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Abstract:  The quantification of the left ventricle (LV) by cardiac magnetic resonance images 
(MRI) is critical in the diagnosis of cardiovascular diseases to estimate vital criteria such as 
ejection fraction, left ventricle mass and volume, stroke volume, and muscle thickness, which 
are the most significant indicators of cardiac functions. Manual segmentation of LV is a 
tedious task that requires considerable effort by experts. Therefore, it is necessary to develop 
precise models of LV and myocardium segmentation. Currently, the architectures of deep 
convolutional neural networks (CNNs) have been widely utilised with significant potential for 
automatic cardiac medical image segmentation and quantification. However, these 
architectures typically have different purposes with huge numbers of parameters and samples 
of data, resulting in varying accuracy and generalisation. This article describes extensive 
comparative research based on the previous assessments of the LV segmentation and 
quantification from MRI utilising CNN models and hybrid models (level-set/deformable 
models with CNN). Furthermore, this paper provides answers to why short-axis MRI datasets 
are used broadly in LV segmentation, why LV is the most vital chamber to be diagnosed in 
the heart, and why CNN algorithms are described as the most suitable algorithms in medical 
imaging semantic segmentation with extensive datasets. 
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INTRODUCTION  
 

The World Health Organisation declares cardiovascular diseases (CVDs) as the deadliest 
disease that threatens human life [1]. The American Heart Association estimates that human life 
expectancy can be extended by ten years if cardiovascular diseases can be prevented by effective 
diagnosis at an early stage. Thus, early detection of CVDs is a crucial factor in determining the 
suitable treatment that can improve human life and decrease the mortality rate. Cardiac magnetic 
resonance (MR) imaging is a major non-invasive imaging instrument for early diagnosis and 
prediction of CVDs, namely myocardial infarction [2], coronary heart disease [3], ischemic heart 
disease [4], arrhythmia [5], hypertrophy [6], congestive heart failure [7] and others. Cardiac MR 
imaging utilises computerised technology which consists of a powerful magnetic field and radio 
wave to develop explicit images of the heart’s structure. In cardiac MR imaging, the quantification 
of various cardiac parameters on the left ventricle (LV) and right ventricle (RV) during cardiac 
contractility is necessary to diagnose underlying CVDs. Thus, before the quantification process, the 
segmentation of LV and RV using MR images (MRI) is crucial. Since manual segmentation of MRI 
is an arduous and laborious work that can result in human errors, various studies have developed 
computerised systems comprising segmentation algorithms that can automatically and precisely 
segment LV and RV contours [4–11]. However, these proposed algorithms face similar issues such 
as the outer and inner cardiac structures and the variation in the shape and size of RV and LV 
among patients.  

Although Chen et al. [12] provided information on several deep learning methods for cardiac 
segmentation, they are used for whole heart segmentation from different dataset modalities, not 
primarily for LV segmentation from MRI, nor for comparative analysis of the state-of-the-art 
methods for LV quantification. Thus, this paper focuses on the review of segmentation and 
quantification methods from cardiac MRI of LV based on convolutional neural networks (CNNs) 
with the following objectives: 
1. To show the reasons why LV is the most significant cardiac chamber to determine CVDs; 
2. To determine the most suitable imaging techniques for segmenting LV on cardiac MRI;  
3. To explain the trends and advantages of LV segmentation and quantification using CNNs.  

  
ANATOMY OF LEFT VENTRICLE (LV) 
 

