
 

Maejo Int. J. Sci. Technol. 2023, 17(02), 163-176 

Maejo International  
Journal of Science and Technology 

 
ISSN 1905-7873 

Available online at www.mijst.mju.ac.th 
Full Paper 

Complex-type Narayana sequence and its application 

Sakine Hulku, Ozgur Erdag and Omur Deveci * 
 
Department of Mathematics, Faculty of Science and Letters, Kafkas University 36100, Turkey 
 
*Corresponding author, e-mail: odeveci36@hotmail.com 
 
Received: 9 May 2023  / Accepted: 7 August 2023  / Published: 16 August 2023  
 

 
Abstract:  We define the complex-type Narayana sequence and give miscellaneous properties 
of this sequence by using the matrix method. Also, we study the complex-type Narayana 
sequence modulo m . In addition, we describe the complex-type Narayana sequence in a 3-
generator group and investigate the sequence in finite groups in detail. Finally, we give the 
lengths of the periods of the complex-type Narayana sequences in polyhedral groups  , 2, 2n , 

 2, , 2n  and  2, 2, n  with respect to the generating triple  , ,x y z  as application of the 

results produced. 
 

Keywords: complex-type Narayana sequence, recurrence sequences, matrix method, 
generator group 

 

INTRODUCTION 
 

Recurrence sequences are widely utilised to solve some problems in various scientific fields. 
In the literature many interesting properties and applications of the recurrence sequences relevant to 
this paper have been studied by many authors [1-5]. Especially, the authors defined new sequences 
using quaternions and complex numbers and gave miscellaneous properties and many applications 
of the sequences defined [6-11]. In the second part of this paper, firstly a new sequence, the so- 
called complex-type Narayana sequence, is defined, and by the aid of the matrix method, 
miscellaneous properties of the sequence are obtained. 

Wall [12] started research on linear recurrence sequences modulo m  by investigating the 
periods of ordinary Fibonacci sequences modulo m . Recently, the theory was extended to some 
special linear recurrence sequences [13, 14]. In this sense, we consider the complex-type Narayana 
sequence modulo m  and derive some interesting results on the periods of the complex-type 
Narayana sequence for any m . Also, we produce cyclic groups using multiplicative orders of  
generating matrices of complex-type Narayana number when reading modulo m . Then we give  
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connections between periods of complex-type Narayana sequence modulo m  and orders of the 
cyclic groups produced. 

The study of recurrence sequences in groups began with the work of Wall [12]. Later, 
Wilcox [15] studied Fibonacci sequences in abelian groups. The theory was expanded to some finite 
simple groups by Campbell et al. [16]. They defined Fibonacci length of the Fibonacci orbit and  
basic Fibonacci length of the basic Fibonacci orbit in a 2 -generator group. The concept of 
Fibonacci length for more than two generators has also been considered [17, 18]. Knox [19] 
signified that a k -nacci ( k -step Fibonacci) sequence in a finite group is periodic. Many properties 
of recurrence sequences in algebraic structures have been studied and the concept extended to 
complex numbers and quaternions [20-29], after which a variety of properties and numerous 
applications for the sequences developed were provided [7, 8, 30]. In the third part of this paper we 
give the definition of the complex-type Narayana sequence in 3 -generator groups and investigate 
these sequences in finite groups in detail. Finally, we obtain periods of the sequence in polyhedral 
groups ( ,2,2), (2, ,2), (2,2, )n n n  as application of the results produced.  

The Narayana sequence  nN  is defined [31] by third-order linear, homogeneous recurrence 

relation: 

1 2=n n nN N N   
  
for 2n   and with initial conditions 0 = 0N , 1 = 1N  and 2 = 1N . The complex Fibonacci sequence 

 nF   is given [32] for 0n  : 

1=n n nF F iF
  

 
where = 1i   is an imaginary unit and nF  is thn  Fibonacci number (cf. [33, 34]). 

