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Abstract: The inverse problem of electrocardiography (ECG) involves determining the 
transmembrane potential distribution within the heart from the ECG readings taken from the 
torso. The problem bears importance since its solution prescribes a tool for identifying various 
heart anomalies including locating the ischemic zone in the heart. The solution of the inverse 
problem is typically achieved by running a finite element simulation and obtaining a matrix 
relationship between torso potentials and the transmembrane potentials. The resulting system 
is usually underdetermined and solved with constraint optimisation (i.e. regularisation), where 
various constraints have been utilised in the literature.   

In this work we introduce a novel, regularisation-free iterative technique that uses finite 
element optimisation to tackle the inverse problem and locate the ischemic zone in the heart. 
The technique relies on a simple parametrisation of the location of the ischemic region in a 
bidomain heart model and eliminates the need for regularisation applied in the existing 
methods. The parameters are iteratively evolved using a sensitivity analysis and, when 
converged, indicate the location of the ischemic zone. The method is observed to successfully 
find the ischemic region, independent from where it is located in the heart. 
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INTRODUCTION 
 

Many heart problems are closely linked with disturbances in the heart’s electrical conduction 
system. The standard method to identify those anomalies in a clinical setting is electrocardiography 
(ECG). Due to the public health impact of those anomalies, the conduction in the heart has also 
been a subject of mathematical simulation studies. Reconstructing the torso potentials from a given 
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dipole source in the heart (or equivalently a given transmembrane potential distribution) is called 
the forward problem of ECG.  The counterpart of the forward problem is the more challenging 
inverse problem of ECG, which involves determining the transmembrane potential distribution 
within the heart from the ECG readings taken from the torso.  

The inverse problem of ECG has been a research area since 1980s [1].  It is more 
reminiscent of the actual diagnostic process and clinicians ‘solve’ this problem every day by 
observing the torso ECG readings in order to make deductions about the patient’s heart. Yet, ECG 
is not always effective for the identification of certain conditions such as ischemia, which makes the 
mathematical analysis of the inverse problem an important research topic [2-4].  

Ischemia is a relatively common heart condition caused by insufficient oxygen supply to the 
heart muscle due to reduced blood flow to the tissue. During the ST segment of ECG, the whole 
heart muscle is in a depolarised stage where the transmembrane potential (TMP) has a plateau value 
of 0 mV for healthy tissue. On the other hand, TMP has an abnormal value of -30 mV in the 
ischemic tissue.  Hence the clinical sign for acute myocardial ischemia is a shift of the ST segment 
of ECG relative to the healthy level, whose magnitude depends on the size and location of ischemic 
region in the heart tissue (as well as the location of recording electrodes on the patient’s torso). 
However, despite many years of research and clinical practice, ECG has a modest sensitivity and 
specificity (65-80%) in detecting and especially in localising myocardial ischemia [5, 6].  

Ischemia has been a main focus of the numerical studies to tackle both forward and inverse 
problems of ECG. The finite element method (FEM) is widely utilised in these studies [7, 8]. 
Numerical detection of the ischemic zone in the heart relies on the shifted TMP during the ST 
segment. When the TMP distribution in the heart can be reconstructed from the measured torso 
potentials through FEM, the location of nodes with shifted potentials indicate the ischemic zone. 

The solution of the inverse problem is mathematically more challenging since it is ill-
conditioned and requires some sort of optimisation to find the ‘best solution’ among the pool of 
candidate solutions [9]. This is typically achieved by running an FEM simulation and obtaining a 
matrix relationship between the torso potentials and the TMPs as 

 
H TKΦ Φ                                                                     (1)  

where HΦ  is the vector of unknown nodal TMPs within the heart region, TΦ is the vector of the 
given nodal torso potentials and K is a stiffness matrix obtained from the FEM formulation. Since 
the above system is underdetermined and highly ill-conditioned, a solution can be found only 
through regularisation, which is the mathematical technique of constraining an ill-posed problem so 
as to convert it to a better-posed one.  