The human heart is divided into four chambers: the upper chambers consist of the right 
atrium, which receives deoxygenated blood from the entire body; the left atrium receives 
oxygenated blood from the lungs, while the lower chambers consist of the RV that pumps blood to 
the lungs and the LV. The LV is the most important and largest chamber because it pumps 
oxygenated blood to the entire body. Most CVDs are identified from LV, which can be diagnosed 
from the LV mass, LV   volume, wall thickness and ejection fraction directly derived from LV at 
end-diastole (ED) and end-systole (ES) phases [8]. To extract these features, the LV contours must 
be precisely defined by identifying the endocardium (interior contour) surrounding the LV cavity 
(blood pool) and the epicardium (external contour) of the LV cavity. Furthermore, the LV 
myocardium is thicker than the RV myocardium; thus, it is easier to segment the LV [13]. Since the 
LV pumps high-pressure oxygenated blood throughout the body, its wall is three times thicker than 
the RV's. A healthy LV cavity has an elongated ellipsoid shape surrounded by the myocardium that 
has a thickness ranging from 6 to 16 mm. A problematic LV, on the other hand, can be identified by 
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the changes in its regional and global functions and shape. The LV’s regional and global functions 
can be quantified by measuring the following indicators [11]: 

i. LV end-diastolic volume: the mass of blood in LV, surrounded by myocardium, in the 
relaxation phase of the cardiac cycle; 

ii. LV end-systolic volume: the mass of blood in LV, surrounded by myocardium, in the 
contraction phase of the cardiac cycle; 

iii. LV stroke volume: the amount of ejected blood from the heart to the body at each contraction 
phase (the difference between i and ii); 

iv. LV mass: the LV cavity during the ED and ES phases, surrounded by myocardium tissue; 
v. LV ejection fraction: the percentage amount of blood pumped out of the heart at each beat; 

vi. LV cardiac output: the amount of systemic blood flow per minute; 
vii. LV wall thickness: the thickness of myocardium measured from short-axis images at the end-

diastolic phase (Figure 1). 
 

 
 

Figure 1.  LV model with 17 segments of wall thickness 
 

Currently, cardiac MRI are extremely useful in diagnosing CVDs due to their extensive 
ability to distinguish different types of tissues [9, 14]. Since short-axis MRI are easier to use than 
long-axis MRI, the former are utilised in many LV contour imaging techniques [13]. As a result, LV 
segmentation algorithms based on short-axis MRI have been long-established [15-17], particularly 
in deep learning algorithms [18-21]. A short-axis MR image is created by imaging perpendicular to 
the long axis with 8-10 slices throughout the cardiac cycle, and it comprises a stack of 2D MRI with 
a plane resolution of 5-10 mm. 
 
CARDIAC MRI SEGMENTATION 
  

As most CVDs are associated with irregular anatomical and structural indices of the heart, 
various cardiac diagnostic imaging techniques have been introduced, such as MR imaging, 
echocardiography, electrocardiography, computed tomography, ultrasound, positron emission 
tomography and single-photon emission computed tomography. Among these techniques, cardiac 
MR imaging is best suited for LV quantification because it gives reproducible measurements. 
Furthermore, when compared to other techniques such as single-photon emission computed 
tomography and computed tomography, cardiac MR imaging has the advantage of being radiation-
free and capable of producing high-resolution images.  

The literature clearly shows that MR imaging is the best technique for estimating LV 
parameters for instance LV volume, LV mass, ejection fraction and wall thickness. Cardiac MR 
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imaging protocols include cine MR, tagged MR, flow MR, late gadolinium enhancement and 
perfusion MR, all of which provide different information [22]. The cardiac MR imaging planes are 
based on two axes: the short-axis view and the long-axis view. The standard imaging technique to 
segment LV is via a short-axis plane in which the imaging plane is perpendicular to the long-axis 
plane, and the long-axis crosses LV from base to apex, as shown in Figure 2. Since the heart is an 
active organ, images from cine MR imaging are acquired through the cardiac cycle and organised in 
dynamic sequences.  

