIDN) be a hyper dual matrix. We define the
linear map Rp by
R : M, (HDN) — M,,,(HDN)
RA(B) = AB.
Using this operator and the basis {1, &1, €5, 1€} of the vector space M, ., (HIDN), we can write
RA(l) =Al= A1 + A2€1 + A3€2 + A461€2,
Raler) = Agy = A1&1 + Azeq8y,
Ra(e2) = Agy = A&, + Azeq8,,
Ra(e18) = Agie; = Aj€18,.

Then the following real matrix representation can be found as

(A1 0, 0, 0y

R :|A2 Aq 0n Onl

A4, 0, A 0,]
4, A5 4, A,

Furthermore, detRy = (detdq)*.

Example 3. The real matrix representations of 1, €4, €, €1 €, are

ITl OTl OTl OTl- -OTl OTl OTl OTl-

1o, I, 0, 0,]_ | 0, 0, 0,

Ri=1o, 0, I, 0,|= %  Ra=|o, 0, 0, o,
0, 0, 0, I, 0, On I Onlyyssn

0, 0, 0, 0, [0, 0, 0 0]

2 |0 O 0, 0y 2 _|0n 0n 0. 0,

2~ |, 0, 0, 0, &12 =10, 0, O, O,
On In On On-4n><4n -In On On On-4n><4n

where 1, €1, €2, €18 € M, (HIDN) and Ry, R, Re,, Re e, € My (HIDN). Furthermore, these real
representation matrices satisfy:

Ri = I4Tl’
‘{Rgl = ‘{R%Z = ‘{Rglsz = O'
‘{Rsl‘{Rsz = ‘{Rsz‘{Rsl = Rslsz'

The inverse of the real matrix representation of hyper dual numbers is found as

II AT 0, 0, On |
et | —AT A AT AT’ 0y, Oy |
~ A7 AsA7 0, AT o)
|AT" (447" 45 + AsAT Ay — A3) ATY —AT'A3AT" —AT ApAT AT

2 + 61 - 36162 _1 + 361 + 562 - 26162
—5 - 261 - 462 + 6162 3 + 61 - 62 + 46162
matrix. Then the real matrix representation of A is

Example 4. Let A = [ be a hyper dual number
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2 -1 0 O O O 0 07

-5 3 o o0 o o0 o0 o

1 3 2 -1 0 0 o0 O

Ry = -2 1 -5 3 0O o0 0 0

0 5 o o0 2 -1 0 O

-4 -1 0 0 -5 3 0 O

-3 =2 0 5 1 3 2 -1

L1 4 -4 -1 -2 1 =5 3

and the inverse of the real matrix representation of A is

3 1 0 0 0 0 00
5 2 0 0 0 0 00
-53 =21 3 1 0 0 00
Rl = —88 —35 5 2 0 0 00
A —58 24 0 0 3 1 00
-91 —-38 0 0 5 2 00
2022 822 —-58 —-24 -53 =21 3 1
13254 1324 -91 -38 —-88 -35 5 2

Therefore, the inverse of A is
1_[3 1 —-53 =21 —-58 -—-24 2022 822
A _[5 2]+61[—88 —35]”2[—91 —38]+6162[3254 1324

_ 3 - 5361 - 5862 + 20226162 1-— 2161 - 2462 + 8226162 ]
15— 8861 - 9162 + 32546162 2— 3561 - 3862 + 13246162 '
Also, detR, = (detd,)* = 1.

DUAL ADJOINT MATRIX OF HYPER DUAL NUMBER MATRICES

In this section we define the dual adjoint matrix of a hyper dual number matrix. Next, we
give some relations between hyper dual number matrices and their dual adjoint matrices and explain
these relations with example.

Definition 2. Let A = D, + £*D, € M., (HDN), where D; and D, are dual matrices. We define
the 2n X 2n dual matrices A as

Dl On
Ka = [Dz DJ'

This matrix Xy is called the dual adjoint matrix of the hyper dual number matrix A.

Theorem 8. Let A,B € M,,,,, (HDN) be a hyper dual regular matrix. Then the following hold:

1. X7, = Ihp;
2. Xp+B = Xp + Xp;
3. Xap = XaXg;

4. Xp-1=(X4) "t if D, exists;
5. XA* = (XA)* lsz = 0.

Proof. The proof can be shown easily.
Definition 3. Let A € M., (HDN) and A € HIDN. If A holds in the equation Ax = Ax for some

non-zero hyper dual number column vector X, then A is called the eigenvalue of A. The set of the
eigenvalues
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o(A) = {A € HDN : Ax = Ax, for some x # 0}
is called spectrum of A.

Since the characteristic polynomial of matrix X, is equal to the characteristic polynomial of
matrix (XC,)7, it can be clearly seen that 6(Xx) = a((X4)T).

Theorem 9. Let A € M, ., (HDN). If 6(A) N D # @, then
og(A)ND = a(Xy),
where a(X,) = {L € D : X,y = pny, for somey # 0} is spectrum of the dual adjoint matrix of A.
Proof. Let A= D, + €*D, € M, ., (HDN), where D;,D, € D and A € D are eigenvalues of A.
That is, let 0(A) N D # @. Therefore, there exists a non-zero column vector X = d; + £*d,, where
d,, d, are dual column vectors such that Ax = Ax. This implies
(Dy + €*D,)(dy + €*d,) = A(d; + £*d;),
D,d, + €*Dyd, + €*D,d = Ady + €*Ad,,
Did; + €*(D,d, + D,d,) = Ad; + £*Ad,.
Thus, we obtain the following equations:
{Dldl = Ad,,
D,d, + D,d, = Ad,.

oy el =2

Therefore, dual eigenvalue of the hyper dual number matrix A is equivalent to the eigenvalue of the

Using these equations, we find

dual adjoint matrix X, that is
oc(A)ND = o(X,).