Regularisation is a principal topic in inverse problem research, and there is vast literature on 
regularisation [10-15]. Since the above system is underdetermined and highly ill-conditioned, a 
solution can be found only by minimising the error norm H TKΦ Φ  under some regularisation of 

the solution as 

 min H T HKΦ Φ LΦ                                                   (2) 

where L is a regularisation matrix and  is the regularisation parameter. Here, different choices for 
L may change the effectiveness of the approach significantly and the optimal value of  is usually 
found by trial and error, which is computationally inconvenient and is the main drawback of this 
approach.  
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Despite these drawbacks, the regularisation-based solution of the inverse problem has 
always been common practice and used extensively in the literature. Messinger-Rapport and Rudy 
[16, 17] compared several variations of Tikhonov regularisation (zero-, first- and second-order) and 
found that zero-order Tikhonov regularisation performed as well as those of higher order. Spatially 
adaptive FEM schemes with local regularisation have been tried [18]. In another approach [19] 
optimisation was done over the time integral of TMP over the ST segment rather than at one time 
instant, making the inverse solution more robust to input noise but limiting its applicability to 
identifying activation. Novel spatiotemporal regularisation approaches suitable for recovering the 
TMP at the heart surface [20] and characterising myocardial infarctions [21] through inverse ECG 
modelling have been proposed. The Tikhonov regularisation method, where regularisation 
parameter is obtained with composite residual and smoothing operator, was also used to stabilise the 
inverse procedure [22]. 

There are several more recent studies done on the inverse problem of ECG, proving the 
actuality of the topic despite its early origin. These studies discussed several related issues such as 
the impact of the utilised torso model on the solution [23], further evaluation and improvements in 
regularisation methods [24, 25], and potential use of artificial intelligence techniques in inverse 
modelling [26, 27]. In the present work an entirely new, regularisation-free numerical approach is 
proposed to solve the inverse problem of ECG. The method is based on a simple parametrisation of 
the ischemic region, something that has not been done in the existing literature. In the proposed 
method the ischemic region of the heart is located iteratively through finite element optimisation in 
a novel manner. The optimisation scheme updates the parameters through a sensitivity analysis to 
reconstruct the TMPs in order to localise the ischemic region.  
 
METHODS 
 

The sensitivity-based iterative optimisation approach proposed here is an entirely new 
approach to tackling the inverse problem of ECG. We describe in this section the related finite 
element formulation and sensitivity procedure. The bidomain model of the heart is described in 
detail first. Next, the general sensitivity analysis is explained with respect to how it is used as an 
iterative optimisation tool in this problem. The computer implementation of the FEM and the 
sensitivity-based optimisation is also briefly mentioned in this section. 

Bidomain Model of Heart Conduction 
 

As myocardial ischemia can be characterised by the altered TMP of the tissue, 
reconstructing a whole-heart TMP map will promote the determination of the location and extent of 
ischemia [5, 28, 29]. The inverse problem of ECG is usually formulated based on the bidomain 
heart model, where extracellular and intracellular environments are taken as overlapping continua. 
The cardiac source is represented either by the myocardial TMP or the current density derived from 
it [29, 30]. Since capacitive and inductive effects are negligible in the heart [9], torso potentials at a 
time instant depend only on the TMP distribution at the same time instant. During the ST interval, 
the TMP has a homogeneous plateau value of 0 mV throughout the healthy heart tissue. Its value 
drops to -30 mV in the ischemic region of the heart [31-34]. Consequently, the inverse problem for 
the purpose of locating the ischemic tissue is typically formulated in the ST interval of the heart 
cycle, where healthy and unhealthy tissue can be distinguished merely from their TMP values. 

Let Vm denote the TMP during the ST interval; then 
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0 mV, x in healthy tissue
( )

-30 mV,  x in ischemic tissuemV x 
 


   .                                                   (3) 

The quasi-static bidomain model and its clinical meaning is summarised in this section. The 
problem domain, which consists of the heart (designated as H) and the torso (designated as T), 
satisfies a Poisson partial differential equation as 

 
( ( ) ( )) ( ),       x x f x x    σ                                                             (4) 

where  is the potential and f(x) is given as 
 

0,
( ) .

( ),i m

x T
f x

V x x H


     σ
                                                    (5) 

Here,  is the conductivity tensor expressed as 
 

,
( )     .

,
T

i e

x T
x

x H
 

   

I
σ

σ σ
 

 
The f(x) term for the heart (H) represents the source with the differing Vm in the ischemic tissue. It 
should be noted that if the heart is entirely healthy, mV  will vanish in the entire heart domain and 

there will be no source. In this case the problem has a trivial (i.e. zero) solution for  which is 
observed in the ST segment of the ECG of a healthy heart. represents the electrostatic potential 
within the torso and e is the extracellular potential within the heart : 
 

( )   .
e

x T
x

x H
 

   
                                                                   (6) 

The conductivities of intracellular and extracellular mediums of the heart arei and e respectively. 
The conductivities of various tissues in the torso region are represented byT. Since these 
conductivities are isotropic, the conductivity tensor is a multiple of identity tensor I.  

