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Abstract:  Some kinds of statistical convergence have been studied and investigated on Riesz 
spaces with respect to order convergence recently. In this paper we introduce the concept of 
statistically continuous and bounded operators with statistically order convergent sequences 
on Riesz spaces. Moreover, we give some relations with other kinds of operators. 
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INTRODUCTION 
 

Statistical convergence is a natural and efficient tool in the theory of functional analysis, and 
it was introduced by Fast [1] and Steinhaus [2] independently. Also, several applications and 
generalisations of the statistical convergence of sequences have been investigated by several authors 
[3-7]. On the other hand, Riesz space (or vector lattice) introduced by Riesz [8] is an ordered vector 
space which has many applications in measure theory, operator theory, and economics [9-12]. It is 
well known that order, unbounded order, relatively uniform, and various multiplicative order 
convergences in Riesz algebras are not topological in general [13]. However, even without using 
any topological structure, several kinds of continuous operators can be defined [14]. As far as we 
know, there is no comprehensive study of operator theory with statistical convergence. Our aim in 
this paper is to put forth and study statistically 휎-order continuous and bounded operators on Riesz 
spaces with respect to the statistical order convergence. The results obtained in the settings of 
statistical convergence on Riesz spaces will shed light on the case of operators on Riesz spaces and 
more general settings [15,16]. Throughout the paper, we always assume that all Riesz spaces are 
real and operators are linear. 

It is recalled that a sequence (푥 ) on a Riesz space 퐸 is order convergent (or, shortly, 표-
convergent) to 푥 ∈ 퐸  if there exists another sequence 푦 ↓ θ in 퐸 such that |푥 − 푥| ≤ 푦  for all 
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푛 ∈ ℕ. In this case we write 푥 → 푥. We refer to an alternative type of order convergence [17]. On 
the other hand, an operator 푇 between Riesz spaces 퐸 and 퐹 is called  

1) order bounded if T(A) is order bounded in 퐹 for each order bounded subset 퐴 of 퐸;  

2) order continuous if Tx → Tx  whenever  x → x;  

3) 휎-order continuous if Tx → Tx whenever x → x. 
The collection 퐿 (퐸, 퐹) denotes the set of all order bounded operators between Riesz spaces 

퐸 and 퐹. It is clear that 퐿 (퐸, 퐹) is a vector space. It is also well known that if 퐹 is a Dedekind 
complete Riesz space, then 퐿 (퐸, 퐹) is also a Dedekind complete Riesz space; see for example 
Theorem 1.18 [10]. In this case the collection 퐿 (퐸, 퐹) of all 휎-order continuous operators from 퐸 
to 퐹 is a band in 퐿 (퐸, 퐹). Note that every order bounded operator is 휎-order continuous whenever 
it is order continuous [10], yet the converse need not be true in general. To see this, consider 
Example 1.55. [10].  

Now we recall some basic properties of the concepts related to statistical convergence. The 
natural density of a subset 퐾 of ℕ is defined (if exists) by 

  
 훿(퐾): = lim

→
|{푘 ≤ 푛: 푘 ∈ 퐾}|, 

 
where |퐴| stands for the cardinality of a set 퐴. It is easy to see that 훿(퐾) does not exist for a set 퐾 =
∪ ([2 , 2 ] ∩ ℕ). We refer to an exposition on the natural density of sets [18-24]. In the 
same way a sequence 푥 = (푥 ) is called statistically convergent to 퐿 provided that 
  

 lim
→

|{푘 ≤ 푛: |푥 − 퐿| ≥ 휀}| = 0 
 

for each 휀 > 0. Then it is written as 푠푡-lim푥 = 퐿. A sequence (푥 ) on a Riesz space is called 
1) statistically order decreasing to zero if there exists a set K = {k < k < ⋯ } ⊆ ℕ  with 

δ(K) = 1  such that (x )  is decreasing and inf
∈

(x ) = θ , and so it is abbreviated as 

x ↓ θ; 
2) statistically order convergent to x if there exists a sequence q ↓ θ with a set K such that 

δ(K) = 1 and |x − x| ≤ q  for every k ∈ K, and so we write it as x x. 
 
It is well known that order convergence implies statistical order convergence [16, p.7]. 
 
STATISTICAL CONTINUOUS OPERATORS 

 

In this section we introduce the concepts of statistically order bounded and statistically 휎-
order continuous operators. We begin with the following basic notion of this present paper. 