Suppose that   1

=0

k

j j
c


,  2k   is a sequence of real numbers such that 1 0kc   . The k -

generalised Fibonacci sequence   =0n n
a   is defined as 

1 1 2 2 0=n k k n k k n k na c a c a c a          
 
for 0n   and where 0 1 1, , , ka a a   are specified by the initial conditions. 

Number sequences can be derived from a matrix representation, as demonstrated by Kalman 
[35] who, by using the companion matrix method, arrived at the following closed-form formulas for 
the generalised sequence: 

0 1 2 2 1

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

=

0 0 0 0 1

k

k k

A

c c c c c 

 
 
 
 
 
 
 
 
  







     





. 

Also, he proved that  
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We recall when a sequence is composed only of repetition of a fixed subsequence. A 

sequence is periodic if after a certain point it consists only of repetition of a fixed subsequence. We 
refer to the number of members in the shortest repeating subsequence as the period of the sequence. 
For instance, when a sequence with the terms , , , , , , , , , ,x y z t y z t y z t   is considered, one would say 
it is periodic after the initial term k  and it has period 3 . Also, when the first r  terms in a sequence 
form a repeating subsequence, then it is said to be simply periodic with period r . For instance, 
when a sequence with the terms , , , , , , , , , , , ,x y z t x y z t x y z t   is considered, one would say it is 
simply periodic with period 4 . 

For a finitely generated group =G A , where  1 2= , , , nA a a a , the sequence 1=u ux a  , 

0   1u n  , 1
=1

=
n

n u u v
v

x x   , 0u   is called the Fibonacci orbit of G  with respect to the 

generating set A , denoted as  AF G  [18]. 

A k -nacci ( k -step Fibonacci) sequence in a finite group is a sequence of group elements 

0 1 2, , , , ,nx x x x   in which, given an initial (seed) set 0 1 2 1, , , , jx x x x  , each element is defined by 

0 1 1

1 1

for < ,
=

for .
n

n
n k n k n

x x x j n k
x

x x x n k


   


 




 

We also require that the initial elements of the sequence 0x , 1x , 2x ,  , 1jx   generate a 

group, thus forcing the k -nacci sequence to reflect the structure of the group. The k -nacci 

sequence of a group G  generated by 0 1 2 1, , , , jx x x x  ,  is denoted by  0 1 2 1; , , , ,k jF G x x x x   [19]. 

Note also that the orbit of a k -generated group is a k -nacci sequence. 
 
COMPLEX-TYPE NARAYANA SEQUENCE 
 

Now we define complex-type Narayana sequence by the following homogeneous linear 
recurrence relation:  
                                                               3 2=n n ni i   ù ù ù                                              (1) 

 
for 0n  , where 0 = 0ù , 1 = 1ù , 2 = 1ù  and = 1i  . 

By definition of complex-type Narayana numbers, we can write the following vector 
recurrence relation: 

                                                                  
3 2

2 1

1

=
n n

n n

n n

N
 

 



   
      
      

ù ù
ù ù
ù ù

,               (2) 

where N  is a companion matrix: 
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0
= 1 0 0

0 1 0

i i
N

 
 
 
  

. 

 
Matrix N  is said to be a complex-type Narayana matrix. 

By mathematical induction on n , we find the relationship between the elements of the 
sequence  nù  and the matrix N  as follows. 

.i  If n  is odd 

                                               
     
     
     

2 2 3

1 1 2

1

Im Re Im
= Re Im Re

Im Re Im

n n n
n

n n n

n n n

N
  

  



 
 
 
  

ù ù ù
ù ù ù
ù ù ù

. (3) 

 
.ii If n  is even 

                                               
     
     
     

2 2 3

1 1 2

1

Re Im Re
= Im Re Im

Re Im Re

n n n
n

n n n

n n n

N
  

  



 
 
 
  

ù ù ù
ù ù ù
ù ù ù

. (4) 

Generalising Eq. (2), we derive 

2 2 2

1 2 1

2 .

0
1 0 0 =
0 1 0

n
n n

n n

n n

i i  

 

     
          
          

ù ù
ù ù
ù ù

. 