 

 
 

Figure 2.  MR long-axis and short-axis views for LV segmentation 
 

Among various protocols of cardiac MR imaging, cine MR provides good spatiotemporal 
resolution with high contrast between different tissues. Commonly, one sample has 20-30 
consecutive frames, corresponding to 20- to 30-time points in the cardiac cycle. Typically, each 
frame contains 10-15 slices from base to apex [11]. Tagged MRI is used traditionally with a grid of 
tag lines imposed on the myocardium for LV motion estimation. However, the fading tags during 
the cardiac cycle make it difficult to identify in the last phase of sequences [23]. Flow MR is a 
protocol to cipher the information of velocity by adjusting the path of the gradient from +180º to -
180º [22]. This protocol is applicable in measuring cardiovascular strain rate and flow. Perfusion 
MR is a technique by which the injection of a contrast agent (typically gadolinium) is applied to 
produce contrast-enhanced images [22]. The contrast agent flows with blood along the vessels to 
reach the target tissue. Late gadolinium enhancement MR is a vital method that estimates scar tissue 
in the myocardium [11]. The images acquired from this technique are from 6-mm short-axis slice 
thickness with a 4-mm gap for contrast enhancement. Then 0.10-0.15 mmol/kg of gadolinium was 
injected after a delay of 10-20 min. and subsequently, the images were collected. 

The main step in analysing the motion and deformation of the heart is the segmentation of 
MRI sequences into frames that consist of different slices. The purpose of LV segmentation is to 
define the endocardial and epicardial contours. As depicted in Figure 3, the endocardial contour 
surrounds the LV cavity, the epicardial contour is between the myocardium and outer tissues (lungs, 
fat), and the myocardium is between these two contours. 
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Figure 3.  MR image of LV (left) and model of LV (right) 
 

CONVOLUTIONAL NEURAL NETWORKS (CNNs) 
 

CNNs are one of the most broadly used deep learning algorithms for image analysis. It is 
utilised for many different processes including classification [24], segmentation [25] and object 
detection [26]. As shown in Figure 4, a typical CNN has input and output layers, as well as a stack 
of layers that function between the input and output layers.  These functional layers consist of three 
main layers, namely convolutional layer, pooling layer and fully connected layer. Typically, the 
convolutional layer includes kernels/filters followed by batch normalisation and a non-linear 
activation function (e.g. rectifier linear unit) that extracts feature maps from the input. Then the 
feature maps are followed by pooling layers for down sampling by disposing of unnecessary metrics 
to improve the generalisation and statistical efficiency of the model. Fully convolutional layers are 
involved in the dimension reduction of the previous layer’s features and in finding the most related 
features for inference [12, 27].  
 

 
 

Figure 4.  Layers of construction for complete CNN architecture (Conv= convolution, BN= batch 
normalisation, ReLU= rectified linear unit function and MaxPool= max pooling layer) 
 

The network output is a fixed-size vector with elements for classification, object detection 
and segmentation purposes. There is well-documented literature on CNN algorithms assisting 
medical experts and physicians to diagnose breast cancer [28, 29] and brain tumours [30] as well as 
detect kidney disease [31], diabetic retinopathy [32], prostate cancer [33, 34] and cardiovascular 
diseases [35-38]. CNN models with different architectures are used for image segmentation and 
classification, including SegNet [39], AlexNet [32], ImageNet [24], GoogleNet and VGG. Full 
CNNs that track and label each pixel, such as the U-net model, are the most influential semantic 
segmentation CNN-based architecture in this field. 
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Network Training  
 

Neural network training is crucial before it is used to perform a specific function in image 
analysis. Therefore, standard training elements are required, for instance, data (images), optimiser 
algorithms and loss function to update the network’s parameters via backpropagation algorithm. 
The main objective of the training process is to provide a suitable value for the parameters in the 
network by minimising the loss function using optimisation algorithms such as stochastic gradient 
descent [40] and adaptive moment estimation [41]. 
 
Common Loss Functions  
 

The mean square error loss function ( MSEL ) is the simplest for regression tasks, namely 
landmark detection, heart localisation and image reconstruction [12]: 
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where  ݕ௜ is the target vector value, ix is the predicted vector value and ݊ is the number of samples 
at each iteration.  