On the other hand, the heart has anisotropic conductivity with differing conductivity values 
perpendicular to l and along the heart muscle fibres t. Thus, the conductivity tensor of the heart 
expressed in muscle fibre coordinates can be written as 

 
* 0

0
l

h
t




 
  
 

σ    h=i or e   ,                                                (7) 

where the index h refers to either intracellular (i) or extracellular (e) medium. In finite element (FE) 
formulation this tensor is transformed to the Cartesian coordinates at each element as 
 

T
h h

σ Aσ A                                                                        (8) 
where A is an orthogonal rotation matrix given by 

cos sin
     .

sin cos
 
 

 
   

A                                                                    (9) 

 
Here, the angle  represents the rotation of the heart fibre with respect to Cartesian axes. In the 
literature the following formula for the angle   is proposed for a two-dimensional heart model:  
                                                                                      

1( , ) tan ( )  ,
1

T N

N T

K x K yx y
K x K y

  


 
                                                        (10) 
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which we have utilised in this work.  The related constants are KT = 0.3 and KN = 0.2. 

Boundary conditions require that no current flows out of the torso and are expressed as  
                

( ) 0        T T on T    n  .                                                            (11) 

The heart and torso potentials match at the heart-torso boundary and are expressed as 
 

      e on H       ,                                                                  (12) 

and the current flowing across the heart boundary should be continuous and is expressed as 
 

( ) ( )      e e H T T on H      σ n n   .                                            (13) 
 
In the above equations ∂ signifies the boundary of the corresponding domain. 

Finite Element Optimisation Based on Sensitivity Analysis 
 

The FE weak form of the problem is obtained after applying the Galerkin method and 
Green’s theorem to Eq.2 and imposing the natural boundary conditions to the resulting expression:   

( ( ) ( )). ( ) ( ( )). ( )  ,i m
H

x x w x dx V x w x dx 


                                              (14) 

where  T H    represents the entire problem domain [5, 31, 35-38]. 
Using standard linear functions for shape and weighting functions, the weak form eventually 

leads to a linear system as 

g K Φ f  .                                                     (15) 

Here, Kg represents the global stiffness matrix. The force vector f of this system is formed by the 
source term. In the case of healthy tissue, f=0 and the system has a trivial (i.e. zero) solution 
corresponding to a healthy ST segment. In the presence of ischemic tissue, f takes a non-zero value 
giving a non-zero solution for  which is associated with the ST-segment shift. 

In many engineering optimisation problems the quantity to be optimised has (or is assumed 
to have) a functional form, and optimisation is achieved by optimising the parameters of this 
function. The simplest example of this approach is the statistical regression. In FEM, input 
parameters can be optimised, which will produce a specific output. The relation between the FE 
input data (geometry, material properties, boundary conditions, etc.) and the FE output (nodal 
solutions) is mathematically more complex, yet this approach is frequently applied in material 
property estimation or topology optimization [39, 40]. To apply the FE optimisation to the inverse 
problem of ECG (i.e. the localisation of the ischemic region), we parameterise the TMP distribution 
and optimise the location of the ischemic region with respect to these parameters.  

For clarity, we illustrate the method on a realistic 2-D torso geometry. We have assumed a 
continuous functional form for TMP given by  

 
[ arctan( ( )) arctan( ( ))] [ arctan( ( )) arctan( ( ))]  .mV A B x a B x b B y c B y d                      (16) 

 
The defined function takes a value of 0 mV everywhere except a rectangular-like region where it 
smoothly decreases to -30 mV (Figure. 1). This region signifies the ischemic region in the heart, and 
its size and location depend continuously on the parameters a, b, c and d of the function. The 
functional form prescribed by Eq.16 prevents the TMP from fluctuating from one node to the other 
and ‘regularises’ the TMP distribution and hence the shape of the ischemic region. It is also an 
advantage that the location of the ischemic region in the heart is described using only four 
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parameters. The factor A is adjusted such that the minimum value of the function is equal to -30. 
(The value of A changes with the values of a, b, c and d.) The multiplier B is chosen to adjust the 
width of the transition zone, designated as H, where TMP changes from a value of 0 mV to -30 mV.  
For the physiologically realistic value of H=1 mm, B is approximately equal to 5. Parametrisation of 
Vm per Eq.12 gives Vm a smooth functional form and prevents it from fluctuating. In other words, 
enforcing Vm to take a certain functional form regularises this quantity, which is necessary in 
tackling inverse problems. 
 