 
Now we consider permanental representations for complex-type Narayana numbers. 

Definition 1.  A u v  real matrix ,= i jM m    is called a contractible matrix in the thk  column 

(resp. row.) if it contains exactly two non-zero entries.  
Suppose that 1 2, , , u    are row vectors of matrix M . If M  is contractible in the thk  

column such that , ,0, 0i k j km m   and ,i j  then the    1 1u v    matrix :ij kM  is obtained from 

M  by replacing the thi  row with , ,i k j j k im x m x  and deleting the thj  row. The thk  column is called 

a contraction in the thk  column relative to the thi  row and the thj  row. 
 
Lemma 1 [36].  If M  is a non-negative integral matrix of order > 1  and N  is a contraction of 
M , then    =per M per N .  

 
Now we concentrate on finding relationships among the complex-type Narayana numbers 

and the permanents of certain matrices that are obtained by using the generating matrix of complex-
type Narayana numbers. Let = u

u jkA a    be u u  super-diagonal matrix, defined by 
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.

3rd

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0

=
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1

u

i i
i i

i i

A
i i

i i
i

i



 
  
 
 
 
 
 

 
 
 
  







       









 . 

 
For complex-type Narayana numbers, we can then provide a permanental representation. 
 
Theorem 1.  .i  If u  is an odd integer such that 3u  , then 

2= Im .u uperA ù  
.ii  If u  is an even integer such that 3u  , then 

2= Re .u uperA ù  
 
Proof. For Case i, consider the matrix uA  and let the equation hold for 3u  . We prove by 

induction on u . Then we show that the equation holds for 2u  . If we expand uA  by the Laplace 
expansion of permanent with respect to the first row, then we obtain 
 

2 1 1= .u u uperA i perA i perA      
 
Since 1 3= Imu uperA  ù  and 1 1= Imu uperA  ù , it is clear that 2 4= Imu uperA  ù . So  the  proof  is 
complete.  There is a similar proof for Case ii.  
                                                                                   □                             

The u u  matrix = u
u jkB b    is defined as 

, if = and = for 1 1,
, if = and = 2 for 1 2,

if = and = for =
=

1, and
= 1and = for 1 2,

0, otherwise.

u
jk

i j k u
i j k u

j k u
b

k j u

  
  

  

  

  
    



    



 

 
For the complex-type Narayana numbers, we can then provide another permanental representation. 
 
Theorem 2.  .i  If u  is an odd integer such that 3u  , then 

1= Im .u uperB ù  
.ii  If u  is an even integer such that 3u  , then 

1= Re .u uperB ù  
 
Proof. For Case ii, consider the matrix uB  and let the equation hold for 3u  . We prove by 

induction on u . Then we show that the equation holds for 2u  . If we expand uB  by the Laplace 
expansion of  permanent with respect to the first row, then we obtain 
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2 1 1= .u u uperB i perB i perB      
 
Since 1 2= Reu uperB  ù  and 1 = Reu uperB  ù , it is clear that 2 3= Reu uperA  ù . So  the  proof  is 
complete. There is a similar proof for Case i.                                                                                      □                                

 
Suppose that u u  matrix = u

u jkD d    is indicated by: 

  If u  is an odd integer such that > 3u , then 
 

1

.

4 th

1 0 1 0 1 0 0 0 0
1
0

=

0
0

u
u

u

D
B 




   
 
 
 
 
 
 
 
 



 

 
  If u  is an even integer such that > 3u , then 

 
 

1

.