For classification and segmentation tasks of images, the cross-entropy loss function ( CEL ) is 
mostly used [12]: 
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where  ݌௜ predicts the probabilistic output, ݕ௜ is the target segmentation map, ܿ is the number of 
each class and ܥ is the number of all classes. For segmentation, the cross-entropy loss function 
represents errors of pixel-wise probability between predicted segmentation map and target map. 
Therefore, the soft-dice loss function ( DiceL ) is applied to minimise the errors [42]: 

                           
Overfitting Reduction  
 

Due to the difficulty of the training stages, the best approach to refining the precision of a 
deep neural network is to increase the number of layers and units by the level that increases the 
network's depth and width respectively [8]. As a result, high-quality model training can be 
performed with huge numbers of parameters, potentially causing overfitting. Deep learning 
accuracy can also be improved by presenting residual learning frameworks [43] for training by layer 
reformulation to learn residual functions related to the input layers rather than functions unrelated to 
the input layers. To deal with this problem one of the following step can be applied:  

i. Weight regularisation: a technique in which weight penalties are added to the loss function; 
ii. Dropout: a method that randomly drops neurons in each layer to enhance accuracy during 

training; 
iii. Ensemble learning: a part of machine learning techniques where combined trained models 

are applied to produce better performance than that from a single model;  
iv. Data augmentation: a manipulation of training samples to expand the types of training data 

(e.g. scaling, rotation and cropping); 
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v. Transfer learning: reusing weights of a pre-trained model to initiate the new model’s weights 
for a specific task. 

 
Evaluation Metrics  
 

A set of standardised metrics can be used to verify the performance of a proposed deep 
learning algorithm through a reproducibility approach. They are based on geometrical metrics, 
clinical performance and classification performance metrics as described below. 

Geometrical metrics. The most important task in the LV segmentation method is to validate 
the precision of used algorithms. Many techniques utilise metrics (similarity functions) that 
compare the contours obtained from the segmentation algorithm with those derived from the ground 
truth segmentation [13].  

Dice metric (DM) is a statistic technique for measuring the overlap between two regions, 
manually and automatically segmented contours, and is the mean Dice metric tool for detecting LV 
accuracy evaluation: 
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where S represents detected regions and M represents manual labels.  

Jaccard index (J) has a similar function to DM. However, it maintains triangle inequality: 
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Hausdorff distance ( Hd ) is a method for formalising the space difference between regions: 
 
       max max, max  , ,  ,H p S q Md S M d p M d q S     , (5) 

where  ,p  represents the minimal interval between points p and q  and contour  . 

Clinical performance. To determine clinical performance indices, correlation, bias and 
standard deviation values are applied. These metrics are calculated using i) ED and ES volumes for 
LV and RV, expressed in ݉ܮ/݉ଶ; ii) ejection fractions, expressed in percentage of LV and RV; and 
iii) myocardium mass, expressed in ݃/݉ଶ , as listed by Bernard et al. [9]. 

Furthermore, as summarised by Hu et al. [44], critical parameters in LV functional 
measurements include LV mass in ES phase (LVM-SP), LV mass in ED phase (LVM-DP), LV 
ejection fraction (LVEF), LV end-diastolic volume in ED phase (LVEDV), LV end-systolic volume 
in ES phase (LVESV), LV stroke volume (LVSV) and cardiac output (CO): 
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  ( )ES ES
epi endoLVMSP V V p     ,                                                                                   (11) 

  ( )  ED ES
endo endo rCO V V H     , 

           
                                                                                  (12) 

where ௘ܸ௡ௗ௢
ா஽  and ௘ܸ௣௜

ா஽  are endocardial and epicardial volumes at the ED phase respectively, ௘ܸ௣௜
ாௌ  is 

the corresponding volume in the ES phase, ܪ௥ is the heart rate, and ݌ = 1.05 ݃/ܿ݉ଷ , the 
myocardial tissue density. 

Classification performance. Classification evaluation metrics such as sensitivity (sens), 
specificity (spec), accuracy (acc) and precision (prec) are utilised to evaluate the performance of 
classification based on the confusion matrices [45]:      
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where TP  ,TN , FP  and FN  are true positive, true negative, false positive and false negative 
respectively.  
 
