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Abstract: We study hyper dual numbers and hyper dual number matrices. Firstly, we give 
some basic properties of dual numbers and hyper dual numbers. Next, we investigate hyper 
dual number matrices using the properties of dual number matrices. Then we define the dual 
adjoint matrix of hyper dual matrices and describe some of their properties. 
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INTRODUCTION 
 

Dual numbers were introduced in 1873 by Clifford [1]. In 1903 Study [2] defined the 
relationship between two lines in Euclidean space as a dual angle and proved that in the E.Study 
transformation, which he named himself, each point on the unit dual sphere corresponds exactly to 
the directional lines in ℝ . In this manner it allows the theory of directional lines in ℝ  to be 
examined with the help of dual numbers. Just as the geometry of the Euclidean plane can be 
described by complex numbers, the geometry of the Galilean plane 

픻 = {푧 = 푥 + 휀푦 ∶  휀 = 0, 휀 ≠ 0, 푥, 푦 ∈ ℝ} 
can be described by dual numbers, which are extensively used in quantum mechanics and classical 
mechanics of screws [3-6]. 

Matrix representation of dual numbers can be given as 

푥 + 휀푦 ⟷ 푥 푦
0 푥 , 

where 

휀 ⟷ 0 1
0 0  

is dual unit. 
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This mapping is an isomorphism, as the operations here correspond to matrix addition and 
multiplication. Thus, we have the matrix forms of Euler formula for dual numbers as given: 

1 + 휀휃 = exp 0 휃
0 0 = 1 휃

0 1 . 

This matrix is the rotation matrix in the Galilean plane. For any 푧 = 푥 + 휀푦 ∈ 픻, Re(푧) = 푥 
is the real part of 푧 and Im(푧) = 푦 is the imaginary part of 푧. The conjugate of a dual number is 
denoted by 푧 and defined by 푧 = 푥 − 휀푦. 

The norm of a dual number is defined as 
|푧| = |푥|. 

If 푥 = ∓1, then 푧 is called unit dual number. Note that 
| |

 is a unit dual number for 푧 ∈ 픻 with |푧| ≠

0. The square root of a dual number 푧 = 푥 + 휀푦 is defined as 

푥 + 휀푦 = √푥 + 휀
푦

2√푥
, 푥 > 0. 

The inverse of the dual number 푧 is 

푧 =
푧

|푧| , if 푥 ≠ 0. 
 
Dual numbers play an important role in the field of robot technology [7]. The concept of 

dual numbers is used to show the geometry of lines. Robotic applications can be made with the help 
of this one-to-one mapping [8]. Using this advantage of dual numbers in algebra of quaternions, 
robotic technology and motion theory have been taken to another dimension [9]. The innovations 
brought to technology with the use of number systems in this way are quite remarkable. A list of 
references to dual number applications in linear algebra and kinematic and numerical algorithms 
can be found [e.g. 10]. One of the number systems that has attracted attention in recent years is the 
hyper dual number system. This number system was first given by Fike et al. and Fike and Alonso 
[11-13]. Cil [14] worked on hyper dual numbers and their properties and presented it as a master 
thesis. Cohen and Shoham [15, 16] applied the hyper dual number system to rigid body kinematics. 
Nalbant and Yuce [17] described some new properties of real quaternion matrices. Next, they gave 
a Matlab algorithm that easily finds matrix representations of the real quaternion matrices. 

Hyper dual numbers are a higher dimensional extension of dual numbers in the same way as 
quaternions are a higher dimensional extension of ordinary complex numbers [12]. Fike et al. [11] 
focused on the numerical approach and developed a Fortran algorithm to calculate numerically the 
velocity and acceleration of the coupler curve of a spherical 4R mechanism. Later, Fike and Alonso 
[12] demonstrated the accuracy of hyper dual number calculations by giving a comparison of the 
various first and second derivative calculation methods for a simple, analytic function. 

Many authors have studied quaternion matrices, split quaternion matrices and hybrid number 
matrices [e.g. 18-20]. Considering the studies of matrices, together with the developments in robot 
technology and rigid body kinematics, it is clear that the definition and applications of hyper dual 
number matrices will make important contributions to robot technology. Hyper dual number 
matrices can be written as block matrices whose elements are dual numbers. The inverse, conjugate 
and similar properties of hyper dual number matrices that can be written in this way are given in 
this study. In this respect, it is thought that these features will play a key role in studies and 
applications in kinematic and robotic technology. 

In this paper we investigate hyper dual number matrices. Firstly, we give some properties of 
hyper dual numbers. Then we introduce hyper dual number matrices and give some of their 
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properties. Finally, we define the dual adjoint matrix of hyper dual number matrices and give some 
properties of these matrices. Also, we give an application of matrices in the last part. 

HYPER DUAL NUMBERS 

A hyper dual number 퐱 has the form 
퐱 = 푥 + 푥 휀 + 푥 휀 + 푥 휀 휀 , 

where 푥 , 푥 , 푥 , 푥  are real numbers while 휀 , 휀  are dual units. Hyper dual number algebra is a 
unitary and commutative ring with four basic elements {1, 휀 , 휀 , 휀 휀 } that provide the equations 

휀 = 휀 = 0, 
휀 ≠ 0, 휀 ≠ 0, 휀 ≠ 휀 , 
휀 휀 = 휀 휀 . 

On the other hand, hyper dual number 퐱 = 푥 + 푥 휀 + 푥 휀 + 푥 휀 휀  can be given in the 
following form 

퐱 = (푥 + 휀푥 ) + 휀∗(푥 + 휀푥 ). 
 
Also, hyper dual number is written as the sum of two dual numbers: 

퐱 = 푑 + 휀∗푑 , 
휀 = 휀 , 휀∗ = 휀 , 
휀 = (휀∗) = 0, 
휀 ≠ 0, 휀∗ ≠ 0, 휀 ≠ 휀∗, 
휀휀∗ = 휀∗휀 ≠ 0, 

where 휀∗ is called the hyper dual unit and and  푑 , 푑 ∈ 픻.  Let us denote the algebra of hyper dual 
number by ℍ픻ℕ. 