3 th

1 0 1 0 1 0 0 0 0
1
0

=

0
0

u
u

u

D
B 




 
 
 
 
 
 
 
 
 



 

 
Then we have the following results: 
 
Theorem 3.  .i  If u  is an odd integer such that > 3u , then 

=5
= Im .

u

u a
a

perD  ù  

.ii  If u  is an even integer such that > 3u , then 

=4
= Re .

u

u a
a

perD ù  
 
Proof.  For Case ii, if we extend uperD  with respect to the first row, we write 

2 1= .u u uperD perD perB   
 
Thus, by the results and an inductive argument, the proof is easily seen. There is  a similar proof  for 
Case i.                                                                                                                                                  □   

 
A matrix M  is called convertible if there is an n n  (1, 1) -matrix K  such that 

 = detperM M K , where M K  denotes the Hadamard product of M  and K . Now we give 

relationships among the complex-type Narayana numbers and the determinants of certain matrices 
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which are obtained by using the matrix uA , uB  and uD . Let > 3u  and let H  be the u u  matrix 
defined by 

 
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

=

1 1 1 1 1
1 1 1 1 1

H

 
  
 
 
 
 
 

 







     





. 

 
Corollary 1.  .i  If u  is an odd integer such that > 3u , then   

  2det = Im ,u uA H  ù  

   1det = Imu uB H  ù  

and 

 
=5

det = Im .
u

u a
a

D H   ù  

.ii  If u  is an even integer such that > 3u , then  
  2det = Re ,u uA H  ù  

   1det = Reu uB H  ù  

and 

 
=4

det = Re .
u

u a
a

D H  ù  

 
Proof.   Since uperA  =  det uA H ,  uperB  =  det uB H  and  uperD  =  det uD H  for cases  i 

and  ii, by Theorems 1-3, we have the conclusion.                                                                              □                                      
 
COMPLEX-TYPE NARAYANA SEQUENCE IN GROUPS 
 

If we reduce the sequence  nù  by a modulo m , taking the least non-negative residues, 

then we get a repeating sequence, denoted by 
 

         1 2= , , , ,n jm m m m ù ù ù ù , 

where  j mù  is used to mean the n th element of the complex-type Narayana sequence when 

reading modulo m . We note here that sequence   n mù  has the same recurrence relation as in 

sequence  nù . 
 
Theorem 4.    n mù  forms a simple periodic sequence for every positive integer m .  
 
Proof.  Consider the set 

 
 

1 2 3= , , | 's are complex numbers where

and are integers such that 0 , 1 and 1, 2,3 .
k k k

k k k k

A z z z z x iy

x y x y m k
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Let A  be the cardinality of set A . Since set A  is finite, there are A  distinct 3 -tuples of complex-

type Narayana sequence modulo m . Thus, it is clear that at least one of these 3 -tuples appears 
twice in sequence   n mù . Thus, the subsequence following this 3 -tuple repeats; that is,  

sequence   n mù  is periodic. Therefore, if    2 2u vm m ù ù ,    1 1u vm m ù ù , 

   u vm mù ù  and >u v , then  mod 4u v . By the recurrence relation of complex-type 

Narayana sequence  nù , we can easily derive that  

               1 1 2 2 1 1, , , ,u v u v u v u vm m m m m m m m        ù ù ù ù ù ù ù ù .  

Thus, it is verified that sequence   n mù  is simply periodic.                                                           □                                                 
 
We denote the lengths of periods of sequence   n mù  by  n mhù . Given an integer matrix 

= ijX x   ,  modX m  means that all entries of A  are modulo m , that is, 

    mod = modijX m x m . Let us consider set     = mod | 0n

m
X X m n  . If  det , = 1X m , 

then set 
m

X  is a cyclic group; if  det , 1X m  , then set 
m

X  is a semi-group. From companion 

matrices, we can easily obtain det N i  . Then it is clear that the set 
m

N  is a cyclic group for 

every positive integer 2m  . From (3) and (4), it is easy to see that   =
n m m

h Nù . Thus, for 3m 

we obtain   = 4
n mh ù ,   N . 

 
Theorem 5.  Let   be a prime and   be the largest positive integer such that =N N  

. 

Then =N N 
 

   for every   . In particular, if 2N N
 
 , then 

1=N N
 

   for every   .  

Proof.  Since   =
n m m

h Nù , we have a positive integer   such that      
1

1modn
hN I

 


ù . 