 
Definition 1.  Let (푥 ) be a sequence on a Riesz space 퐸 . Then it is called statistically order 
bounded sequence whenever there exist a positive vector 푤 ∈ 퐸 and an index set 퐾 = {푛 < 푛 <
⋯ } ⊆ ℕ  such that 훿(퐾) = 1  and |푥 | ≤ w  for every 푘 ∈ 퐾 , and so we say that (푥 ) is 푠푡 -
bounded.  
   
            It is clear that every order bounded sequence is 푠푡 -bounded. Moreover, a statistically order 
convergent sequence is also 푠푡 -bounded. But their converse need not be true in general. To see 
these, we give the following two examples. 
 
Example 1.  Let us consider the Riesz space 푐  of all real null sequences and we define a sequence 
(푥 ) in 푐  by  
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 푥 : = 푒 , if 푛 = 푚  for some 푚 ∈ ℕ
θ, otherwise  

 
for all 푛 ∈ ℕ, where 휃 is the real zero sequence (0,0, ⋯ ) and 푒  is the standard unit vector. Then it 
is clear that (푥 ) is 푠푡 -bounded, but not order bounded in 푐 .  

 
Example 2.  Consider the Riesz space E consisting of sequences that have only a finite different 
value. We take the sequence (푥 ) = (푥 , 푥 , ⋯ ) in 퐸 defined by 
 

 푥 : = (1, , , ⋯ , , 0,0, ⋯ ) 
 

for all 푛 ∈ ℕ  and every 푘 ∈ ℕ . Thus, we get θ ≤ 푥 ≤ 핝  for all 푛  and 푘 , where 핝  denotes the 
sequence identically equal to 1. Therefore, the sequence (푥 ) is order bounded, and so it is 푠푡 -
bounded. But it is not statistically order convergent. 

 
Definition 2.  Let E and F be two Riesz spaces and T: E → F be an operator. Then T is called 

1) statistically 휎-order continuous if Tx Tx holds in F for every x x in E; 
2) statistically order bounded if (Tx ) is a statistically order bounded sequence in 퐹 for every  

statistically order bounded sequence (x ) in 퐸. 
 

Note that the notation 휎 is used for sequences on Riesz spaces in general. Now let 퐵 be a 
projection band on a Riesz space 퐸. Thus, 퐸 = 퐵 ⊕ 퐵  holds, and so every vector 푥 ∈ 퐸  has a 
unique decomposition 푥 = 푥 + 푥 , where 푥 ∈ 퐵  and 푥 ∈ 퐵 . Then a projection 푃 : 퐸 → 퐸  is 
defined via the formula P (푥) = 푥 , which is called a band projection. Thus, the band projection is 
associated with the projection band 퐵. 

  
Example 3.  If P  is the band projection corresponding to a projection band B on a Riesz space 퐸, 
then P  is a statistically σ-order continuous and statistically order bounded operator. Indeed, assume 

that  x x  holds in 퐸. Then there exists a sequence q ↓ θ with index set δ(K) = 1 such that 
|x − x| ≤ q  holds for all k ∈ K . On the other hand, it is well known that P  is a lattice 
homomorphism satisfying θ ≤ P ≤ I [9]. Then it follows from the inequality 
 

 |P x − P x| = P (|x − x|) ≤ |x − x| ≤ q  
 

for all k ∈ K  that we obtain P x → P x  on K . Therefore, we have P x P x  and P  is a 
statistically σ -order continuous operator as desired. The statistically order bounded case is 
analogous. 
 
Proposition 1.  Every order bounded operator is statistically order bounded. 
  
Proof:  Let 푇: 퐸 → 퐹 be an order bounded operator between Riesz spaces 퐸 and 퐹. If (푥 ) is an 
푠푡 -bounded sequence in 퐸, then there exist a positive vector 푤 ∈ 퐸  and an index set 훿(퐾) = 1 
such that |푥 | ≤ 푤 for every 푘 ∈ 퐾. Thus, (푇푥 ) is an order bounded sequence in 퐹 because 푇 is 
an order bounded operator. Therefore, (푇푥 ) is a statistically order bounded sequence in 퐹  as 
desired.  

 
It is well known that every order continuous operator is order bounded; see for example 

Lemma 1.54 [10]. Thus, Proposition 1 implies that every order continuous operator is statistically 
order bounded. Also, it is clear that the converse of Proposition 1 need not be true in general. 