A set of hyper dual numbers can be represented as 
ℍ픻ℕ = {퐱 = 푥 + 푥 휀 + 푥 휀 + 푥 휀 휀 ∶  푥 , 푥 , 푥 , 푥 ∈ ℝ}.  

The sum and product of hyper dual numbers 퐱 = 푥 + 푥 휀 + 푥 휀 + 푥 휀 휀  and 퐲 = 푦 + 푦 휀 +
푦 휀 + 푦 휀 휀  are 

퐱 + 퐲 = (푥 + 푦 ) + (푥 + 푦 )휀 + (푥 + 푦 )휀 + (푥 + 푦 )휀 휀 , 
퐱퐲 = 푥 푦 + (푥 푦 + 푥 푦 )휀 + (푥 푦 + 푥 푦 )휀 + (푥 푦 + 푥 푦 + 푥 푦 + 푥 푦 )휀 휀 . 

 
For any hyper dual number 퐱 = 푥 + 푥 휀 + 푥 휀 + 푥 휀 휀 , Re(퐱) = 푥 is the real part of 퐱 and 
HDu(퐱) = 푥 휀 + 푥 휀 + 푥 휀 휀  is the hyper dual part of 퐱. The conjugate of a hyper dual number 
퐱 is denoted by 퐱 and defined by  퐱 = 푥 − 푥 휀 − 푥 휀 − 푥 휀 휀  or 퐱 = 푑 − 휀∗푑 . 

The inner product of  퐱 = 푥 + 푥 휀 + 푥 휀 + 푥 휀 휀  and  퐲 = 푦 + 푦 휀 + 푦 휀 + 푦 휀 휀  
is defined by 

〈 , 〉 ∶  ℍ픻ℕ × ℍ픻ℕ ⟶ ℍ픻ℕ 
       (퐱, 퐲) ⟶ 〈퐱, 퐲〉 = 푥 푦 .  

The norm of a hyper dual number 풙 is defined by 
‖ ‖ ∶  ℍ픻ℕ ⟶ ℝ 
퐱 ⟶ ‖퐱‖ = 〈퐱, 퐱〉 = |푥 |. 

 
Since an ℍ픻ℕ is a dual number with dual number entries, we use the definition of the 

square root of a dual number to compute the square root of the ℍ픻ℕ. So the square root of any 
hyper dual number  퐱 = 푑 + 휀∗푑 = 푥 + 휀푥 + 휀∗(푥 + 휀푥 )  is found as follows: 
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√퐱 = 푑 + 휀∗푑 = 푑 + 휀∗ 푑
2 푑

, 푥 > 0 

      = 푥 1 +
푥

2푥 휀 +
푥

2푥 휀∗ +
푥

2푥 −
푥 푥
4푥

휀휀∗ , 푥 > 0. 
 
The inverse of the hyper dual number 퐱  is [14] 

퐱 =
1
푥 −

푥
푥

휀 −
푥
푥

휀∗ −
푥
푥

−
2푥 푥

푥
휀휀∗, 푥 ≠ 0. 

 

Corollary 1.  If 푥 = 0, there is no inverse of the hyper dual number 퐱 = 푥 + 푥 휀 + 푥 휀 + 푥 휀 휀 . 

Theorem 1.  The following properties are satisfied for any 퐱, 퐲 ∈ ℍ픻ℕ. 

1. 퐱퐱 = 퐱퐱. 
2. 퐱퐲 = 퐲퐱. 
3. 휀∗푑 = 푑휀∗, for any 푑 ∈ 픻. 
4. ‖퐱‖ퟐ + ‖퐲‖ퟐ = ퟏ

ퟐ
(‖퐱 + 퐲‖ퟐ + ‖퐱 − 퐲‖ퟐ). 

5. If 푥 푦 = −푥 푦 , then 퐱퐲 = 퐱 퐲 = 퐲 퐱. 
6. ‖퐱퐲‖ = ‖퐱‖‖퐲‖. 
7. 퐱 = 퐱 if and only if 퐱 ∈ ℝ. 

8. If 푥 푥 = 0 and 푥 ≠ 0, then 퐱 = 퐱
‖퐱‖ퟐ. 

9.There exists a unique representation of the form 퐱 = 푑 + 휀∗푑  for any 퐱 ∈ ℍ픻ℕ, where 푑 , 푑 ∈ 픻. 

Proof.  We prove some of these properties, and others can be proved similarly. 
5. Let 푥 푦 = −푥 푦  for 퐱 = 푥 + 푥 휀 + 푥 휀 + 푥 휀 휀 ∈ ℍ픻ℕ  and 퐲 = 푦 + 푦 휀 + 푦 휀 +
푦 휀 휀 ∈ ℍ픻ℕ. Then 
 퐱퐲 = 푥 푦 − (푥 푦 + 푥 푦 )휀 − (푥 푦 + 푥 푦 )휀 − (푥 푦 + 푥 푦 + 푥 푦 + 푥 푦 )휀 휀  
       = 푥 푦 − (푥 푦 + 푥 푦 )휀 − (푥 푦 + 푥 푦 )휀 − (푥 푦 − 푥 푦 + 푥 푦 + 푥 푦 )휀 휀  
       = 푥 푦 − (푥 푦 + 푥 푦 )휀 − (푥 푦 + 푥 푦 )휀 − (푥 푦 + 푥 푦 )휀 휀  
퐱 퐲 = (푥 − 푥 휀 − 푥 휀 − 푥 휀 휀 )(푦 − 푦 휀 − 푦 휀 − 푦 휀 휀 ) 
       = 푥 푦 − 푥 푦 휀 − 푥 푦 휀 − 푥 푦 휀 휀 − 푥 푦 휀 + 푥 푦 휀 휀 − 푥 푦 휀 + 푥 푦 휀 휀 − 푥 푦 휀 휀  
       = 푥 푦 − (푥 푦 + 푥 푦 )휀 − (푥 푦 + 푥 푦 )휀 − (푥 푦 + 푥 푦 − 푥 푦 + 푥 푦 )휀 휀  
       = 푥 푦 − (푥 푦 + 푥 푦 )휀 − (푥 푦 + 푥 푦 )휀 − (푥 푦 + 푥 푦 )휀 휀   
Since hyper dual numbers are commutative, 퐱 퐲 = 퐲 퐱.  Thus, 퐱퐲 = 퐱 퐲 = 퐲 퐱. 