LV QUANTIFICATION AND SEGMENTATION VIA CNNs   
 

Current automatic heart segmentation approaches can be classified as: pixel classification 
(clustering and Gaussian mixture model fitting) [46]; image-based methods (threshold and dynamic 
programming) [47]; deformable models (active contour and level set) [48]; statistical models (shape 
and appearance modelling) [49]; graph-based models (graph cut) [50]; and atlas models [51, 52] as 
organised in Figure 5.  

These approaches are known as non-learning-based algorithms that promise results on a 
small dataset and achieve less performance with new data that are not in data training. Some of 
these methods are highly dependent on expert features that have limited ability to present various 
shapes and forms of specific anatomical organs such as the heart. As a result, to address these 
issues, learning-based methods such as deep learning have been investigated to achieve optimal 
results in this field [53]. Deep-learning-based algorithms are also broadly used to discover complex 
features automatically from data during segmentation and object detection. These features are 
learned in an end-to-end manner, making deep-learning-based algorithms effective in image 
analysis applications [12].    

 CNNs [54-56], fully convolutional network (FCN) [57], recurrent neural networks [5], auto-
encoder [58] and generative adversarial networks [59] have demonstrated significant tasks in 
medical image analysis. FCN is a distinctive type of CNNs first proposed by Long et al. [60]. U-net 
[61] is the most suitable FCN architecture. Recurrent neural network is used for sequential data and 
has two popular models: long-short-term memory and gated recurrent unit [62]. Auto-encoder is a 
neural network that automatically learns compact latent representations of data [12]. The concept of 
generative adversarial network was introduced by Goodfellow [63], which consists of two 
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networks: a generator network and a discriminator network. Creswell et al. [59] conducted 
extensive reviews of this model, which showed a prominent performance for segmenting tumours 
[64] and estimating the heart volume [65].  

 
 

 
 

Figure 5.  Taxonomy of LV segmentation models  
 
 LV Quantification  
 

Existing methods for LV motion estimation in cine MR imaging are divided into three 
categories: image-based, feature tracking and deformable models. Recently, deep learning 
algorithms played an important role in LV quantification  [66, 67]  to predict critical diseases such 
as myocardial infarction from MRI [68, 69]. In the LV quantification, the multi-task learning 
framework model is widely utilised [21]. The model, which performs both LV parameter estimation 
and myocardium segmentation, was first proposed by Chen et al. [10], and it is known as the deep 
multi-task conditional quantification network. The framework consists of a U-net segmentation 
model and a quantification encoder with consecutive convolutional layers. This method has a 
limitation in terms of the number of segmentation labels required for training; thus, using 
unsupervised algorithms to improve framework adaptation was suggested.  

Khened et al. [53] presented a multi-scale residual DenseNet to combine both segmentation 
and diagnosis of cardiac disease; this network is based on an FCN. They proposed the inception 
module’s parallel structures for image processing input at multiple scales and viewpoints 
simultaneously. This work demonstrated a computational vision technique for the detection of 
segmentation of the region of interest in the end-to-end deep learning. Clinical cardiac parameters 
were extracted from the segmentation maps to demonstrate the analysis of clinical diagnosis and the 
ensemble classifiers that were trained to classify cardiac disease. Dong et al. [70] proposed two 
parallel end-to-end CNNs to detect both LV contours using the concept of multi-task learning. 

The full quantification of the LV is based on the simultaneous measurement of the LV 
volume and mass, six regional wall thicknesses, three LV dimensions and the diastole or systole 



 
Maejo Int. J. Sci. Technol. 2021, 15(03), 273-292  
 

 

282

phase. However, as mentioned by Xue et al. [21], the full LV quantification is a difficult task due to: 
(1) the high variability of cardiac structure that leads to inhomogeneity of cardiac appearance; (2) 
the complexity during the cardiac cycle of determining myocardium's temporal deformation; and (3) 
the mysterious relationship between different indices. The same group of researchers proposed a 
deep multi-task relationship learning network to quantify the LV from short-axis MRI. The 
proposed method included four integrated modules: the CNN to represent cardiac images, two 
parallel recurrent neural networks for modelling the temporal dynamics of cardiac sequences, and 
the soft-max classifier for estimation of the LV indices. Yang et al. [71] proposed a high-accuracy 
and stable technique to locate the LV at ED and ES phases using CNN in the free-breathing MRI. 
Tao et al. [72] created a CNN model for the LV quantification using short-axis cine MRI in 
multicentre and multivendor settings. 