 
Figure1. TMP function 

 
Assume that there exists an ischemic region in the heart, whose TMP is represented with 

Eq.16. Let e denote the vector of a set of non-zero torso potentials caused by the presence of the 
ischemic region. The values in e can be either observed experimentally or equivalently calculated in 
a numerical experiment simulating the forward problem with imposed ischemia. Let y indicate the 
vector of the same torso potentials estimated by the FE simulation, whose values depend on the 
parameters a, b, c and d used in the FE run: 

 
( )  .a,b,c,dy y                                                                         (17) 

 
The objective function J is a measure of the difference between the experimentally measured e and 
estimated torso potentials y: 

( , ( ))  .J J a,b,c,d e y                                                                     (18) 
 
Let p be the column vector that contains the parameters a, b, c and d: 
 

  .

a
b
c
d

 
 
 
 
 
 

p                                                     (19) 

 
The simplest possible J would sum the square errors for each torso potential and can be expressed in 
matrix form as 

( ( )) ( ( ))  .( ) TJ     e y p e y pe y p                                             (20) 
 
In general, the relation between y and a, b, c and d is non-linear, independent from the linearity of 
the problem. Hence the objective function is also highly non-linear. Yet, since the objective 
function depends continuously on parameters in p, an iterative gradient method can be devised for 
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the minimisation of the objective function. In other words, an extra regularisation term as in Eq.2 is 
not necessary since the solution is already regularised by adopting a functional form for Vm.  
 
Objective Function Minimisation 
 

To derive the iteration scheme, we have taken the variation of the objective function with 
respect to an infinitesimal change in the parameter vector p and set it to zero, an obvious way to 
find the extremum of a function. The variation of Eq.20 with respect to the variation in y can be 
expressed as      

( ( )) ( ) ( ) ( ( )) 0  .T TJ      y p e y e y y p                                             (21) 
 
Using the variation in the parameter p, the vector δy can be written as 
 

( )( )   , 
  


py p p S p
p

y
                                                                    (22) 

where 
( )




pS
p

y
  

is called the sensitivity matrix and describes the change in the FE simulation output y with respect to 
a change in p. Substituting (18) into (17) gives 
 

( ) ( ( )) ( ( )) ( ) 0T TJ      S p e y p e y p S p                                               (23) 
Since J is a scalar, both terms of the above matrix expression are equal to each other, which allows 
Eq. 23 to be written as 

( ( )) 0  .T TJ   p S e y p                                                           (24) 
 
Since p is arbitrary, the above equation holds only if 
 

( ) ( ( ))   .T  r p S e y p 0                                                                (25) 
 
Here r(p) is the residual which approaches 0 as the predicted potential y approaches the actual 
potential e. Eq.25 represents a non-linear system of equations in p, whose solution minimises the 
objective function J. The system is solved through Newton-Raphson iteration. If pk is the estimate 
of p obtained at the kth iteration, the system is linearised at p=pk  as 
 

1 ( )  .
k

k k 



 

 p p

r p r p
p

                                                               (26) 

 
The solution of the above linear system gives the correction term δpk+1, which is used to 

update pk to obtain pk+1. If the scheme is convergent, the norm of the residual r(pk) should 
eventually vanish.  Differentiating Eq.25 with respect to p and evaluating the resulting expression at 
the kth iteration gives 

( ) ( )( ) ( ) ( ( ))  .
T

T
k k k

k

          

r p e y p
p p p

y SS                                       (27) 

 Recalling that 




yS
p

by definition, Eq.23 can be written as 
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( ) ( )( ) ( ( ) )   .
T

T
k k k

k

        

r p SS S e y p 0
p p

                                       (28) 

 The change in sensitivity matrix with respect to a change in p, i.e.

p
S

, is a second-order 

term and is usually ignored to decrease the computational complexity of the iterative scheme. Since 
the scheme described by Eq.26 is iterative, it will still converge to the correct value with this 
simplification as long as residual r(p) is exactly evaluated. With this consideration, the linearised 
system of Eq.26 can be written as 
 

1[( ) ]( ) ( ) ( ( ) )  .k
T T

k k k k   p e y pS S S                                                  (29) 
 
Once the system is solved, the current estimate for the ischemic region parameters pk is updated as 
 

1 1k k k  p p p                                                                (30) 
and the procedure is repeated. 