8. Let 푥 푥 = 0 and 푥 ≠ 0 for 퐱 = 푥 + 푥 휀 + 푥 휀 + 푥 휀 휀 ∈ ℍ픻ℕ. Thus, we obtain 

퐱 =
1
푥 −

푥
푥

휀 −
푥
푥

휀 −
푥
푥

−
2푥 푥

푥
휀 휀 =

푥
푥

−
푥
푥

휀 −
푥
푥

휀 −
푥
푥

휀 휀  

        =
푥 − 푥 휀 − 푥 휀 − 푥 휀 휀

푥
=

퐱
‖퐱‖ퟐ. 

Theorem 2.  Every hyper dual number can be represented by a 2 × 2 dual matrix [14]. 

Proof.  Let 퐱 ∈ ℍ픻ℕ . Then there exist dual numbers 푑  and 푑  such that 퐱 = 푑 + 휀∗푑  by 
theorem 1(9). The linear map 푓퐱: ℍ픻ℕ ⟶ ℍ픻ℕ is defined by 푓퐱(퐲) = 퐱퐲 for all 퐲 ∈ ℍ픻ℕ. This 
map is bijective and 
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푓퐱(1) = 1(푑 + 휀∗푑 ) = 푑 + 휀∗푑 , 
푓퐱(휀∗) = 휀∗(푑 + 휀∗푑 ) = 휀∗푑 .  

With this transformation, hyper dual numbers are defined as subset of the matrix ring 필 × (픻), the 
set of 2 × 2 dual matrices: 

ℍ픻ℕ = 푑 0
푑 푑 ∶  푑 , 푑 ∈ 픻 . 

 
ℍ픻ℕ and ℍ픻ℕ  are basically the same. Note that 

ℳ ∶  퐱 = 푑 + 휀∗푑 ∈ ℍ픻ℕ ⟶ 퐱 = 푑 0
푑 푑 ∈ ℍ픻ℕ  

 
is bijective and preserves the operations. Furthermore, ‖퐱‖ퟐ = Re(det 퐱′). 

Theorem 3.  Every hyper dual number can be represented by a 4 × 4 real matrix [14]. 

Proof. The linear map 휑퐱 ∶ ℍ픻ℕ ⟶ ℍ픻ℕ  is defined by 휑퐱(퐲) = 퐱퐲 for any 퐲 ∈ ℍ픻ℕ , where  
퐱 = 푥 + 푥 휀 + 푥 휀 + 푥 휀 휀 . This map is bijective and  

     휑퐱(1) = (푥 + 푥 휀 + 푥 휀 + 푥 휀 휀 )1 = 푥 + 푥 휀 + 푥 휀 + 푥 휀 휀 , 
    휑퐱(휀 ) = (푥 + 푥 휀 + 푥 휀 + 푥 휀 휀 )휀 = 푥 휀 + 푥 휀 휀 , 
    휑퐱(휀 ) = (푥 + 푥 휀 + 푥 휀 + 푥 휀 휀 )휀 = 푥 휀 + 푥 휀 휀 , 
휑퐱(휀 휀 ) = (푥 + 푥 휀 + 푥 휀 + 푥 휀 휀 )휀 휀 = 푥 휀 휀 .  

With this transformation, hyper dual numbers are defined as subset of the matrix ring 필 × (ℝ), the 
set of 4 × 4 dual matrices: 

ℍ픻ℕ′′ =

푥 0 0 0
푥 푥 0 0
푥 0 푥 0
푥 푥 푥 푥

∶  푥 , 푥 , 푥 , 푥 ∈ ℝ . 

ℍ픻ℕ and ℍ픻ℕ′′ are essentially the same. 
 
HYPER DUAL NUMBER MATRICES 
 

The set of 푚 × 푛   matrices with hyper dual number entries, which is denoted by 
필 × (ℍ픻ℕ) with ordinary matrix addition and multiplication, is a ring with unity. The set of 
hyper dual number matrices can be represented by 

필 × (ℍ픻ℕ) = {퐀 = (퐚 ) ∶  퐚 ∈ ℍ픻ℕ}, 
필 × (ℍ픻ℕ) = {퐀 = 퐴 + 퐴 휀 + 퐴 휀 + 퐴 휀 휀 ∶  퐴 , 퐴 , 퐴 , 퐴 ∈ 필 × (ℝ)} 

or 
필 × (ℍ픻ℕ) = {퐀 = 퐷 + 휀∗퐷 ∶  (휀∗) = 0, 퐷 , 퐷 ∈ 필 × (픻)}.                           

Right and left scalar multiplication are defined by 
퐀퐱 = (퐚 퐱) and 퐱퐀 = (퐱퐚 )  

respectively, for 퐀 = (푎 ) ∈ 필 × (ℍ픻ℕ) and 퐱 ∈ ℍ픻ℕ. 
The following are satisfied: 

퐱(퐀퐁) = (퐱퐀)퐁, 
(퐀퐱)퐁 = 퐀(퐱퐁), 
(퐱퐲)퐀 = 퐱(퐲퐀),  

for 퐀, 퐁 ∈ 필 × (ℍ픻ℕ) and 퐱, 퐲 ∈ ℍ픻ℕ. 필 × (ℍ픻ℕ) is a module over the ring ℍ픻ℕ. 
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For 퐀 = (퐚 ) ∈ 필 × (ℍ픻ℕ) , 퐀 = (퐚 ) ∈ 필 × (ℍ픻ℕ)  is the conjugate of 퐀 ;            
퐀 = (퐚 ) ∈ 필 × (ℍ픻ℕ) is the transpose of 퐀; and 퐀∗ = (퐀) ∈ 필 × (ℍ픻ℕ) is the conjugate 
transpose of 퐀. Also, since it can be written as 퐀 = 퐷 + 휀∗퐷 , the conjugate of 퐀 can be given as 
퐷 − 휀∗퐷 . For a square hyper dual number matrix 퐀 ∈ 필 × (ℍ픻ℕ), if 퐀퐀∗ = 퐀∗퐀, then 퐀 is 
called normal matrix; if 퐀 = 퐀∗, then 퐀 is called hermitian matrix; if 퐀퐀∗ = 퐼 , then 퐀 is called 
unitary matrix. For 퐁 ∈ 필 × (ℍ픻ℕ), if 퐀퐁 = 퐁퐀 = 퐼 , then 퐀 is called invertible matrix and 퐁 is 
called the inverse of 퐀. 