Example 5. Let A= | . 253+ 22; ' oo L+ 253 +22€€ *¢’] € Myo(HIDN) . Then dual
adjoint matrix of A is
3-2¢ 142 0 0
Cn = 1+2e 34 2¢ 0 0
A 0 —2—¢ 3-2¢ 142

2+ ¢ 0 1+2e 3+42¢

By theorem 9, the dual eigenvalues of A are equivalent to the eigenvalues of X5, and the set of
these eigenvalues is

a(Xy) = a(A)ND = {3+V1+4¢3—V1+4e}.

Definition 4. Let A =D, + ¢*D, € M., (HDN) and X4 be the dual adjoint matrix of A. We
define the determinant of A and X4 as follows:

detA = (detD;)(1 + e*tr(D;'D,)) and detX, = (detD;)?,
where tr(D{1D,) is the trace of D 1D,.

Theorem 10. Let A = D, + £€*D, € M,,»,, (HDN). The following are equivalent:
1. A 1s invertible;

2. Ax = 0 has a unique solution 0;

3. detXy, # 0, i.e. X, is invertible;
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4. A has no zero eigenvalue. More precisely, if AX = Ax for some hyper dual number A and some
hyper dual number vector x # 0, then A # 0.

Proof. (1) = (2): This part is clear.
(2) = (3): Let A=D;+¢*D, € M,,,,,(HDN), x = d; + £*d,, where D;, D, are dual matrices
and d,, d, are dual column vectors. Then
Ax = (D, + £*D,)(d, + €*d;)

= D;d; + €*D;d, + €*D,d;

= D,d, + £*(D,d, + D,d,)
Since Ax = 0, we get

D,dy =0
and
D,d, + D,d; = 0.
So we have
. : D; 0,][d:
Ax = 0 if and only if [Dz Dl] [dz] = 0.

From here, X4(d;,d,)T = 0. Since Ax = 0 has a unique solution, X4 (d;,d,)T = 0 has a unique
solution. Therefore, since X4 is a dual matrix, X, is invertible.
(2) © (4): Let x = 0 be a unique solution of Ax = 0 for A € M,,,.,, (HDN). Suppose A has a zero
eigenvalue. Then for some hyper dual number vector X # 0, the equation AX = Ax has a zero
eigenvalue. So Ax = 0, and this is a contradiction to our assumption of Xx = 0. Now suppose that A
has no eigenvalue of zero. So if Ax = 0 = Ax, then by our assumption, x = 0.
(3) = (1): Let X, be invertible. So because X, is invertible, there is a dual matrix

5
K; K,

for A = D; + £"D, such that

[K1 Kz] [Dl On] _ [In On]

K; K,||D, D, 0, LI
From the last matrix equation, we can write

K;D, + K,D, =0, and K,D; =1,.

Using these equations, we get

K,D; + ¢*(K3D, + K,D,) = I,,.
That is

BA =1,

for B = K, + €*K5. So A 1s an invertible hyper dual number matrix by Theorem 4.

Theorem 11. Let A,B € M, ,, (HDN). Then

1. A is invertible< detA # 0;

2. det(AB) = detAdetB;

3. (detA)"™ = (detDy)™(1 + ne*tr(D71D,)), where tr(D71D,) = trace(Dy1D,).

Proof. Let A = D, + £*D, € M,,,.,,(HDN) and B = K; + ¢*K, € M., (HDN).
1. It is clear from theorem 10.
2. Since
AB = DK, + £*(D,K, + D,K,),
we get
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det(AB) = det(D;K,)(1 + e*tr(K{ 'K, + K[ D7 'D,K;))
= detD,detK, (1 + e*tr(K{1K,) + e*tr(K{ 1Dy 1D, K,))
= detD,detK, (1 + e*tr(K{1K,) + e*tr(D71D,))
= detD,detK; (1 + e*tr(K7*K,))(1 + e*tr(D{1D,))
= detD, (1 + e*tr(K;*K;))detK, (1 + e*tr(D71D,))
= detAdetB.

3.For x € Dand n € N, it is clear that (1 + x&£*)"® = 1 + nxe*. Therefore, if x = tr(D;1D,) is
taken, it is seen that

(detA)™ = (detD)™(1 + e*tr(Dl‘lDz))n
= (detD)™(1 + ne*tr(D71D,)).

CONCLUSIONS

In this study we have given hyper dual number matrices. Due to the fact that hyper dual
number matrices have dual number matrix representation, the investigation of this matrix algebra
has brought some advantages. Defining concepts such as determinant, inverse, conjugate and
transpose of hyper dual number matrices in terms of dual matrix are some of these advantages. In
addition, it was interesting to give the special types of these matrices in terms of some properties
provided by dual matrices. Finally, the concept of dual adjoint matrix was defined by the block dual
matrix. Thus, properties related to eigenvalue, eigenvector and linear equation systems could be
mentioned. It is also very important in terms of practice to find the n'*-order power of the
determinant of a matrix with the help of adjoint matrix. For further study, by considering the present
approach, one can carry out a similar study for more involved structures.
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