 
Proposition 2.  Every σ-order continuous operator is statistically σ-order continuous. 
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Proof:  Let 푇 be a 휎-order continuous operator between Riesz spaces 퐸 and 퐹. Assume that 푥 푥 
holds in 퐸. Then there exists a sequence 푞 ↓ θ with an index set 훿(퐾) = 1 such that |푥 −
푥| ≤ 푞  for all 푘 ∈ 퐾 (that is, 푥 → 푥 holds on 퐾). Thus, by using the 휎-order continuity of 푇, 
we have 푇푥 → 푇푥  in 퐹 . Therefore, we get 푇푥 푇푥  because order convergence implies 
statistical order convergence.    

It is clear that the converse of Proposition 2 does not satisfy in general because statistical 
order convergence does not imply order convergence; see Example 3 [16]. 

 
Example 4.  Consider the Riesz spaces E = c and F = ℝ, where 푐 is the set of all convergent real 
sequences. We define the order bounded operator T: E → F by Tα = lim → α  for every element 

(α ) ∈ 푐. So T is not statistically σ-order continuous. Indeed, α = 1 → 0 and hence α 0, 

yet Tα ≡ 1 1 ≠ 0. 
 

Proposition 3.  Let E and F  be Riesz spaces. Then the set St (E, F) of all statistically σ-order 
continuous operators from E to F is a vector space. 

Proof:  Let 푆, 푇 ∈ St (퐸, 퐹) and 훽 ∈ ℝ. Suppose that 푥 푥 holds in 퐸. It follows that 푆푥 푆푥 

and 푇푥 푇푥. Then there exist sequences 푝 ↓ θ and 푞 ↓ θ with densities 훿(퐾) = 훿(푀) =
1 of index sets such that  
 

 |푆푥 − 푆푥| ≤ 푞   and  |푇푥 − 푇푥| ≤ 푝  
 

hold for all 푚 ∈ 푀 and 푘 ∈ 퐾. Thus, we have the following inequality: 
 

 |(훽푆 + 푇)푥 − (훽푆 + 푇)푥| ≤ |훽||푆푥 − 푆푥| + |푇푥 − 푇푥| ≤ |훽|푞 + 푝  
 

for all 푗 ∈ 퐽: = 푀 ∩ 퐾. Since 훿(퐽) = 1 and (|훽|푞 + 푝 ) ↓ θ on the index set 퐽 , we get (훽푆 +

푇)푥 = 훽푆푥 + 푇푥 훽푆푥 + 푇푥 = (훽푆 + 푇)푥 as desired. 
 

            We show that St (퐸, 퐹) = {θ} is possible in the next example. 
 
Example 5.  Let T: C[0,1] → L [0,1] be a positive statistically σ-order continuous operator. Then 
for any fixed 0 ≤ h ∈ L [0,1], we define a function G from C[0,1] to ℝ by 
 

G(f): = h(x)[Tf(x)]dx 
 
for each f ∈ C[0,1]. Then G is statistically σ-order continuous. Thus, by applying Example 1.58 
[10], we obtain ∫ h(x)[Tf(x)]dx = 0 for every h ∈ L [0,1] and all f ∈ C[0,1]. Hence we get T = θ 
as desired. 

 
It is recalled that every 푇 ∈ 퐿 (퐸, 퐹) has modulus |푇| whenever 퐹 is Dedekind complete; 

see for example Theorem 1.67 [9]. It is clear from the formula |푇(푥)| ≤ |푇|(|푥|) that if an operator 
푇 has a statistically 휎-order continuous modulus |푇| (correspondingly statistically order bounded 
modulus |푇|), then 푇  is also statistically 휎-order continuous (correspondingly statistically order 
bounded).  

 
Proposition 4.  If  T: E → F  is a statistically order bounded operator which has the modulus |T|, 
then |T| is also statistically order bounded. 
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Proof:  Let (푥 ) be a statistically order bounded sequence in 퐸. Then there exist a positive vector 
푤 ∈ 퐸 and an index set 훿(퐾) = 1 such that |푥 | ≤ 푤 for every 푘 ∈ 퐾. It follows from Lemma 
1.6. [10] that 

 ||푇|(푥 )| ≤ |푇|(|푥 |) ≤ |푇|(푤) ∈ 퐹  
 

holds for each 푘 ∈ 퐾 because |푇| is a positive operator. Therefore, we obtain the desired result. 
 

Question 1.  Let 푇: 퐸 → 퐹 be a statistically 휎-order continuous operator which has the modulus |푇|. 
Is |푇| statistically 휎-order continuous? 