Considering all this, if 퐷  is normal matrix and 퐷 퐷 − 퐷 퐷 = 퐷∗퐷 + 퐷 퐷∗ , then 퐀 is 
normal matrix. If 퐷  is unitary matrix and 퐷 퐷∗ = 퐷 퐷 , then 퐀  is unitary matrix. If 퐷  is 
hermitian matrix and −퐷 = 퐷 , then 퐀 is hermitian matrix. 

Theorem 4.  Let 퐀, 퐁 ∈ 필 × (ℍ픻ℕ). If 퐀퐁 = 퐼 , then 퐁퐀 = 퐼 . 

Proof. Let 퐀퐁 = 퐼 for 퐀 = 퐴 + 퐴 휀 + 퐴 휀 + 퐴 휀 휀 ∈ 필 × (ℍ픻ℕ)  and 퐁 = 퐵 + 퐵 휀 +
퐵 휀 + 퐵 휀 휀 ∈ 필 × (ℍ픻ℕ).  From this we get 

퐀퐁 = 퐴 퐵 + (퐴 퐵 + 퐴 퐵 )휀 + (퐴 퐵 + 퐴 퐵 )휀 + (퐴 퐵 + 퐴 퐵 + 퐴 퐵 + 퐴 퐵 )휀 휀 , 
so 

퐴 퐵 = 퐼 , 
퐴 퐵 + 퐴 퐵 = 퐼 , 
퐴 퐵 + 퐴 퐵 = 퐼 , 
퐴 퐵 + 퐴 퐵 + 퐴 퐵 + 퐴 퐵 = 퐼 .  

Since 퐴 , 퐵 , 푖, 푗 = 1, … ,4  are 푛 × 푛 real matrices, we get 
퐵 = 퐴 , 
퐵 = −퐴 퐴 퐵 = −퐴 퐴 퐴 , 
퐵 = −퐴 퐴 퐵 = −퐴 퐴 퐴 , 
퐵 = −퐴 (퐴 퐵 + 퐴 퐵 + 퐴 퐵 ) = −퐴 (−퐴 퐴 퐴 퐴 + 퐴 퐴 − 퐴 퐴 퐴 퐴 )  

from real matrix properties. Thus, we obtain 
퐁퐀 = 퐵 퐴 + (퐵 퐴 + 퐵 퐴 )휀 + (퐵 퐴 + 퐵 퐴 )휀                                    
           +(퐵 퐴 + 퐵 퐴 + 퐵 퐴 + 퐵 퐴 )휀 휀  

                = 퐴 퐴 + (−퐴 퐴 퐴 퐴 + 퐴 퐴 )휀 + (−퐴 퐴 퐴 퐴 + 퐴 퐴 )휀  
                    +[−퐴 (−퐴 퐴 퐴 퐴 + 퐴 퐴 − 퐴 퐴 퐴 퐴 )퐴  
                    −퐴 퐴 퐴 퐴 + 퐴 퐴 − 퐴 퐴 퐴 퐴 ]휀 휀  
                = 퐼 . 

Theorem 5.  If the real matrix 퐴  is invertible (det퐴 ≠ 0), 퐀 is also invertible and the inverse is 
퐀 = 퐴 퐀 + (퐴 퐴 퐴 + 퐴 퐴 퐴 )휀 휀 퐴  

for 퐀 = 퐴 + 퐴 휀 + 퐴 휀 + 퐴 휀 휀 ∈ 필 × (ℍ픻ℕ). 
 
Proof. Let 퐀퐁 = 퐼  for 퐀 = 퐴 + 퐴 휀 + 퐴 휀 + 퐴 휀 휀 ∈ 필 × (ℍ픻ℕ)  and 퐁 = 퐵 + 퐵 휀 +
퐵 휀 + 퐵 휀 휀 ∈ 필 × (ℍ픻ℕ). In this case if we calculate 퐁 when 퐀퐁 = 퐼 , we get the inverse of 
퐀.  Since 

퐀퐁 = 퐴 퐵 + (퐴 퐵 + 퐴 퐵 )휀 + (퐴 퐵 + 퐴 퐵 )휀 + (퐴 퐵 + 퐴 퐵 + 퐴 퐵 + 퐴 퐵 )휀 휀  
       = 퐼 + 0 휀 + 0 휀 + 0 휀 휀  

and 
퐴 퐵 = 퐼 ⇒ 퐵 = 퐴 , 
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퐴 퐵 + 퐴 퐵 = 0 ⇒ 퐵 = −퐴 퐴 퐴 , 
퐴 퐵 + 퐴 퐵 = 0 ⇒ 퐵 = −퐴 퐴 퐴 , 
퐴 퐵 + 퐴 퐵 + 퐴 퐵 + 퐴 퐵 = 0 ⇒ 퐵 = −퐴 (−퐴 퐴 퐴 퐴 + 퐴 퐴 − 퐴 퐴 퐴 퐴 ), 

 
we get 

퐀 = 퐴 − 퐴 퐴 퐴 휀 − 퐴 퐴 퐴 휀 − 퐴 (−퐴 퐴 퐴 퐴 + 퐴 퐴 − 퐴 퐴 퐴 퐴 )휀 휀  
or 

퐀 = 퐴 퐀 + (퐴 퐴 퐴 + 퐴 퐴 퐴 )휀 휀 퐴 . 

Example 1.  Let 퐀 = 2 − 휀 + 3휀 −5휀 + 2휀 − 4휀 휀
3 + 휀 − 휀 + 휀 휀 1 + 5휀 − 3휀 휀  be a hyper dual number matrix. 