Then it is clear that      
1

modn
hN I

 


ù , where I  is a 3 3  identity matrix. Thus, we get that 

 n
hh

ù
 divides 

 1
n

hh
 ù

. On the other hand, by writing       ,
h

n
h

j kN I n
   ù , by the binomial 

theorem we obtain 

            1
, ,

=0
= = modh

n

nh
j k j k

n
N I n n I

n


    
    

    
 

ù , 

 which implies that 
 1

n
hh

 ù
 divides 

 n
hh




ù
. According to these results, it is seen that 

   1
=

n n
h hh h

  ù ù
 or 

   1
=

n n
h hh h

  





ù ù
, and the latter holds if and only if there is  

,j kn   which is not 

divisible by  . Since 
   1

n n
h hh h

  


ù ù
, there is  

,j kn   which is not divisible by  . This shows that 

   2 1
n n

h hh h
   


ù ù

.  So the proof is complete.                                                                                        □   

Theorem 6. Suppose that 1m  and 2m  are positive integers with 1 2, 3,m m   then 

lcm ,1 2 1 2
= lcm ,m m m mN N N  

 
  

.  
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Proof.  Let  1 2lcm , =m m m . Clearly,      1

1modh mn
hN I mù  and      2

2modh mn
hN I mù . Using 

the least common multiple operation, this implies that      1modh mn
hN I mù  and 

     2modh mn
hN I mù . So we get 

1
|

m m
N N  and 

2
|

m m
N N , which means that 

1 2
lcm ,m mN N 

  
 divides lcm ,1 2m mN   

. Now we consider 
1 2

lcm , =m mN N q 
  

. Then we 

can write  1modqN I m  and  2modqN I m , which yields that  modqN I m . Thus, it is 

seen that 
1 2

lcm ,m mN N 
  

 is divisible by lcm ,1 2m mN   
. So the proof  is complete.                  □ 

 
Now we take into account the complex-type Narayana sequence in groups. Assume G  is a 

finite k -generator group and suppose that X  is the subset of 
timesk

G G G    such that  1 2, , , kx x x  

X  if and only if G  is generated by 1 2, , , kx x x . Here  1 2, , , kx x x  is said to be a generating k -

tuple for G . 
 
Definition 2.  Let G  be a 3 -generator group. For generating triple  1 2 3, ,x x x G , we define the 
complex-type Narayana orbit by 

   0 1 1 3 2 2 3 3 1= , = , = , = i i
n n na x a x x a x a a a

   

for 3n  . For generating triple  1 2 3, ,x x x , the complex-type Narayana orbit is denoted by 

 
   , ,1 2 3

i
x x x

N G .  

             The following rules establish the terms of a complex-type sequence that is specified by 
group elements [7]:  For each elements ,x y  of the group G , 

 i  Let e  be the identity of G  and consider =z a ib , where ,a b  are integers. Then 

               (mod| |) mod mod mod mod mod mod mod= = =a x ib x a x ib x ib x a x ib x a xzx x x x x x x  , 

   = =
a iia i ax x x , 

  =ue e , 
  0 0 =ix e . 
 ii Given 1 1 1=z a ib  and 2 2 2= ,z a ib  where 1 1 2 2, ,  and a b a b  are integers, 

  1
2 1 1 2= .z z z zy x x y

   

 iii If yx xy , then i i i iy x x y . 

 iv  = ii iy x xy  and  1 1 =
ii ix y x y  . 

 v =i iy x xy  and so  1 =
ii ix y xy  and  1 =

ii ix y x y . 

It is important to note that we obtain the terms of the complex-type Narayana orbit according to the 
above rules. 
 
Theorem 7.   If G  is a finite group, then the complex-type Narayana orbit of G  is a periodic.  
 