 
Recall that an operator 푆: 퐸 → 퐹 between Riesz spaces is said to be dominated if there is a 

positive operator 푇: 퐸 → 퐹 satisfying |푆푥| ≤ 푇|푥| for all 푥 ∈ 퐸. Then 푇 is called a dominant for 푆. 
 
Proposition 5.  Let 푇: 퐸 → 퐹 be a statistically 휎-order continuous (correspondingly statistically 
order bounded) positive operator and it is dominant for an operator 푆: 퐸 → 퐹. Then 푆 is statistically 
휎-order continuous (correspondingly statistically order bounded). 

Proof:  Suppose that 푥 푥 holds in 퐸. Then there exists a sequence 푞 ↓ θ with an index set 
훿(퐾) = 1 such that |푥 − 푥| ≤ 푞  for every 푘 ∈ 퐾. Therefore, we obtain the desired result by 
the inequality |푆푥 − 푆푥| ≤ 푇|푥 − 푥|. The order bounded case is also similar. 

 
MAIN RESULTS 
 

We have a partial answer to Question 1 in the following theorem. 
 

Theorem 1.  Let 푇: 퐸 → ℝ be an order bounded linear functional. Then the following statements 
are equivalent: 

(i) T is statistically σ-order continuous; 
(ii) T  is statistically σ-order continuous; 

(iii) T  is statistically σ-order continuous; 
(iv) |T| is statistically σ-order continuous. 

Proof:  (푖) ⟹ (푖푖)  Assume that 푥 θ holds in 퐸 . By applying Theorem 1.18 [10], we have 
푇 푥 = sup{푇푦: θ ≤ 푦 ≤ 푥} because ℝ is a Dedekind complete Riesz space. Now take a sequence 
푡 ↓ θ in ℝ . Thus, for each 푛 ∈ ℕ , we can find an element 푦 ∈ 퐸  such that θ ≤ 푦 ≤ 푥  and 
푇 (푥 ) − 푡 ≤ 푇푦 . Hence we have 푇 푥 ≤ 푡 + 푇푦  for each 푛. On the other hand, by using 푥

θ, we get 푦 θ. It follows from the statistical 휎-order continuity of 푇 that 푇푦 θ, and so we 

get (푡 + 푇푦 ) θ  because 푡 ↓ θ implies 푡 θ. Thus, we have 푇 푥 θ. Therefore, 푇  is 
statistically 휎-order continuous as desired. 
 
(푖푖) ⟹ (푖푖푖)  We can get the statistical order continuity of 푇  by the formula 푇 = (−푇) . 
 

(푖푖푖) ⟹ (푖푣)  It follows from |푇| = 푇 + 푇  and 푇 = (−푇)  that we obtain the desired result. 
 

(푖푣) ⟹ (푖)  Since |푇| is a positive operator and a dominant for 푇, it follows from Proposition 5 that 
푇 is statistically 휎-order continuous whenever |푇| is statistically 휎-order continuous. 
 
Proposition 6.  Let T: E → F be a positive and statistically σ-order continuous operator. Then T is 
σ-order continuous.  

 
Let us give the following remark before the proof of the proposition. 
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Remark 1.  Any monotone st -convergent sequence order converges to its st -limit on Riesz 

spaces. Indeed, assume that x ↓ and x x  on a Riesz space E and fix an arbitrary m ∈ ℕ. So we 

have x − x ∈ E  for all n ≥ m. It follows from Theorem 6 [16] that x − x x − x ∈ E  
(that is, x ≥ x). Thus, x is a lower bound of (x ) because m is arbitrary. If x ≥ 푦 for all n, again 

by using Theorem 6 [16], we have x − 푦 x − y ∈ E  (that is, x ≥ y). Thus, we obtain x ↓ x as 
desired. 

Proof:  Assume that 푇: 퐸 → 퐹 is a positive operator and 푥 ↓ θ holds in 퐸. Then we have 푥 θ 

[16]. Now we get 푇푥 θ  by assumption. Thus, by applying Remark 1, it follows from 푇푥 ↓ that 
we have 푇푥 ↓ 휃. Thus, 푇 is 휎-order continuous [9]. 

 
Theorem 2.  Let 푇: 퐸 → 퐹 be a positive operator and 퐹 be a Dedekind complete Riesz space. Then 
the operator 푇 from 퐸 to 퐹 defined by 

 푇(푥): = inf{sup푇(푥 ): θ ≤ 푥 ↑ and  푥 푥} 
 

for each 푥 ∈ 퐸  is statistically 휎-order continuous. 