 
 LV Segmentation 
 

 Cardiac MRI present the patient’s heart with surrounding chest cavity organs such as the 
lungs and diaphragm [53]. The region-of-interest detection step is proposed to approximately 
localise the heart region, e.g. the LV cavity in MRI. The region-of-interest extraction of LV features 
is extensively used in the training and inference of deep learning models [73-75]. In computer-aided 
diagnosis, the localisation of the LV in MRI plays a crucial role in diagnosing heart disease. Based 
on CNN regression and deep distance metric learning, Wang et al. [67] proposed a method for LV 
localisation and identification from cardiac MRI. They employed a combined distance metric 
learning and super-pixel segmentation algorithm to ignore handcrafted features and learn deep-
patch feature representation. Besides, a salient patch module with two channels was proposed to 
prevent low discrimination of image regions. The CNN regression module was created for landmark 
localisation by combining the weights of three networks, and the LV was further recognised by 
Mean Shift algorithm. Although this method achieved higher accuracy in LV localisation from the 
cardiac MRI, a single CNN regression did not adapt to the huge differences in MRI effectively. 
Methods of cascading CNN regression and classification should be investigated to address this 
issue. Tan et al. [20] presented an automated module for LV segmentation based on CNN regression 
and used two approaches: LV centre-point localisation and determination of the LV border radii in 
polar space.   

LV segmentation is a critical task for determining clinical parameters such as LV mass and 
volume as well as the diagnosis of cardiovascular pathologies [76]. Nonetheless, this task remains 
difficult for the following reasons, as listed by Wang et al. [19]: (1) difficulty in distinguishing 
between myocardium and papillary muscles with similar intensities; (2) variations in brightness in 
the LV cavity due to blood flow; (3) complex segmentation of apical and basal slices; (4) personal 
variability in LV shapes and intensities; and (5) noise associated with cine MRI. Zhang et al. [77] 
first proposed a method for the automatic detection of missing apical and basal slices of MRI, which 
affects the diagnostic accuracy of LV quantification, by introducing a novel Fisher-discriminative 
3D CNN classifiers.  

Many LV conventional segmentation approaches have been conducted, as mentioned 
previously. However, all of the models depend on the initial model placement with undesired local 
minima of the objective function [8]. CNNs have been used extensively for a successful 
classification and segmentation with high performance. Moreover, hybrid approaches that include 
deep learning-based and model-based ones are utilised for accurate LV quantification/segmentation. 
Hu et al. [44] proposed a hybrid method of constructing a 3D-active shape model automatically for 



 
Maejo Int. J. Sci. Technol. 2021, 15(03), 273-292  
 

 

283

the LV, in which the CNNs were used to obtain the initial shape of the LV, and point distribution 
models were utilised to derive the distance maps from the ground truth of endocardial and epicardial 
contours. This study found that combining deep learning and statistical models is beneficial for LV 
functional parameters evaluation.   