Then the inverse of 퐀 is 

퐀 =
1
4

2 − 14휀 + 3휀 + 28휀 휀 10휀 − 4휀 + 휀 휀
−6 + 40휀 + 23휀 − 321휀 휀 4 − 30휀 − 8휀 + 173휀 휀 . 

 
We can really multiply 퐀 by the matrix 퐀  to see that the result is the identity matrix. 

Theorem 6.  If the dual matrix 퐷  is invertible (det퐷 ≠ 0), 퐀 is also invertible and the inverse is 
퐀 = 퐷 (퐷 − 휀∗퐷 )퐷  

for 퐀 = 퐷 + 휀∗퐷 ∈ 필 × (ℍ픻ℕ). 

Proof. Let 퐀퐁 = 퐼  for 퐀 = 퐷 + 휀∗퐷 ∈ 필 × (ℍ픻ℕ)  and 퐁 = 퐾 + 휀∗퐾 ∈ 필 × (ℍ픻ℕ) . In 
this case if we calculate 퐁 when 퐀퐁 = 퐼 , we get the inverse of 퐀.  Since  

퐀퐁 = 퐷 퐾 + 퐷 퐾 휀∗ + 퐷 퐾 휀∗ = 퐼 + 휀∗0  
and 

퐷 퐾 = 퐼 ⇒ 퐾 = 퐷 , 
퐷 퐾 + 퐷 퐾 = 0 ⇒ 퐾 = −퐷 퐷 퐷 , 

we get 
퐀 = 퐷 (퐷 − 휀∗퐷 )퐷 . 

Example 2.  Let 퐀 = 1 + 휀 − 휀∗ 3 + 휀휀∗

2휀∗ + 휀휀∗ − 2 1 + 휀∗  be a hyper dual number matrix. Hyper dual 

number matrix 퐀 can be written as 

퐀 = 퐷 + 휀∗퐷 = 1 + 휀 3
−2 1 + 휀∗ −1 휀

2 + 휀 1 . 

If 퐷 − 휀∗퐷  and 퐷  are calculated, it is found respectively as follows: 

퐷 − 휀∗퐷 = 1 + 휀 + 휀∗ 3 − 휀휀∗

−2 − 2휀∗ − 휀휀∗ 1 − 휀∗    

and  

퐷 =
1

49
7 − 휀 3(휀 − 7)

14 − 2휀 7 + 6휀 . 

Therefore, the inverse of 퐀 is 

퐀 = 퐷 (퐷 − 휀∗퐷 )퐷 =
1

49

7 − 휀 + 13휀∗ +
19
7 휀휀∗ 3휀 − 18휀∗ −

13
7 휀휀∗ − 21

14 − 2휀 − 2휀∗ −
59
7 휀휀∗ 7 + 6휀 − 휀∗ +

37
7 휀휀∗

. 
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We can really multiply 퐀 by the matrix 퐀  to see that the result is the identity matrix. 

Definition 1.  A hyper dual number matrix that exists inversely is called a hyper dual regular 
matrix. Otherwise, it is called hyper dual singular matrix. 

Theorem 7.  Let 퐀, 퐁 ∈ 필 × (ℍ픻ℕ) and 퐱 ∈ ℍ픻ℕ. Then the following are satisfied: 

1. 퐀 = (퐀 ); 
2. (퐀 ) = (퐀 )   and  (퐀퐁) = 퐁 퐀 ; 

3. If 퐴 퐴 퐴 + 퐴 퐴 퐴 = 0, then 퐀 = (퐀 ); 
4. (퐀 + 퐁) = 퐀 + 퐁 = 퐁 + 퐀 ; 
5. (퐀퐁)∗ = 퐁∗퐀∗; 
6. If 퐴 퐵 = −퐴 퐵 , then 퐀퐁 = 퐀 퐁; 
7. If 퐴  and 퐵  are invertible, then (퐀퐁) = 퐁 퐀 ; 
8. If 퐴  is invertible, then (퐀∗) = (퐀 )∗. 

Proof.  We prove a few of these properties and others can be proved similarly. 
1. Let 퐀 = 퐴 + 퐴 휀 + 퐴 휀 + 퐴 휀 휀 ∈ 필 × (ℍ픻ℕ). Then 

퐀 = (퐴 − 퐴 휀 − 퐴 휀 − 퐴 휀 휀 )  
           = 퐴 − 퐴 휀 − 퐴 휀 − 퐴 휀 휀  
           = (퐀 ). 

3. Let 퐀 = 퐴 + 퐴 휀 + 퐴 휀 + 퐴 휀 휀 ∈ 필 × (ℍ픻ℕ) and 퐴 퐴 퐴 + 퐴 퐴 퐴 = 0. Then 

퐀 = (퐴 − 퐴 휀 − 퐴 휀 − 퐴 휀 휀 )  
              = 퐴 [퐀 + (퐴 퐴 퐴 + 퐴 퐴 퐴 )휀 휀 ]퐴  
              = 퐴 퐀퐴 . 

On the other hand, for 퐀 = 퐴 + 퐴 휀 + 퐴 휀 + 퐴 휀 휀 ∈ 필 × (ℍ픻ℕ)  and 퐴 퐴 퐴 +
퐴 퐴 퐴 = 0, we can obtain 

(퐀 ) = 퐴 퐀 + (퐴 퐴 퐴 + 퐴 퐴 퐴 )휀 휀 퐴  

             = 퐴 퐀퐴 = 퐴 퐀퐴 . 
Thus, we get 

퐀 = (퐀 )  if 퐴 퐴 퐴 + 퐴 퐴 퐴 = 0. 