 If the torso potentials are estimated at n points, then the sensitivity matrix 
( )




pS
p

y
for our 

problem will be  
11 2

11 2

11 2

11 2

  ,

n n

n n

n n

n n

y yy y
a a a a

y yy y
b b b b

y yy y
c c c c

y yy y
d d d d









   
     

   
         
    
    
    

S









                                                      (31) 

 
where yl indicates the FE outcome for torso potentials at the lth node. The derivative terms in the 
above matrix are evaluated numerically by changing each time one of the parameters (a, b, c or d) 
slightly, running the FE simulation with this set of parameters, observing the change in yl values and 

calculating l

m

y
p



 for the parameter pm. Each FE run will produce one row of the S matrix.  

Programming of Inverse Problem of ECG 
 

The solution of the inverse problem involves running an FE forward analysis repeatedly 
with an updated p vector, hence an updated location of the ischemic region in the heart. 
Consequently, a general FE code is written to solve the forward problem in Python language. The 
forward FE code is embedded into a custom-made Python optimisation code, which calculates the 
sensitivity from the FE results of the current iteration and updates the parameter vector p, and 
reruns the forward FE code with the updated data for the next iteration. The optimisation scheme is 
schematically described in Figure 2. 
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Figure2.  Flowchart of optimisation algorithm 
 

Example Problem 
 

The methods of solving inverse problems are often tested with data created with the related 
forward analysis. In this work pseudo-experimental data for ischemic TMP reconstruction is 
produced by inducing ischemia to a certain location in the geometry and running the forward 
simulation. The resulting potentials at a specified set of nodes on the outer surface of the chest are 
taken as the experimental data. (These are equivalent to the actual ECG recordings taken at the 
chest.)     

The geometric model for this study corresponds to a single two-dimensional slice located 50 
mm above the apex of the heart (Figure 3). It is obtained from MRI data publicly available from 
University of Utah resources [41]. Realistic conductivities are taken from the literature and assigned 
to different tissues as well as to the healthy and ischemic heart tissues [42]. 
 

 
Figure 3.  Nodes where virtual chest potentials are measured (red dots) 
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The method is tested on three ischemia scenarios. In each one an ischemic region is placed 
at a different spot in the heart geometry, referred to as Ischemia 1, Ischemia 2 and Ischemia 3 in this 
text (Figures 4-6).  As described above, the ischemic region is distinguished from the healthy tissue 
through its altered TMP. The forward analysis is run for all three cases to produce corresponding 
virtual ECG data measured at the outer torso surface (red dots in Figure. 3). Using these data, the 
sensitivity-based FE optimisation scheme is started with an initial estimate of ischemic region 
location that is far from its actual location. In a convergent scheme, as the parameters (a, b, c and d) 
evolve iteratively, the ischemic region should approach its actual location. It is observed whether 
the iterative process here is convergent in that sense. 

 

 
Figure 4.  Torso model and ischemic region on posterior wall of heart (Ischemia 1) with applied 
TMP indicated 
 

 
Figure 5.  Torso model and ischemic region on left ventricle (Ischemia 2) with applied TMP 
indicated 
 

 
Figure 6.  Torso model and ischemic region on right ventricle (Ischemia 3) with applied TMP 
indicated 
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Since the main focus is to identify the location of the ischemic region, capturing the exact 
geometry of the ischemic region is not a concern in this method. Yet, the size of the assumed 
rectangular shape per Eq.1 will be a good indicator of the actual size of the ischemic region. If part 
of this region falls beyond the limits of the heart boundary during the optimisation iteration, the 
algorithm disregards that part. Hence it may be possible that the converged ischemic region is 
truncated. Furthermore, the patch of identified ischemic elements in the irregular FE mesh will look 
like a polygon rather than a rectangle. 
 