Proof.  Consider the set 
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mod mod mod mod mod mod1 1 1 1 2 2 2 2 3 3 3 3
1 2 3

1 2 3

= , , :

, , and , such that 1 3 .

a q ib q a q ib q a q ib q

n n

Q q q q

q q q G a b Z n

  



   
 

 
G  is a finite set and therefore Q  is a finite set. Then for any 0  , there exists 3    such that 

1 1=a a   , 2 2=a a    and 3 3=a a   . Because of the repeating, for all generating 3 -tuple, the 
sequence  

   , ,1 2 3

i
x x x

N G  is periodic.                                                                                                      □ 

Now, consider that the length of the period of the orbit  
   , ,1 2 3

i
x x x

N G  is denoted by 

 
   , ,1 2 3

.i
x x x

LN G  By definition of the orbit  
   , ,1 2 3

i
x x x

N G , it is easy to see that the chosen generating 

set and the order in which assignments of 1 2 3, ,x x x  are made determine the  length of  the  period  of  
this sequence in a finite group.  

The triangle group (polyhedral group) ( , , )l m n  for , , >1l m n   is defined by the presentation 
 

, , : = = = =l m nx y z x y z xyz e  
or 

, : = = ( ) = .l m nx y x y xy e  
 
The triangle group ( , , )l m n  is finite if and only if the number 

1 1 1= 1 =lmn mn nl lm lmn
l m n

        
 

 
 
is positive, i.e. in the cases (2,2, )n , (2,3,3) , (2,3,4)  and (2,3,5) . Its order is 2 |lmn  . Using 
Tietze transformations, we may show that ( , , ) ( , , ) ( , , )l m n m n l n l m  . 

We now address the periods of complex-type Narayana orbits of polyhedral groups  , 2, 2n , 
 2, , 2n  and  2, 2, n . Consider the sequences defined as follows: 

 
 

 
 

1 3

1 3

1 3

for 1, 4,5,7,8,10 mod14 ,

= for 0, 2,6,12 mod14 ,

for 3,9,11,13 mod14

n n

n n n

n n

i u i u n

u i u i u n

i u i u n

 

 

 

   


   
    

 

for 3n  , where 0 = 1u , 1 = 1u  and 2 = 0u ; 
 

 
 

 
 

1 3

1 3

1 3

1 3

for 0,1, 2,3,6,12 mod14 ,
for 4,5,8,9,10 mod14 ,

=
for 7,13 mod14

for 11 mod14

n n

n n
n

n n

n n

i i n
i i n

i i n

i i n

 
 


 

 

 

 

 

 

    


   

    
    

 

for 3n  , where 0 = 1  , 1 = 1  and 2 = 0 ;  and 
 

 
 
 

 

1 3

1 3

1 3

1 3

for 0,1,8,10 mod14 ,
for 2,4,9,13 mod14 ,

=
for 3,5,7,12 mod14

for 6,11 mod14

n n

n n
n

n n

n n

i i n
i i n

i i n

i i n

 
 


 

 

 

 

 

 

    


   

    
    

 

for 3n  , where 0 =1 , 1 = 1  and 2 = 1 . 
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Reducing the sequences  nu ,  n  and  n  by a modulus m , we get the repeating 

sequences, respectively, denoted by 
 

         0 1= , , , , ,nu m u m u m u m   

         0 1= , , , ,n m m m m      

and 
         0 1= , , , , .n m m m m      

We note here that the sequences   nu m ,   n m  and   n m  have the same recurrence 

relations as in definitions of the sequences  nu ,  n  and  n . 
 
Theorem 8.    nu m ,   n m  and   n m  are simply periodic sequences.  
 
Proof.  Consider sequence   n m . Suppose that  0 1= , , , 0 1kH h h h k m   . Since the order 

of set H  is 14m , H  is finite. Also, there are 14m  distinct 14 -tuples of elements mZ . So the 
sequence repeats because there are only a finite number of terms possible, and the recurrence of 

14m  term results in the recurrence of all following terms. Consequently, sequence   n m  is 

periodic. So if 
           1 1 13 13= , = , , =a b a b a bm m m m m m          

 
such that >a b , then  mod14a b . From the defined recurrence relation of sequence   ,n m  

we can easily get that  
           1 1 2 2 0= , = , , =a b a b a bm m m m m m          , 

 
which implies that   n m  is a simply periodic sequence. The proofs for   nu m  and   n m  

are similar to the above and are omitted.                                                                                            □ 
 
Let notations  nu mh ,  n mh  and  n mh  denote the smallest period of sequences   ,nu m  

  n m  and   n m  respectively. 
 