5. Let 퐀 = 퐴 + 퐴 휀 + 퐴 휀 + 퐴 휀 휀 ∈ 필 × (ℍ픻ℕ)  and 퐁 = 퐵 + 퐵 휀 + 퐵 휀 + 퐵 휀 휀 ∈
필 × (ℍ픻ℕ). Then 
(퐀퐁)∗ = [퐴 퐵 + (퐴 퐵 + 퐴 퐵 )휀 + (퐴 퐵 + 퐴 퐵 )휀 + (퐴 퐵 + 퐴 퐵 + 퐴 퐵 + 퐴 퐵 )휀 휀 ]∗ 
             = [퐴 퐵 − (퐴 퐵 + 퐴 퐵 )휀 − (퐴 퐵 + 퐴 퐵 )휀 − (퐴 퐵 + 퐴 퐵 + 퐴 퐵 + 퐴 퐵 )휀 휀 ]  
              = 퐵 퐴 − (퐵 퐴 + 퐵 퐴 )휀 − (퐵 퐴 + 퐵 퐴 )휀 − (퐵 퐴 + 퐵 퐴 + 퐵 퐴 + 퐵 퐴 )휀 휀  
             = (퐵 − 퐵 휀 − 퐵 휀 − 퐵 휀 휀 )(퐴 − 퐴 휀 − 퐴 휀 − 퐴 휀 휀 ) 
             = 퐁∗퐀∗.  
8. Let 퐀 = 퐴 + 퐴 휀 + 퐴 휀 + 퐴 휀 휀 ∈ 필 × (ℍ픻ℕ) and 퐴  is invertible. Then 

(퐀∗) = (퐴 − 퐴 휀 − 퐴 휀 − 퐴 휀 휀 )  
              = (퐴 ) [퐀 + (퐴 (퐴 ) 퐴 + 퐴 (퐴 ) 퐴 )휀 휀 ](퐴 )  
              = (퐴 ) [퐀 + (퐴 (퐴 ) 퐴 + 퐴 (퐴 ) 퐴 )휀 휀 ](퐴 )  
              = [퐴 [퐀 + (퐴 퐴 퐴 + 퐴 퐴 퐴 )휀 휀 ]퐴 ]  
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              = 퐴 퐀 + (퐴 퐴 퐴 + 퐴 퐴 퐴 )휀 휀 퐴
∗
 

              = (퐀 )∗. 
 
Real Matrix Representation of Hyper Dual Numbers 
 

Let  퐀 = 퐴 + 퐴 휀 + 퐴 휀 + 퐴 휀 휀 ∈ 필 × (ℍ픻ℕ) be a hyper dual matrix. We define the 
linear map ℛ퐀 by 

ℛ퐀 ∶  필푛×푛(ℍ픻ℕ) ⟶ 필푛×푛(ℍ픻ℕ) 
ℛ퐀(퐁) = 퐀퐁. 

Using this operator and the basis {1, 휀1, 휀2, 휀1휀2} of the vector space 필 × (ℍ픻ℕ), we can write 

      ℛ퐀(1) = 퐀1 = 퐴1 + 퐴2휀1 + 퐴3휀2 + 퐴4휀1휀2, 
    ℛ퐀(휀1) = 퐀휀1 = 퐴1휀1 + 퐴3휀1휀2, 
    ℛ퐀(휀2) = 퐀휀2 = 퐴1휀2 + 퐴2휀1휀2, 
ℛ퐀(휀1휀2) = 퐀휀1휀2 = 퐴1휀1휀2. 

Then the following real matrix representation can be found as 

ℛ퐀 =

⎣
⎢
⎢
⎡
퐴1 0 0 0
퐴2 퐴1 0 0
퐴3 0 퐴1 0
퐴4 퐴3 퐴2 퐴1⎦

⎥
⎥
⎤

×4푛

. 

Furthermore, detℛ퐀 = (det퐴1) . 

Example 3.  The real matrix representations of ퟏ, 훆ퟏ, 훆ퟐ, 훆ퟏ훆ퟐ are 

 ℛퟏ =

퐼 0 0 0
0 퐼 0 0
0 0 퐼 0
0 0 0 퐼

= 퐼          ℛ훆ퟏ =

0 0 0 0
퐼 0 0 0
0 0 0 0
0 0 퐼 0 ×4푛

 

ℛ훆ퟐ =

0 0 0 0
0 0 0 0
퐼 0 0 0
0 퐼 0 0 ×4푛

     ℛ훆ퟏ훆ퟐ =

0 0 0 0
0 0 0 0
0 0 0 0
퐼 0 0 0 ×4푛

 

where ퟏ, 훆ퟏ, 훆ퟐ, 훆ퟏ훆ퟐ ∈ 필푛×푛(ℍ픻ℕ) and ℛퟏ, ℛ훆ퟏ, ℛ훆ퟐ , ℛ훆ퟏ훆ퟐ ∈ 필푛×푛(ℍ픻ℕ). Furthermore, these real 
representation matrices satisfy: 

ℛퟏ = 퐼 ,                   
       ℛ훆ퟏ = ℛ훆ퟐ = ℛ훆ퟏ훆ퟐ = 0, 
ℛ훆ퟏℛ훆ퟐ = ℛ훆ퟐℛ훆ퟏ = ℛ훆ퟏ훆ퟐ . 

The inverse of the real matrix representation of hyper dual numbers is found as 

ℛ퐀 =

⎣
⎢
⎢
⎢
⎢
⎡ 퐴1

−1 0 0 0
−퐴1

−1퐴2퐴1
−1 퐴1

−1 0 0
−퐴1

−1퐴3퐴1
−1 0 퐴1

−1 0
퐴1

−1 퐴2퐴1
−1퐴3 + 퐴3퐴1

−1퐴2 − 퐴4 퐴1
−1 −퐴1

−1퐴3퐴1
−1 −퐴1

−1퐴2퐴1
−1 퐴1

−1
⎦
⎥
⎥
⎥
⎥
⎤

. 