RESULTS 
 

Iteration 1 (Figures 7_9) refers to the initial estimate of the ischemic region and the proposed 
iterative scheme is able to converge to the correct ischemic area in all cases (shown in gray colour 
in the Figures). In Ischemia 1 (Figure 7) the ischemic region is located at the posterior wall of the 
heart. The approximate location of the ischemic region is captured in about the 15th iteration and the 
exact location is found in the 35th iteration. The convergence in this case of ischemia is observed to 
be slower than in the other two cases. 

In Ischemia 2 (Figure 8) the ischemia is transmural: it covers the entire thickness of the left-
ventricular wall. The approximate location of ischemia is identified in about the 12th iteration and 
the exact location is found in the 32nd iteration. In Ischemia 3 scenario (Figure 9) the ischemic 
region is closer to the anterior side of the heart located in the right ventricle and larger in size 
compared to the previous cases. As a result, the convergence is visibly faster in this case. After the 
7th iteration, the estimated ischemic region is relatively close to the actual one, which is then 
captured in the 26th iteration. 

In general, we have observed that an ischemic region closer to the observation sites (red dots 
in Figure 3) or larger in size causes a larger shift in the recorded potential (which corresponds to the 
ST segment shift in ECG). In those cases, the iterative scheme seems to converge faster. Also, in the 
first few iterations, the estimated ischemic region changes significantly from one iteration to the 
next. Typically, the approximate location of the ischemic region is established before the first half 
of the iterations is performed. The remaining iterations are dedicated to the fine-tuning of the 
boundaries of the ischemic region. 

 

 
Figure 7.  Localising anisotropic ischemic region using FE optimisation (Ischemia 1) 
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Figure 8.  Localising anisotropic ischemic region using FE optimisation (Ischemia 2) 

 

 
Figure 9.  Localising anisotropic ischemic region using FE optimisation (Ischemia 3) 

 
DISCUSSION AND CONCLUSIONS 
 

In this work we have proposed a new numerical approach to tackling the inverse problem of 
ECG in order to locate the ischemic region in the heart from the ECG readings. The method relies 
on iterative FEM optimisation where the four parameters (a, b, c and d in Eq.16) describing the 
ischemic region location are iterated through sensitivity analysis. 

Computational modelling of the electrical activity of the heart has been an active research 
area for more than three decades. During this period, the related literature has grown vast and the 
proposed models have increasingly become more detailed and sophisticated, evolving from two-
dimensional to three-dimensional, from homogeneous to inhomogeneous, and from isotropic to 
anisotropic. 

Sensitivity-based optimisation is a novel and promising technique for tackling the inverse 
problem of ECG that has been proposed in the present work. The functional form given by Eq.3 
regularises the TMP and prevents it from taking an arbitrary distribution. On the other hand, with 
the conventional approach prescribed by Eq.2, an appropriate regularisation matrix L must be 
chosen to regularise the TMP distribution and a search for the optimal value of the parameter  
must be performed. This requires the repeated solution of the linear system formed from Eq.2, 
sometimes using hundreds of different values.  
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The only study that bears partial resemblance to this method in its iterative characteristics 
seems computationally more demanding than the one we have proposed. In this work Nielsen et al 
[43] performed an optimisation over the entire set of degrees of freedom on the heart geometry (i.e. 
nodal potentials of the FE mesh of the heart) in a two-dimensional problem subject to certain 
constraints, and convergence to the correct ischemic region occurred around the 40th iteration. On 
the other hand, our scheme optimises only four parameters and requires less computation time.  

The sensitivity-based iterative method has the potential for being an alternative to the 
existing regularisation-based techniques. We have illustrated the method on a two-dimensional 
problem but it can be easily extended to a three-dimensional one. In this case the TMP given in 
Eq.16 will take an extra term to account for the variation along the z-axis, which will introduce two 
additional parameters. The optimisation will be performed with respect to six parameters and the 
ischemic region will be a polyhedral mesh patch that resembles a rectangular prism. 

In the mathematical modelling of ischemia, the pathology is usually modelled by imposing 
an altered TMP to the diseased tissue but assuming a healthy conductivity. The conductivity change 
that comes with this pathology has been only recently incorporated into some models, where 
epicardial potentials are estimated with the finite volume method in 3D models [44, 45]. In this 
work we have incorporated the conductivity change that comes with ischemia into our analysis. In a 
separate study (unpublished) we have assumed healthy conductivities when creating the pseudo-
experimental data and when running the inverse analysis. The method has been equally effective in 
locating the ischemic region under these conditions.  
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