Further, Avendi et al. [78] proposed a hybrid approach of deep learning and deformable 
models to reducing the complex problem of LV segmentation. The method was achieved in three 
stages: determining the region of interest of the LV using CNN; stacking auto-encoders to detect the 
LV’s shape; and using deformable models to optimise the accuracy of the segmentation. The testing 
of this method on a larger clinical data set was suggested for researchers in the future to enhance the 
network performance. Resolving critical segmentation issues, hybrid models have demonstrated 
significant potential in LV segmentation. Indeed, Lan et al. [6] employed this technique by 
combining CNN and snake models in automatic LV segmentation using MRI. The CNN was used 
to segment the LV and two double snake models were utilised to assess endocardial and epicardial 
boundaries. Wu et al. [79] developed a hybrid technique by combining CNN and U-net models to 
locate the region of interest and segment the LV. Despite the high accuracy of their model, only 
non-professional diastolic and systolic segmentation of LV boundaries exists. Lin et al. [55] 
proposed the first data augmentation approach to improve the model performance by training the 
FCN from few samples for LV segmentation using shape models. One issue with LV segmentation 
is a small annotated training data set where the visual region of interest requires variations in large 
shape and appearance. Ngo et al. [80] solved this problem by combining deep learning with a level 
set for automated LV segmentation from cine MRI.   

Based on the hybrid techniques with deep learning algorithms, Wu et al. [23] were the first 
to employ graph matching based on a feature point descriptor using FCN to estimate cardiac 
motion. Using an FCN, they first segmented the LV's endocardial contour and extracted point 
features. Then, in graph matching, they employed a feature descriptor with the FCN to estimate the 
LV motion. During the construction of graphs representing the LV's endocardial contour, the graph 
matching algorithm hypothesised that the LV contour is the same as a circle. When the LV contours 
are abnormal, the performance of graph matching model is poor. An overview of segmentation 
techniques using short-axis cardiac MRI based on non-learning-based algorithms from 1993 to 2010 
can be observed in the work of Petitjean and Dacher [81] with more enriched information on the LV 
and RV, while the study by Fahmy et al. [82] summarised the segmentation of the heart’s chambers 
from MRI, ultrasonic, and computed tomography data sets. These works prove that the 
segmentation of the LV using short-axis MRI is the most crucial method in heart disease diagnosis 
nowadays. 
 
Cardiac MRI Data Sets  
   

Several sources of cardiac MRI data sets are used for LV segmentation and quantification, 
including the automatic cardiac diagnosis challenge (ACDC), the left ventricle segmentation 
challenge (LVSC), the Sunnybrook cardiac data (SCD) and York and cardiac Kaggle data sets. 
Table 1 outlines the details of these data sets; additionally, Bernard et al. [9] summarised a 
comparison of existing cardiac MRI data sets.   
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     Table 1.  Cine MRI public data sets for LV and myocardial segmentation 
MRI data sets 

Datasets name Year No. of subjects Main pathology 
ACDC [9] 2017 150 myocardial infarction and hypertrophic cardiomyopathy 

SCD  [83] 2009 45 hypertrophy, heart failure with/without infarction and 
cardiomyopathy  

LVSC [84] 2011 200 coronary artery disease and myocardial infarction 

York [85] 2008 33 
cardiomyopathy, enlarge ventricles, aortic regurgitation 
and ischemia 

Kaggle [86] 2015 700 Measuring ED and ES volumes 
 
 
COMPARISON AND DISCUSSION 
 

Table 2 tabulates an overview of the current methods based on the tasks of the LV 
segmentation and quantification from various MRI data sets. Comparative analysis was used in 
terms of methods and types of cardiac MRI. It can be observed that the CNN U-Net-based 
architecture is the most used among these methods that combine with models such as active 
contours and deformable models. Moreover, deformable models that infer the LV shape combined 
with a deep learning algorithm were proposed by Avendi et al. [78] for automatic LV segmentation. 
Similarly, Ngo et al. [80] and Xie et al. [18] improved the accuracy of the segmentation network by 
combining the level set approaches with a deep learning algorithm.  