Example 4. Let 퐀 = 2 + 휀 − 3휀 휀 −1 + 3휀 + 5휀 − 2휀 휀
−5 − 2휀 − 4휀 + 휀 휀 3 + 휀 − 휀 + 4휀 휀  be a hyper dual number 

matrix. Then the real matrix representation of 퐀 is 
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ℛ퐀 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 2 −1 0 0 0 0 0 0
−5 3 0 0 0 0 0 0
1 3 2 −1 0 0 0 0

−2 1 −5 3 0 0 0 0
0 5 0 0 2 −1 0 0

−4 −1 0 0 −5 3 0 0
−3 −2 0 5 1 3 2 −1
1 4 −4 −1 −2 1 −5 3 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

and the inverse of the real matrix representation of 퐀 is 

ℛ퐀 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 3 1 0 0 0 0 0 0

5 2 0 0 0 0 0 0
−53 −21 3 1 0 0 0 0
−88 −35 5 2 0 0 0 0
−58 −24 0 0 3 1 0 0
−91 −38 0 0 5 2 0 0

2022 822 −58 −24 −53 −21 3 1
3254 1324 −91 −38 −88 −35 5 2⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

Therefore, the inverse of 퐀 is 

퐀 = 3 1
5 2 + 휀 −53 −21

−88 −35 + 휀 −58 −24
−91 −38 + 휀 휀 2022 822

3254 1324  

= 3 − 53휀1 − 58휀2 + 2022휀1휀2 1 − 21휀1 − 24휀2 + 822휀1휀2
5 − 88휀1 − 91휀2 + 3254휀1휀2 2 − 35휀1 − 38휀2 + 1324휀1휀2

. 

Also, detℛ퐀 = (det퐴 ) = 1. 
 
DUAL ADJOINT MATRIX OF HYPER DUAL NUMBER MATRICES 
 

In this section we define the dual adjoint matrix of a hyper dual number matrix. Next, we 
give some relations between hyper dual number matrices and their dual adjoint matrices and explain 
these relations with example. 

Definition 2. Let 퐀 = 퐷 + 휀∗퐷 ∈ 필 × (ℍ픻ℕ), where 퐷  and 퐷  are dual matrices. We define 
the 2푛 × 2푛 dual matrices 퐀 as 

풳퐀 = 퐷 0푛
퐷 퐷 . 

This matrix 풳퐀 is called the dual adjoint matrix of the hyper dual number matrix 퐀. 

Theorem 8.  Let 퐀, 퐁 ∈ 필 × (ℍ픻ℕ) be a hyper dual regular matrix. Then the following hold: 
1. 풳 = 퐼 ; 
2. 풳퐀 퐁 = 풳퐀 + 풳퐁; 
3. 풳퐀퐁 = 풳퐀풳퐁; 
4. 풳퐀 =(풳퐀)  if 퐷  exists; 
5. 풳퐀∗ = (풳퐀)∗ if 퐷 = 0. 
 
Proof.  The proof can be shown easily. 

Definition 3. Let 퐀 ∈ 필 × (ℍ픻ℕ) and 훌 ∈ ℍ픻ℕ. If 훌 holds in the equation 퐀퐱 = 훌퐱 for some 
non-zero hyper dual number column vector 퐱, then 훌 is called the eigenvalue of 퐀. The set of the 
eigenvalues 
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휎(퐀) = {훌 ∈ ℍ픻ℕ ∶  퐀퐱 = 훌퐱, for some 퐱 ≠ 0} 
is called spectrum of 퐀. 

Since the characteristic polynomial of matrix 풳퐀 is equal to the characteristic polynomial of 
matrix (풳퐀) , it can be clearly seen that 휎(풳퐀) = 휎((풳퐀) ). 

Theorem 9.  Let 퐀 ∈ 필 × (ℍ픻ℕ). If 휎(퐀) ∩ 픻 ≠ ∅, then 
휎(퐀) ∩ 픻 = 휎(풳퐀), 

where 휎(풳퐀) = {훍 ∈ 픻 ∶  풳퐀퐲 = 훍퐲, for some 퐲 ≠ 0} is spectrum of the dual adjoint matrix of 퐀. 

Proof. Let 퐀 = 퐷 + 휀∗퐷 ∈ 필 × (ℍ픻ℕ),  where 퐷 , 퐷 ∈ 픻 and 훌 ∈ 픻  are eigenvalues of 퐀 . 
That is, let 휎(퐀) ∩ 픻 ≠ ∅. Therefore, there exists a non-zero column vector 퐱 = 푑 + 휀∗푑 , where 
푑 , 푑  are dual column vectors such that 퐀퐱 = 훌퐱. This implies  

(퐷 + 휀∗퐷 )(푑 + 휀∗푑 ) = 훌(푑 + 휀∗푑 ), 
퐷 푑 + 휀∗퐷 푑 + 휀∗퐷 푑 = 훌푑 + 휀∗훌푑 , 
퐷 푑 + 휀∗(퐷 푑 + 퐷 푑 ) = 훌푑 + 휀∗훌푑 .  

Thus, we obtain the following equations: 
퐷 푑 = 훌푑 ,               
퐷 푑 + 퐷 푑 = 훌푑 . 

Using these equations, we find 
퐷 0푛
퐷 퐷

푑
푑 = 훌 푑

푑 . 
 
Therefore, dual eigenvalue of the hyper dual number matrix A is equivalent to the eigenvalue of the 
dual adjoint matrix 풳퐀, that is 

휎(퐀) ∩ 픻 = 휎(풳퐀). 

Example 5. Let 퐀 = 3 − 2휀 1 + 2휀 − 2휀∗ − 휀휀∗

1 + 2휀 + 2휀∗ + 휀휀∗ 3 + 2휀 ∈ 필 × (ℍ픻ℕ) . Then dual 

adjoint matrix of 퐀 is 

풳퐀 =

3 − 2휀 1 + 2휀 0 0
1 + 2휀 3 + 2휀 0 0

0 −2 − 휀 3 − 2휀 1 + 2휀
2 + 휀 0 1 + 2휀 3 + 2휀

. 

 
By theorem 9, the dual eigenvalues of 퐀 are equivalent to the eigenvalues of 풳퐀, and the set of 
these eigenvalues is 

휎(풳퐀) = 휎(퐀) ∩ 픻 = 3 + √1 + 4휀, 3 − √1 + 4휀 . 
 
Definition 4.  Let 퐀 = 퐷 + 휀∗퐷 ∈ 필 × (ℍ픻ℕ) and 풳퐀  be the dual adjoint matrix of 퐀. We 
define the determinant of 퐀 and 풳퐀 as follows: 

   det퐀 = (det퐷 ) 1 + 휀∗tr(퐷 퐷 )    and   det풳퐀 = (det퐷 ) , 
where tr(퐷 퐷 ) is the trace of 퐷 퐷 . 