Proof:  Suppose that θ ≤ 푥 ↑ and 푥 푥 holds in 퐸. Then there exists a sequence 푞 ↓ θ with 

an index set 훿(퐾) = 1 such that |푥 − 푥| ≤ 푞  for all 푘 ∈ 퐾 (that is, 푥 → 푥 on 퐾). Take an 
arbitrary 휀 > 0 and fix 푘 ∈ 퐾. It follows from Theorem 1.66 [9] that we can define an operator 
푇 : 퐸 → 퐹  by 

 푇 (푢) = sup{푇푣: 푣 ∈ 퐼   and  θ ≤ 푣 ≤ 푢} 
 

for every 푢 ∈ 퐸  and for each 푘 ∈ 퐾. Thus, it coincides with 푇 on the ideal 퐼  generated by (휀푥 −
푥 ) , and so it vanishes on (휀푥 − 푥 ) . Hence it is clear that θ ≤ 푇 ↓≤ 푇  and 푇 (푥 −

휀푥) = θ  holds for each 푘 ∈ 퐾 . Now assume that 푇 퐺  (that is, 푇 ↓ 퐺  holds in ℒ (퐸, 퐹). 
Then, by considering θ ≤ (푥 − 휀푥) ↑ (푥 − 휀푥) = (1 − 휀)푥  and 퐺(푥 − 휀푥) = θ  for every 

푘 ∈ 퐾,  we have 퐺(푥) = inf{sup퐺(푥 ): θ ≤ 푥 ↑   and  푥 푥} = θ . On the other hand, it 
follows from the inequality θ ≤ 푥 − 푥 ≤ (1 − 휀)푥 + (휀푥 − 푥 )  that 
 

 θ ≤ 푇(푥 − 푥 ) ≤ (1 − 휀)푇푥 + 푇(휀푥 − 푥 ) .                (∗) 
 

Therefore, we have 

             푇(휀푥 − 푥 ) = inf{sup(푇푧 ): θ ≤ 푧 ↑ and  푧 (휀푥 − 푥 ) } 

            = inf{sup(푇 푧 ): θ ≤ 푧 ↑ and  푧 (휀푥 − 푥 ) } 
            = 푇 (휀푥 − 푥 )  
            ≤ 푇 푥 

 
because θ ≤ 푧 ≤ (휀푥 − 푥 )  implies 푇푧 = 푇 푧. Hence the equation (∗) implies the inequality 
 

 θ ≤ 푇(푥 − 푥 ) ≤ (1 − 휀)푇푥 + 푇 푥.                (∗∗) 
 

By considering Theorem 1.59 [10], the operator 푇 → 푇 is a 휎-order continuous operator. Thus, 
푇 ↓ 퐺 implies that 푇 ↓ 퐺. So it follows from Theorem VII. 2.3. [25] that 푇 (푥) ↓ 퐺(푥) = θ. 
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Therefore, the inequality (∗∗)  implies that θ ≤ inf {푇(푥 − 푥 )} ≤ (1 − 휀)푇푥  holds. Hence we 

obtain 푇(푥 − 푥 ) ↓ θ. That is, 푇(푥 − 푥 ) θ holds as desired. 
 
                  Recall that an order ideal A of a Riesz space is said to be a 휎-ideal whenever a sequence 
(푥 ) in 퐴 satisfying 0 ≤ 푥 ↑ 푥  implies 푥 ∈ 퐴. On the other hand, an operator 푇  between Riesz 
spaces 퐸  and 퐹  is said to be a lattice homomorphism if 푇(푥 ∨ 푦) = 푇(푥) ∨ 푇(푦)  holds for all 
vectors 푥 and 푦 in 퐸.  

 
Theorem 3.  Let 푇: 퐸 → 퐹  be an onto lattice homomorphism. Then 푇  is a statistically 휎-order 
continuous operator if and only if the subset 퐾푒푟(푇) = {푥 ∈ 퐸: 푇푥 = 휃} of 퐸 is a 휎-ideal in 퐸. 

Proof:  Assume that (푥 ) is a sequence in 퐾푒푟(푇) with θ ≤ 푥 ↑ 푥. Thus, we have 푥 푥. It is 
well known that the kernel of a lattice homomorphism is an order ideal; see for example Theorem 

1.31 [9]. So it follows from the statistical 휎-order continuity of 푇 that we have 푇(푥 ) 푇(푥). That 

is, 푇(푥 ) → 푇(푥). It follows that 푇(푥) = θ, and so we obtain 푥 ∈ 퐾푒푟(푇). Therefore, 퐾푒푟(푇) is a 
휎-ideal in 퐸. 