Further, Wu [23] utilised deep learning algorithms together with graph matching to estimate 
the LV motion, whereas Wang [19] used a dynamic pixel-wise weighting approach in conjunction 
with a CNN model for LV segmentation. Hu [44] also employed hybrid models to construct a 3D 
shape for the LV by combining a 3D active shape model with a CNN algorithm. Recently, Lan and 
Jin [6] combined a snake model (active contour) with the CNN algorithm, achieving better 
segmentation accuracy than all previous models. Table 3 shows a quantitative analysis of the most 
recent methods through different evaluation metrics, namely dice metrics, average perpendicular 
dice (APD), and good of contours percentage. The performance of the model proposed by Lan and 
Jin [6] outperforms other existing methods with dice metrics of 0.96 and 0.97 for endocardial and 
epicardial contours respectively, followed by the model of Wu et al. [79] with a dice metric of 0.95 
for both contours. Combining the deep learning-based algorithms with traditional feature-guided 
models thus results in robust models for LV segmentation and quantification from MRI.  
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Table 2.  Overview of current studies on LV segmentation from MRI data sets  

Author /year Objective Method Database 
 
Wu et al. 2020 [23]  LV motion estimation Graph matching + FCNs LVSC (MICCAI 2009)   

Romaguera et al. 2018 [87] Myocardium segmentation FCN + six optimisation 
algorithm comparison  SCD 

Zheng et al. 2019 [88] LV motion characterisation Apparent flow of semi-
supervised learning ACDC 

Ngo et al. 2017 [80] LV segmentation Deep learning + level set 
methods  LVSC (MICCAI 2009)   

Wang et al. 2020 [19] LV segmentation Dynamic pixel-wise 
weighting + CNN LVSC (MICCAI 2013)   

Chen et al. 2020 [10] LV quantification Deep multi-task + U-net LVSC (MICCAI 2018)   

 Wu et al. 2020 [79] LV segmentation CNN  U-net based  
architecture  LVSC (MICCAI 2009)   

Curiale et al. 2019 [8] LV quantification CNN  U-net based  
architecture  SCD and CAP 

Khened et al. 2019 [53] Myocardium segmentation DenseNet based FCN 
architecture 

ACDC-2017, LVSC-2011 
and Kaggle   

Tan et al. 2017 [20] LV segmentation CNN regression model LVSC (MICCAI 2011)   

Wang et al. 2020 [67] LV landmark localisation CNN regression + 
classification models CAP 

Hu et al. 2020 [44] LV 3D-ASM CNN + 3D-ASM 1200 MRI from Hubei 
cancer hospital 

Lan and Jin 2019 [6] LV segmentation CNN + active contour 
(snake model) Sunnybrook 

Tao et al. 2019 [72]  LV quantification CNN  U-net based  
architecture  

596 MRI collected from 
medical centres      

Lin et al. 2020 [55]  LV segmentation FCN + shape model MICCAI 2009,  CAP, 
Kaggle and 33 subjects  

Dong et al. 2020 [70] LV segmentation Two parallel end-to-end 
CNNs LVSC (MICCAI 2019)   

Yang et al. 2017 [89] LV segmentation CS-FCM Sunnybrook  

Xie et al. 2020 [18] LV segmentation CNN + level set model  MICCAI 2009 and  
MICCAI 2017 

Avendi et al. 2016 [78] LV segmentation CNN + deformable model LVSC (MICCAI 2009)     
Note: ASM = active shape model, CAP = cardiac atlas project, FCM = fuzzy c-mean, MICCAI = 
international conference on medical image computing and computer-assisted intervention)  
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Table 3.  Comparative analysis of current studies on LV segmentation  

 
Note: Endo=endocardium, Epi=epicardium. Figures indicate mean and (standard deviation).               
     

CONCLUSIONS    
 

Short-axis MRI have demonstrated high potential for segmenting LV parameters, 
particularly the myocardial wall thickness. Various existing CNN algorithms have also 
demonstrated satisfactory functionality in LV automatic segmentation of the short-axis MRI that 
diagnose cardiac disease at an early stage. By combining CNN models with statistical models or 
shape models such as active contours or deformable models, a robust hybrid model for LV 
segmentation and quantification can be produced. This paper presents different evaluation 
parameters that are beneficial not only for readers to develop a new scope of research, but also for 
clinicians to diagnose the cardiac disease accurately. 
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