Theorem 10.  Let 퐀 = 퐷 + 휀∗퐷 ∈ 필 × (ℍ픻ℕ). The following are equivalent: 
1. 퐀 is invertible; 
2. 퐀퐱 = 0 has a unique solution 0; 
3. det풳퐀 ≠ 0, i.e. 풳퐀 is invertible; 
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4. 퐀 has no zero eigenvalue. More precisely, if 퐀퐱 = 훌퐱 for some hyper dual number 훌 and some 
hyper dual number vector 퐱 ≠ 0, then 훌 ≠ 0. 

Proof.  (1) ⇒ (2):  This part is clear. 
(2) ⇒ (3):   Let 퐀 = 퐷 + 휀∗퐷 ∈ 필 × (ℍ픻ℕ) , 퐱 = 푑 + 휀∗푑 ,  where 퐷 , 퐷  are dual matrices 
and 푑 , 푑  are dual column vectors. Then 

퐀퐱 = (퐷 + 휀∗퐷 )(푑 + 휀∗푑 ) 
       = 퐷 푑 + 휀∗퐷 푑 + 휀∗퐷 푑  
       = 퐷 푑 + 휀∗(퐷 푑 + 퐷 푑 ) 

Since 퐀퐱 = 0, we get 
퐷 푑 = 0 

and 
퐷 푑 + 퐷 푑 = 0. 

So we have 

퐀퐱 = 0  if and only if    퐷 0푛
퐷 퐷

푑
푑 = 0. 

 
From here, 풳퐀(푑 , 푑 ) = 0. Since 퐀퐱 = 0 has a unique solution, 풳퐀(푑 , 푑 ) = 0 has a unique 
solution. Therefore, since 풳퐀 is a dual matrix, 풳퐀 is invertible. 
(2) ⇔ (4):  Let 퐱 = 0 be a unique solution of 퐀퐱 = 0 for 퐀 ∈ 필 × (ℍ픻ℕ). Suppose 퐀 has a zero 
eigenvalue. Then for some hyper dual number vector 퐱 ≠ 0, the equation 퐀퐱 = 훌퐱  has a zero 
eigenvalue. So 퐀퐱 = 0, and this is a contradiction to our assumption of 퐱 = 0. Now suppose that 퐀 
has no eigenvalue of zero. So if 퐀퐱 = 0 = 훌퐱, then by our assumption, 퐱 = 0. 
(3) ⇒ (1):  Let 풳퐀 be invertible. So because 풳퐀 is invertible, there is a dual matrix 

퐾 퐾
퐾 퐾  

for 퐀 = 퐷 + 휀∗퐷  such that 
퐾 퐾
퐾 퐾

퐷 0푛
퐷 퐷 = 퐼푛 0푛

0푛 퐼푛
. 

 
From the last matrix equation, we can write 

퐾 퐷 + 퐾 퐷 = 0푛    and   퐾 퐷 = 퐼푛 . 
Using these equations, we get 

퐾 퐷 + 휀∗(퐾 퐷 + 퐾 퐷 ) = 퐼푛 . 
That is 

퐁퐀 = 퐼푛 
for 퐁 = 퐾 + 휀∗퐾 .  So 퐀 is an invertible hyper dual number matrix by Theorem 4. 
 
Theorem 11.   Let 퐀, 퐁 ∈ 필 × (ℍ픻ℕ). Then 
1. 퐀 is invertible⇔ det퐀 ≠ 0; 
2. det(퐀퐁) = det퐀det퐁; 
3. (det퐀) = (det퐷 ) 1 + 푛휀∗tr(퐷 퐷 ) ,    where tr(퐷 퐷 ) = trace(퐷 퐷 ). 

Proof.  Let 퐀 = 퐷 + 휀∗퐷 ∈ 필 × (ℍ픻ℕ) and 퐁 = 퐾 + 휀∗퐾 ∈ 필 × (ℍ픻ℕ).  
1. It is clear from theorem 10. 
2. Since 

퐀퐁 = 퐷 퐾 + 휀∗(퐷 퐾 + 퐷 퐾 ), 
we get 
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det(퐀퐁) = det(퐷 퐾 ) 1 + 휀∗tr(퐾 퐾 + 퐾 퐷 퐷 퐾 )  
                 = det퐷 det퐾 1 + 휀∗tr(퐾 퐾 ) + 휀∗tr(퐾 퐷 퐷 퐾 )  
                 = det퐷 det퐾 1 + 휀∗tr(퐾 퐾 ) + 휀∗tr(퐷 퐷 )  
                 = det퐷 det퐾 1 + 휀∗tr(퐾 퐾 ) 1 + 휀∗tr(퐷 퐷 )  
                 = det퐷 1 + 휀∗tr(퐾 퐾 ) det퐾 1 + 휀∗tr(퐷 퐷 )  
                 = det퐀det퐁. 

3. For 푥 ∈ 픻 and 푛 ∈ ℕ, it is clear that (1 + 푥휀∗) = 1 + 푛푥휀∗. Therefore, if 푥 = tr(퐷 퐷 ) is 
taken, it is seen that 

(det퐀) = (det퐷 ) 1 + 휀∗tr(퐷 퐷 )  
                 = (det퐷 ) 1 + 푛휀∗tr(퐷 퐷 ) . 

 
CONCLUSIONS 
 

In this study we have given hyper dual number matrices. Due to the fact that hyper dual 
number matrices have dual number matrix representation, the investigation of this matrix algebra 
has brought some advantages. Defining concepts such as determinant, inverse, conjugate and 
transpose of hyper dual number matrices in terms of dual matrix are some of these advantages. In 
addition, it was interesting to give the special types of these matrices in terms of some properties 
provided by dual matrices. Finally, the concept of dual adjoint matrix was defined by the block dual 
matrix. Thus, properties related to eigenvalue, eigenvector and linear equation systems could be 
mentioned. It is also very important in terms of practice to find the 푛 -order power of the 
determinant of a matrix with the help of adjoint matrix. For further study, by considering the present 
approach, one can carry out a similar study for more involved structures. 
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