Theorem 9.  For 2n  ,  
      

      
      , , , , , ,, 2,2 = 2, ,2 = 2,2, = 14,

n

i i i
x y z x y z x y z mLN n LN n LN n lcm h 

 ù . 
 
Proof.  Consider the orbit  

    , , , 2,2i
x y zN n . We prove this by direct calculation. We note here that, 

in the polyhedral group  , 2, 2n  defined by 2 2, , : = = = =nx y z x y z xyz e , =zy x . We have the 
sequence 

1 1 2

2 3 2 4 6 3 3 9 13 1 2 19

28 1 2 41 60 4 5 88 129 7 3 189 277 8

406 595 2 10 872 1278 11 13 1873 2745

, , , , , , ,
, , , , , , ,

, , , , , , ,
, , , , ,

i i i i i

i i i i i i i i i i

i i i i i i i i

i i i i i i i

x x z x z x z x x z
x x x z x z x z x x z
x x x z x z x z x x z
x x x z x z x z x

    

          

         

        3 8 4023

5896 5 8 8641 12664 16

, ,
, , , .

i i i

i i i

x z
x x x z

  

    

 

 
Using the above, the orbit becomes 



 
Maejo Int. J. Sci. Technol. 2023, 17(02), 163-176  
 

 

174

1 2
28 1 2 41 60 4

14 15 16
5896 5 8 8641 12664 16

28 29 30

= , = , = , ,

= , = , = , ,
= , = , = , .

o
i i i

i i i

a x a x a z

a x a x a x z
a x a x a x z

   

   







 

 
It is easy to see that the orbit  

    , , , 2,2i
x y zN n  conforms to the following pattern: 

14 14 1 14 2
14 14 1 14 2

14 3 14 4 14 5
14 3 14 4 14 5

14 6 14 7 14 8
14 6 14 7 14 8

14 9 14 10 14 11
14 9 14 10 14 11

14 12

= , = , = ,

= , = , = ,

= , = , = ,

= , = , = ,

=

u u un n n
n n n

u u uin n n
n n n

u u un n n
n n n

u u ui in n n
n n n

u
n

a x a x a x z

a x z a x z a x

a x z a x a x

a x z a x z a x z

a x

 
 

  
  

  
  

  
  


14 12 14 13

14 13, = , .u in n
na x z 
 

 

 
Then it is clear that the length of the orbit  

    , , , 2,2i
x y zN n  is  lcm 14,

nu mh 
  . 

By mathematical induction on n , then we derive the following relationships between the 
elements of the sequence  nu  and the matrix  nN : 
.i  If n  is odd, 

                                            
     
     
     

4 2 3

3 1 2

2 1

Re Re Im
= Im Im Re

Re Re Im

n n n
n

n n n

n n n

i u u u
N i u u u

i u u u

  

  

 

 
  
  

. (5) 

.ii  If n  is even, 

                                            
     
     
     

4 2 3

3 1 2

2 1

Im Im Re
= Re Re Im

Im Im Re

n n n
n

n n n

n n n

i u u u
N i u u u

i u u u

  

  

 

 
  
  

. (6) 

 
It can be easily seen from equations (5) and (6) that   =

nu m m
h N . Since   =

nu m m
h N , we get 

   =
n nm u mh hù , which implies that  

      , , , 2, 2 = lcm 14,
n

i
x y z mLN n h 

 ù . 

A routine induction shows that   =
n m m

h N  and   =
n m m

h N .  Using a similar method 
that was used for the case  , 2, 2 ,n  it is possible to find that 

 
        

        , , , ,2, ,2 = lcm 14, = 2, 2, = lcm 14, = lcm 14,
n n n

i i
x y z m x y z m mLN n h LN n h h 

     
     ù .           □    
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