For the converse, suppose that 퐾푒푟(푇) is a 휎-ideal in 퐸. We show that 푇 is a statistically 휎-

order continuous operator. Take a sequence 푥 θ in 퐸. Then there exists a sequence 푞 ↓ θ 
with an index set 훿(퐾) = 1 such that |푥 | ≤ 푞  for all 푘 ∈ 퐾, and so |푇푥 | = 푇|푥 | ≤ 푇푞  
holds for all 푘 ∈ 퐾  because 푇  is positive. Assume that θ ≤ 푤 ≤ 푇푞  holds for every 푘 ∈ 퐾 . 
Then we have 푇푧 = 푤 for some 푧 ∈ 퐸  because 푇 is an onto lattice homomorphism. So we have 

θ ≤ (푧 − 푞 ) 푧, and so we obtain 푇(푧 − 푞 ) = (푇푧 − 푇푞 ) = (푤 − 푇푞 ) = θ. Hence 
we get (푧 − 푞 ) ∈ 퐾푒푟(푇) for every 푘 ∈ 퐾. Hence we obtain (푧 − 푞 ) ∈ 퐾푒푟(푇) for every 
푘 ∈ 퐾. Now, by using the 휎-idealness of 퐾푒푟(푇), we have 푧 ∈ 퐾푒푟(푇). Thus, we get 푤 = 푇푧 = θ. 

Therefore, 푇푞 → θ, and so 푇푥 θ. 
 
It is reminded that the adjoint of order bounded operator between two Riesz spaces is an 

order bounded and order continuous operator; see for example Theorem 1.73 [10]. Also, the vector 
space 퐸∼ of all order bounded linear functionals on 퐸 is called the order dual of 퐸. For a Riesz 
space 퐸, we denote 

 
 퐸∼ : = {푓: 퐸 → ℝ ∶ 푓  is statistically σ − order continuous} 
 

as the statistically 휎 -order continuous dual of 퐸 . The following theorem deals with a similar 
situation with the adjoint of order bounded operator.  
 
Theorem 4.  If 푇: 퐸 → 퐹 is an order bounded and statistically 휎-order continuous operator, then the 
operator 푇∼: 퐹∼ → 퐸∼  defined by 푇∼(푓)(푥): = 푓(푇푥) is statistically 휎-order continuous, where 퐹∼ 
is the 휎-order continuous dual of 퐹. 
 

Proof:  Let us firstly show that 푇∼(푓) ∈ 퐸∼  for each 푓 ∈ 퐹∼. Suppose that 푥 θ holds in 퐸. It 

follows from the statistical order continuity of 푇 that we have 푇푥 θ in 퐹. Since 푓 is 휎-order 

continuous, 푓(푇푥 ) θ or (푓 ∘ 푇)(푥 ) θ. Thus, we get 푓 ∘ 푇 ∈ 퐸∼ . Now suppose that θ ≤ 푓

θ in 퐹∼ . We show 푇∼푓 θ or 푓 ∘ 푇 θ. Let 푥 ∈ 퐸  be fixed; thus, for some 푢 ∈ 퐹 , we 
have |푇푦| ≤ 푢 for all |푦| ≤ 푥. Hence we obtain [|푇∼|(푓)](푥)) ≤ 푓(푢) or 푓(|푇|(푥)) ≤ 푓(푢) holds 
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for all positive 푓 ∈ 퐹∼. Therefore, it follows that 푓 (|푇|(푥)) ≤ 푓 (푢) holds for all 푛. On the other 
hand, there exists a sequence 푔 ↓ θ in 퐹∼ with a set 훿(퐾) = 1 such that 푓 ≤ 푔  for all 푘 ∈

퐾 (that is, 푓 → θ on 퐾) because of 푓 θ. Thus, by applying Theorem 푉퐼퐼퐼. 2.3 [25], we have 
푔 (푢) ↓ θ. Therefore, we get 푓 (|푇|(푥)) ↓ θ or [|푇∼|푓 ](푥) ↓ θ. That is, |푇∼| is statistically 휎-
order continuous. So it follows from Theorem 1 that 푇∼ is also statistically 휎-order continuous. 
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